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· 
I, INTRODUCTION 


Following the work of Green and Porter (1984) and Abreu, Pearce and 

Stachetti (1986, ]990), there is now a large literature on repeated games with 

imperfect monitor'ing. This literature assumes th<'lt players observe a public 

signal, i.e. a signal which is common knowledge between the players. In this 

framework,Fudenberg, Levine and Maskin (989) have shown that a version ofthe 

folk-theorem applies. This paper is concerned with a qualitatively different 

situation, where players monitor each other's actions by a privately observed 

signal. This is the situation in many important contexts, including the case 

of oligopolistic competition between price setting firms discussed by Stigler 

(]964) (see also the discussion in Fudenberg and Tirole (1991)). The critical 

difference with the public signals case is that the realization of signals is 

not mutual knowledge between the players. Our focus is on the situation where 

the signals are "almost perfect", Le. where they almost perfectly correlated 

with actions. In other words, we are considering a game with imperfect 

monitoring which is arbitrarily close to a game with perfect monitoring. We 

find however a dramatic discontinuity - the equilibrium set of the game -with 

almost perfect monitoring is qualitatively different from the. equilibrium set 

of the game with perfect monitoring. If the errors in the observations made by 

players are uncorrelated. any pure strategy equilibrium of the repeated game 

requires players to play the Nash equilibrium of the stage game every period. 

This result appears to be robust to some correlation in the observation 

errors, as we show via an example. Although mixed strategy eqUilibria allow a 

wider range of behavior, we find that they do not allow us to approximate fully 

cooperative behavior. More precisely, we show that the equilibrium set and the 

set of eqUilibrium payoffs fails to be lower-hemicontinuos in the level of 

noise at the point of zero noise. Consequently, the fully cooperative outcome 

cannot be approximated even if monitoring is almost perfect. We must emphasize 
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however that ()ur analysis of miX(Ki strategies is as yet preliminary, and much 

remains to be dono. 

The rest of this paper' is a.s follows. Section 2 presents a simple example 

which demonstrates the ba.sic idea of the paper. Section 3 discusses pure 

strategy equilibria in general repeated games when observational errors are 

independent. Section 4 returns to the example and analyzes the implications of 

correlated errors. Apart from demonstrating the robustness of our earlier 

result, we have another surprising finding - with correlated errors, the pure 

strategy equilibrium set is not monotonic in the degree of noise, and in some 

situations, increased noise may facilitate cooperation. Section 5 discusses 

mixed strategy equilibria and the final section concludes. 

2. AN EXAMPLE 

Consider the game GI, which is a variant on the prisoners' dilemma, and 

which we choose to interpret as a stylized model of bilateral trade. Two 

traders are exchanging fruit, an apple for an orange. They can send each other 

a good fruit (action C, for cooperate);' or a spoiled fruit (action D, for 

defect). Fruit quality is unverifiable by a third party, so' that the traders 

cannot write binding contracts to enforce the Pareto-optimal action pair 

(C,C). Players have, in addition, action E, which allows cooperation to be 

sustained when the . game is finitely repeated -should one seek an 

interpretation, think of it as sending a poisoned apple! Toe payoff x can 

for the moment be taken to be O.GI has two pure strategy Nash equilibria ­

(D,D) and (E,E), with the latter being strictly worse for both players. This 

allows the players to cooperate when G is repeated, even if the repetition is 

only finite. For example when G is repeated twice, the action pair (C,C) in 

the first period can be supported; the players choose 0 in the second period 

if the first period actions are (e,e), and choose E otherwise. Extending this 

2 



~lrgllmcnt. if the game is repeated T times, the players can cooperate in the 

first T-J periods. so that their aver'age payoff is 8-S/T. 

The standard way of adding noise to this model is to assume that player's 

sometimes make mistakes, so that their actual actions are different from their 

intended actions. A player who intends to play C will sometimes make a 

mistake, so that with a small probability c, his actual action will be D 

rather than C. Players can observe their opponent's actual actions, but are 

unable to observe their intentions. Consequently, a player who makes a mistake 

unintentionally must be punished, in order to prevent opportunistic behavior. 

This creates an inefficiency. but the inefficiency is small, being of order c. 

When G is repeated twice, the expected payoff in the subgame perfect 

equilibrium described above is: 

2 . 2 
(1-c) 11 + cO-c)(10+3) + c 4 (2.1) 

This is less than the payoff of 11 in the game without noise, butas c-) 0, the 

payoff in the noisy game converges to 11. In otherwords, noise creates 

inefficiency, but this inefficiency vanishes as the noise vanishes, Further, 

as the number of repetitions. gets large, and as c tends to zero, the 

per-period payoff converges to 8. 

The interpretation of the noise in the above model is that of Selten's 

trembling. hand. I fully intend to play C, but my hand is jiggled, and I find 

myself choosing D, and sending you rotten fruit. When I do this I am aware 

that I have made a mistake, and that you will punish me for this. In other 

words, although my intended action is. private information to me, my actual 

action is mutual knowledge (and common knowledge) between us at the end of the 

period. Put somewhat differently, the noisy game corresponds to one where 

actions (which we have called intended action here) are private information, 

but the signal (which we have called the actual action here) is publicly 

known. 
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Consider' now an alternative f()f'mulation of noise which is the focus of 

this paper. I send you an good orange, but with a very small probability the 

orange deterioI"ates en route. know my action, i.e. that I have sent you a 

good orange. However J do not know whether' you have received a good orange or 

a bad one, Le. I do not know what signal you have received. The signal is 

almost perfectly correlated with my action, but only almost. Neither' the 

action nor the signal are mutual knowledge between us, although they are 

arbitr'arily close to being so, in a probabilistic sense. 

This formulation creates a drastic discontinuity. Any pure strategy 

equilibrium of the repeated game must consist of playing the Nash equilibrium 

of the stage game G in every stage. In other words, C cannot be played in such 

an equilibrium. 

To see this consider the twice repeated game. Clearly, C can only be 

played in the first period, and to make the playing of C optimal, a player 

should punish a first-period deviation (to D) by playing E rather than D in 

the second period. However, this punishment, . which depends on varying in 

second period behavior with the signal, is not optimal. Suppose that I believe 

that my opponent is playing the above strategy, i.e. playing C in the first 

period. If I now observe the signal D at the end of the period, I should 

believe that the signal arose by mistake - the application of Bayes' rule to 

my opponent's strategy implies that my opponent chose C, and that my 

.observation of D is due to the noise in the signaling technology. I have 

played C, and with a very high probability (1-c) my opponent has observed C 

and is going to continue with D. Consequently, I should continue with D rather 

tha~ .E. Since varying second period behavior with the signal is not optimal, 

this makes it impossible to support the playing of C with probability one in 

the first period. 

The inability to support cooperation is a robust feature given the 
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information structw'{l. In the game G, the only value of x for which playing C 

in the fir'st p(~d()d can be supported x=3-c/(]-c), At this value of x, I am 

indifferent betw(~en C and D given my opponent's strategy, and this 

indifference holds regardless of the signal I receive:;. In other words, our 

negative result is generically true, as we shall see ill the next section. 

Consider now the repetition of the stage game for a finite number of periods, 

say T. We shall see that our negative results apply no matter what the value 

of T. It might be surmised that this is due to a standard backward induc1:ion 

argument, using the analysis of the twice repeated game. However, this is not 

the case.In our model, the game that remains aftel' T-2 periods is not 

analytically the same as a two-period game. After T-2 periods, the player's 

have imperfect information regarding the history of actions as well as of 

signals. Since the two players are not at the same information set. 1:he 

continuation strategies at the end ofT-2 periods do not have to be equilibrium 

strategies of the two period game. Consequently, usual backward . induction 

arguments cannot be used in this case, even tb9ugh the game is only finitely 

repeated. As we shall see in the next section, the analysis has to begin in 

the first· period and proceed by normal induction. As such,our method of proof 

does not distinguish between finitely and infinitely repeated games. and our 

results apply equally to both. 

3. PURE STRATEGY EQUILIBRIA WITH INDEPENDENT SIGNALS: A GENERAL FRAMEWORK 

Let I := {l,2, ... ,n} be the set of players, let A.. i E I be the action 
1 

set for each player.· A := ~ Ai' and Ui: A-)R is the payoff function for player 

i. U = (U
I 
... ·., U ). The stage game G is the triple (I,A,U). G is repeatedn . 

either for T periods or infinitely often. Players seek to maximize the 

expected discounted sum of payoffs, using a common discount rate o. If G is 
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1 

repeated infinitely ()ftCil, the discount rate. (5 < 1. incorporates the 

Iwobability or termination In every period. If G is repeated finitely often. () 

5, 1. Payoffs are received at the end of the game. 

At the end of each period pliiyer i observes a (n-1) vector of signals, 

b '" (b .b '.... bin). bij is player j's signal regarding the action takeni U i2

by player j. Note that j and j are always distinct when we write b... b.. is
1J IJ 

drawn from a finite set B .., which is the set of all possible signals that i
IJ 

could receive regarding j's chosen action. To keep things simple we shall 

assume that 'BU I :::: J Aj ,. Le. that the number of possible signals regarding 

j's action is the same as the number of possible actions that j could choose. 

Bi "" ~ Bij is the set of all possible signal combinations that can receive. 

. Since signals are private information. histories are also player 

specific. A history upto to period t for player i. h~, is a sequence of 
1 

1 2 t-l
realizations of signals, (b., b. , ....•b. ). The set of all possible histories 

1 1 1 

. d l' 1 . Ht . . 1 h d (B )t-l Th h'upto peno t· or payer I, i' IS SImp y t e pro uct i . e Istory at 

1 . 1 
period one for any player is the null history, h. i.e. H. is a singleton set 

1 

for all players. We restrict attention to pure strategies; hence a. strategy for 

t t t .
player i. s.. is a sequence <s. >. where s.: H.-) A.. Given the restriction to

I 1 1 I I 

pure strategies there is no loss of generality. in not allowing s. t to depend
1 

upon player i's own past actions. A strategy profile is the n-tuple· s= 

We turn now to the signalling technology. Write p(b. .la .1 for the 
IJ J 

conditional probability that player ireceives signal b.. given that player j
IJ 

has chosen action a We make the following assumptions.
J 

Assumption 1. Full Support. V i,j E I. p(b. .la.) > 0 V b ..E B ..J V a.E A .. 
. IJ J . IJ 1 J J J 

Assumption 2. Independence. for all distinct i,j,k E I, 

p(b . .Ia., b .) = p(b. .IaJ, V b ..EB ... V a.E A.• V bk·E B
k 

.. 
IJ J kJ IJ J IJ I J J J J J 

Our concern in this paper is mainly with signalling technologies which are 
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almost per'fecL To ll1ake this precise, we define perfect and v-perfect 

signalUng technologies (as follows. 

Definition. The repeated game Gill has perfect monitoring if for every or' cd 

pall' of players (i,j). there exists a one-to-one corresr: ;ldence 

f..:A.-)B .. such that peL .(a.)/a.) := 1, V aJE AJ"
IJ J, 1J . 1 J J J 

Definition. Let (;>0. The. repeated game G*(v) has c-perfect monitoring if it 

satisfies the full support assumption and for every ordered pair of players 

(i,j), 'there exists a :one-to-one correspondence 

p(f .. (a .l/a.l > l-c, V a.E A .. 
IJ J J - J . J 

If a repeated game has c-perfect monitoring. it follows that I ) p(f . .(a.)/a.) 
. IJ J J 

L 1-c for every ordered pair O.j). Consider a strictly positive sequence <c > 
n 

converging to zero. At t:=O. the repeated game is one with perfect monitoring 

and therefore violates)the full support assumption. Conversely. for any game 

G* with perfect monitoring and a sequence <v > converging to zero, one can 
n 

find a sequence of games of imperfect monitoring, G*(c ). We shall identify G* 
o n 

with the limit of the sequence' G*(c ). Our concern is with equilibria of the 
n ' 

game with perfect monitoring which are limits of sequences of games with 

E::-perfect monitoring where c tends to zero. 

Given any repeated game, let V. (s/h~) denote the expected continuation paybff
1 1 

from period t to played i from strategy combination s conditional on i, having 

observed the history h~. A strategy combination 5 = (s".s.) is a Nash 
1 1 -1 

equilibrium if V. (s/h
1
) L V.(s:.s ./hI ) every every other repeated game

1 1 1 -1 

strategy s:. 
1 

Definition. Let G* be a trepeated game with perfect monitoring. A pure strategy 

profile s = (s1.s2...... snl is a robust equilibrium of G* if: 

(i) s is a Nash equilibriUm of G* and 

Oi) there exists a strictly positive sequence <c > converging to zero.' with 
n 

an associated sequence «;*(c ) of games with c -perfect monitoring, such that 
n n 
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• 
t; IS a Nl'H,h l~quilibrium of G*(e ) for all n. 

n 

Remark: Given our' full SUppOI't assumption it suffices to restl-ict attention to 

Nash equilibria with c-per'fect monitoring, each signal is received with 

positive probability, so that there are no information sets that are ruled out 

due to the actions of other players. 

To recall, the stage game is the triple (I,A,V), The repeated game with 

perfect monitoring is G*, which may be either finitely or infinitely 

repeated. The associated repeated game with c-perfect monitoring is G*(c).. In 

this section we restrict attention to signalling technologies which satisfy 

the independence assumption defined above. This implies that observational 

errors made by the player's (due to the imperfection of the signal) are 

independent. 

Consider the stage game G, and fix 1 and A. There are IA I possible action 

combinations and n x IA1 possible payoff numbers. Let m n x 1A I. Given I and 

A, the stage game is fixed by specifying a point in R
m, A property P is 

R
m

satisfied by almost all games if, given I and A. the set of points in such 

that P is true is a closed set of Lebesgue measure zero in Rm, 

Theorem 1. Consider a signalling technology which satisfies independence. For 

almost all stage games G, if s is a robust pur'e strategy equilibrium of the 

repeated game G*, s requires the play of a Nash equilibrium of G at every 

stage and after any history. 

To prove this theorem we need the following mathematical result which is set 

out as lemma 1. Before we present this result. note that 0 is a fixed 

strictly positive real number strictly less than one, 

Let x E R 
m

• x 

Let X == {wER:w = ekx, 1 :S. k :S. m}. i.e. X= { x 1,x ' .. ·,x •· .. , x }
2 k m

Condition Cl: x has the property that there exist distinct infinite sequences 
()( 

<Yt> and <Zt> with range X such that L ot (Yt-zt1= O. 
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Condition C2: x has the property that there exist distinct finite sequences 
T 

t
<Yt > and <Zt>' t=l,2, ..T with range X such that LiS (yCZt )=0. 


Condition C3: x has the property that there exist finite sequences <Yt> and 

T 

<z1?' t""1.2.....T. with range X such that E (Yt-Zt) "'" 0, and <Yt> is not a 

permut~tion of <Zt>' 

RmLemma l.Let S ;:::: {x E : x satisfies C1 or C2 or C3}. S is a closed set of 

Lebesgue measure zero in Rm. 

Proof: 'Each of the conditions Cl,C2. and C3 define a single equation among the 

finite number of elements of X, so that the lemma follows. [J 

Lemma 2. If s is a robust Nash equilibrium. S~:H~--) A. is a constant fUnction, 
, 1 1 1 

for every player i, for almost all stage games G. 

Proof: The proof is by induction. 

For t=1, s~ is obviously constant since H: is a singleton set. 
1 1 

Consider now arbitrary t. and consider a game with £-perfeCt monitoring. Let G 

'tbe generic. so that by the induction hypothesis, s. is constant on H: for
1 ' J 

every 't < t, and for every player j. Let h.
t 
,h.

t' 
€ H~ be distinct t-period

1 1 1 

histories. 

We claim that 


t t'

V . (s/h.) = V. (s/h . ) 3.1 

1 1 1 1 

'tSince s is a pure strategy combination and (by the induction hypothesis) s. 
J 

is a constant function for every 't<t, for every player j. by' Bayes' rule 

player i's beliefs regarding the actions chosen by j in periods 1.2..... t-1. 

are degenerate: player i assigns probability one to the belief that j has 

chosen a deterministic action sequence, for every player j. Hence player i' s 

beliefs regarding past actions are independent of the observed history. By the 

independence of signals (Assumption 2), player i's beliefs regarding the 

'signals observed by other players. is independent of the realization of b~ , 

for every 't<t. Hence the probability assigned by player i to player J being at 
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history II ~ 
J 

e II t.,
J 

if. tll<' sam(~ regardless of whether player i is at 
t

h. 
I 

Of' 
t'

h .. 
1 

Hence j'f> probability distr'ibution over j's actions in per'jod t and 

subst':!quently is the same, regardless of whether 
t

hi 0)' 
t'

hi is the observed 

t'
history ofsignaL From the full support assumption, h~ and h. are both 

1 1 

observed with positive probability. Since s is a Nash equilibrium, player i 

t t' 
must play a best response at hi' and at hi ' so that the equality of expected 

payoffs in (3.1) follows. 

Consider now the game with perfect monitoring. In the game with perfect 

monitoring, at every information set, distinct actions generate distinct 

deterministic sequences of payoffs. Since s is a robust Nash equilibrium, 

t t'
(3.1) applies. We claim that s. (h.) = s. (h. ) for almost all stage games G. If 

1 1 1 1 

. t t'
s.(h.) ::;:: s.(h. ), so that player i takes two distinct actions, this generates

1 11 I 

two distinct rea) sequences, with range the set of pure action payoffs to i, 

which can call <y > and <z >,. s = t, t+l, .... If G* is an infinitely repeateds s 
0( 

game, (3.1) implies that E oS (y -z )= 0, so that <y ) and <z > satisfy CL By
pt s s s s 

lemma I, G is non-generic, Le the set of payoffs of G such that this 

condition holds is a closed set of Lebesgue measure zero. 

If G* is finitely repeated with discounting, (3.1) implies that 
T ~=t 

s 
\' (5 (y -z )'" 0, where 0 < (5 < L Since <y > and <z > satisfy C2, lemma 
£., ss - s s 

shows that G is non generic. 
T 

Tf G* is finitely repeated without discounting, (3.1) implies E (y -z)= o. 
s s 

s=t 
Lemma 1 shows that if G is generic, <y ) is a permutation of <z >. However. if 

s· s 

<y > is a permutation of <Z >, then for a generic game, the associated 
s s 

sequences of action n-tuples are permutations of each other. This is however 

impossible since there is no public signal on which to base the permutation. 0 

After lemma 2 the prooof of the theorem is straightforward- if it is G is not 

possible to vary in any period in response to signals, no player can be 

punished for deviating in any period. Hence in each period, the action 

t 

g 

e; 
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combination must be <l Nash equilibrium of the stage game. [J 

J~emark: It seems possib)t~ to strengthen Theorem 1 so that it applies directly 

to the game with imperfect monitoring. and not just in the limit. This wou Id 

require a stronger version of lemma 1. relating to sequences' of random 

variables. 

4 CORRELATED SIGNALS 

In this section we examine the implications of relaxing Assumption 2, 

that the signals received by players are independent. We do not present a 

general analysis. but return to our two-period repetition of GL For 

example, in our interpretation of -this game as a model of' bilateral trade, the 

probability of good fruit spoiling may be related to the weather, and weather 

shocks may affect the fruit that both players receive. 

We adopt the following notation for this section: upper case letters 

denote actions. and the corresponding lower case letters denote signals. 

Consider the following joint distribution of signals conditional on the 

action pair (C,C): 

2's signal 
c d 

2 
c (I-e) + pd1-e) (l-p)c(l-e) 

l's signal 
2

d O-p)dl-d e + pdl-e) 

If player i chooses D, the probability that j observes d is one. If 

chooses C and j chooses D. the probability that j observes C is (I-e). 

This probability distribution is parametrized by e and p. As before, e is 

the degree of noise in the signal, and is the (unconditional) probability that 

the signal takes the value d when action C is chosen. p is the degree of 
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(;orrclatlon bl~t.wcen signals. p o corresponds to case where the signa)$ are 

indepr:mdent as earlier, while p>O corrE:ponds to posi~ive correlation between 

signaling errors. p""l is the case where the signals are perfectly correlated, 

which may be considered the case where signals are in fact publicly observed, 

If signaling errors are positively correlated, this allows for the 

possibility of a player vaJ'ying his actions depending on the signal he 

receives, along a pure strategy path. With positively correlated signaling 

errors,.if J receive a bad signal, this makes it more likely that my opponent 

has also received a bad signals. Consequently an agreement to punish each 

other if we receive a bad signal could be made self enforcing. However, the 

degree of correlation must be large enough. In our game, if we consider the 

case where the noise vanishes, (Le. c-) 0), p must be greater than 0.75, if 

the payoff parameter x is zero, as we assume for most of this section. 

Consider the sustainability of the cooperative strategy, i.e.: 

1st period: C 

2nd period: D if signal c 

E if signal d 

To check that this is a Nash equilibrium we need to see that second 

period behavior is optimal. It is optimal to play D if the probability of my 

opponent playing D is greater than 114, and optimal to play E if this 

probability is less than 1/4. In other words, along the equilibrium path 

where the action pair (Ce) has been chosen, we require that if I have observed 

c, the conditional probability that my opponent has also· observed c, 

p(c/c;CC), must satisfy: 

p(c/c;CC) (l-c) + pc 2 1/4 (4.1) 

Similarly, if I have observed d, the conditional probability that my opponent 

has observed c, must satisfy: 

p(c/d;CC) = (I-pHI,..£) S 114 (4.2) 

lie j 
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1 

e 
These two inequallti(~s ar'e graphed in Fig 2. Recall that c and p both 

lie in the unit intcl'vul (negative values for p are possible, but they only 

reinfoT'ce our earlier results). 'rhe shaded area shows values of £ and p sucll 

that the second period behavior of the above cooperative strategy is optimal. 

Fig 2 illustrates a number of interesting points regarding the sustainability 

of cooperation. First, as we have already seen, as c-) 0, p must be greater 

than 3/4. Second, consider values of p < 3/4, The figure shows that 

cooperation is not possible if £: is small and close to zero, but may be 

possible for larger values of c. Of. course we still have to check that first 

period behavior is optimal. This requires: 

2 2
8 + 3[(1-c) + pdl-c)] + 1£ + pe(I-c) 2. 9 + 1 (4.3) 

The cooperative strategy is an equilibrium iff k,p) satisfy inequalities 

(4.1)-(4.3). It may be verified that if p=2/3, £=113 satisfies these 

conditions. However, as we have already seen, the conditions are violated for 

sufficiently small values of e; and further (4.3) is violated if £ is too 

large. 

We summarize the results of this section in the following proposition: 

Proposition 1. Consider the game GI, with correlated signals, parametrized by 

(e,p). 

i) As the noise parameter £-) , cooperation can be supported only if the 

degree of correlation between signals. p, is sufficiently high, Le. p2.3/4. 

ii) The pure strategy equilibrium set need not be monotonic in £, i.e. 

cooperation can be supported at intermediate levels of noise, but not either 

at very low or very noise. 

Our result here contrasts sharply with Kandori's (1992) resulL Kandori 

shows that if signals are publicly observed, the equilibrium set increases as 

the noise in the signal is reduced. 

There is a distinct point which may be worth mentioning here, which 
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arises when w(~ vary lht~ game GJ. by varying parameter' x. Let c-") 0, and 

Gonsider the values of p requiJ'f~d to support cooperation as a function of x. 

p(x) is decreasing in x, Le. as x becomes laT'ger, less correlation is 

required in order to support cooperation in the game with almost perfect 

monitoring. As x increases, the relative riskiness of the two stage game 

equilibria changes - (E,E) becomes Jess risky as compared to m,D). This 

suggests that a conflict between Pareto-dominance and risk-dominance may help 

suppor.t cooperative behavior in repeated games. 

5. MIXED STRATEGY EQUILIBRIA 

In this section we discuss the role of mixed strategies. We consider 

again our example, Gl. Further', we assume that signals are independent, Le. 

we retain Assumption 2. The inability to support playing C in the first period 

can be seen as due to the following reason. In a pure strategy equilibrium, I 

can perfectly forecast my opponent's actions in the next period from his 

strategy alone. His signal consequently does not convey any additional 

information to me. EVen though the signaling technology is almost perfect, it 

is only almost so, and my prior information takes precedence. To give the 

signal some bite, it must convey some information about my opponent's second 

period actions in' eqUilibrium, i.e. even in the absence of any noise. This is 

possible if we allow for mixed strategies. Once again, the payoff parameter x 

in GI is zero. 

Consider the following strategies for the repeated game. 

Strategy A: 1st period: C 

2nd period: D if signal c 

E otherwise 

Strategy B: 1st period: D 

2nd period: E for all contingencies 
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The payoff matrix for these two supergamc strategies is: 

A B 


2

A . S+Jc(l-c)+c" J 

B 10 4 

Since A and B are best responses to each othel- in this matrix, the mixed 

strategy where A is played with pl-obability apprOXimately one-half 

. 2
(p=1I(2-Sc+3c)) is a an equilibrium of the above matrix. 

Proposition 2: The above mixed strategy equilibrium is a Nash equilibrium of 

the repeated game. 

Proof: If my opponent plays p, it is sUb-optimal to choose E in the first 

period, and I should start with C or D. If I start with D, my opponent 

receives signal d, and hence should continue with E. If I start with C, 

should continue with D or E, since C is strictly dominated. If receive 

signal c, I know that he is playing the supergame strategy A, and that he has 

with very high probabilityU/l+c) received signal c, and will play D in with 

probability close to 1, so that I should play D as well. If I receive signal 

d, the probability that he has played D is (i/2)/(l/2 +c/2)~1. Hence. he is most 

likely to continue with E, and I should play E as well. Hence I should conform 

to A if I start with A. Since only A and B are best responses against the 

mixed strategy p in the repeated game, p is an equilibrium. o 

The payoff in the mixed strategy eqUilibrium is 4+6p, which converges to 

7 as c tends to zero. This is greater than the payoff of 6 which can be 

supported as a pure strategy equilibrium, but strictly less than the payoff 

of 11 which is achievable in the game without noise, i.e. when £=0. It is also 

possible to show that a payoff of greater than 7 cannot be supported as long 

as c is positive. This highlights a discontinuity in the transition from agame 

without noise to the game with noise. The set of sequential equilibria fails 

1 



to be lowcr-hemicontinuQus in e at the point c""O. This implies that the 

outcomes in the game with noise can be drastically different from the outcomes 

in tJl(~ game without noise, even thoilgh the noise itself may be infinitesmaL 

This contrasts sharply with the standard way of analyzing a noisy game, where 

the signals are mutual knowledge between the players. As we saw in section 2, 

the payoff of 11 is the limit of the equilibrium payoffs in the noisy game as 

the noise vanishes. 

6. CONCLUSIONS 

The analysis of this paper is preliminary and much remains to be done. 

Repeated games with private signals are obviously a rich area for further 

research, and this paper has only probed the surface. To our knowledge, the 

only other paper on this area is the paper by Fudenberg and Levine (990). 

They consider approximate equilibria, and prove a version of the folk theorem. 

Our results are dramatically different, at least insofar as pure strategies 

are concerned. However, it is well known (see Radner, 1980) that the set of 

approximate eqUilibria can be qualitatively different from the set of exact 

equilibria. 
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