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1. INTRODUCTION

Following the work of Green and Porter (1984) and Abreu, Pearce and
Stachetti (1986, 1990), there is now a large literature on repeated games with
imperfect monitoring. This literatﬁure assumes that players observe a public
signal, i.e. a signal which is common knowledge between the players. In this»
framework,Fudenberg, lLevine and Maskin (1989) have shown that a version ofthe
foEk~theorem'applies. This paper is concerned with a qualitatively different
situation, whére players monitor each other's actions by a privately observedk
signal.  This is the situation in many important contexts, including the case
of oligopolistic competition between’ price setting firms discussed by Stigler
(1964) (see also the discussion in Fudenberg and ﬁ‘irole (1991)). The critical
difference with the public signals case is that the‘ realization of signalﬁs is
not mutual knowledge between the players. Our focus is on the situation where
the signals are "almost perfect”, i.e. where they almost perfectly correlated
with actions. ln other words, we are considering a game with imperfect
monitoring which is arbitrarily close to a game with perfect monitoring. We
find however a dramatic discontinuity - the equilibrium set of the game -with
almost perfect monitoring is qdalitatively 'different from the equilibrium set
of the game with perfect monitoring. If the errors in the observations made by
players are uncorrelated, any pure strategy equilibrium of the repeated game
requires players‘to play the Nash equilibrium of the stage game every period.
This result appears to be robust to some correlation in the observe}tion
errors, as we show via an example. Although mixed strategy equilibria allow a
wider range of behavior,we find that theyA do not allow us to approximate fully
cooperative behavior. More precisely, we show that the equilibrium.set and the
set of equilibrium payoffs fails to be lower-hemicontinuos in‘ the level of
noise at the point of zero noise. Consequently, the fully cooperative outcome

cannot be approximated even if monitoring is almost perfect. We must emphasize




however that our analysis of mixe'cd strategies is as yet preliminary, and much
remains to be done.

The rest of this paper is as follows, Section 2 presents a simple example
which demonstrates the basic idea of the paper. Section 3 discusses pure
strategy equilibria in general repeated games when observational errors are
independent. Section 4 returns to the example and analyzes the implications of
correlated errors. Apart from demonstrating the robustness of our earlier
result, we have anothér surprising finding - with correlated errors, the pure
strategy equilibrium set is not monétonic in the degree of noisé, and in some
situations, increésed noise may facilitate cooperation. Section 5 discusses

mixed strategy equilibria and the fina) section concludes.
‘2. AN EXAMPLE

Consider the game Gl, which is a variant on the prisoners’ dilemma, and
which we choose to interpret as a stylized model of bilateral trade. Two
traders are exchanging fruit, an apple for an orange. They can send each other
“a good fruit "(action’ C, for cooperate), or a spoiled fruit (action D, for
defect). Fruit.quality is unverifiable by a third party, so that the traders
cannot write binding contracts to enforce the Pareto-optimal action pair
(C,C). Players have, in additjon, action E, which allows cooperation to be
sustained . when thé -game is finitely repeated -should one seek an
interpretation, think of it as sending a poisoned apple! = The payoff x Acan
for the moment be taken to be 0.Gl has two pure strategy Nash equilibria -
(D,D) and (E,E), with the latter being strictly worse for both players. This
allows the players to cooperate when G is repeated, even if the repetition is
only finite. For example when G is repeated twice, the action pair (C,C) in
the first period can be supported; the players choose D in the second period

if the first period actions are (C,C), and choose E otherwise. Extending this
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argument, if Lzhe game is repested T thnes, the players can cooperate in the
first T-1 periods, so that their average payoff is 8-5/T,

The standard way of adding noise 1o this model is to assume that players
sometimes make mistakes, so that their actual actions are different from their
intended actions. A player who intends to play C will sometimes make a
mistake, so that with a small probability €, his actual action will be D
rather than C. Players can observe their opponent’s actual actions, but are
unable to observe their intentions. Consequently, a player who makes a mistake
unintentionally must be punished, in order to prevent opportunistic behavior.
This creates an inefficiency, but the inefficiency is small, being of order «.
When G is repeated twiée,the expected payoff in the subgame perfect

equilibrium described above is:

(1-£)% 11 + el1-€)(10+3) + €2 2.1)

This is less than the payoff of Ii in the game without noise, butas s——) 0, the
payoff in the noisy game converges to 1. | In otherwords, noise creates
inefficiency, but this inefficiency vanishes as the noise vanishes, Further,
as the number of repetitions - gets. large, and as e tends to =zero, the
per-period payoff converges to 8.

The intergretatioﬁ of the noise in the above model is that of Selten’s
trembling - hand. 1 fully intend to playv C, but my hand is jiggled, and 1 f‘ihd
mys‘evl‘f choosing D, and sending you rottén fruit. When 1 do thi‘s I am aware
that( 1 have made a mistake, and that you will punish me for this. In other
words, although my intended action ‘is> private information to me, my actual
action is mutual knowledge (and common knowledge) between us at the end of the
period. Put somewﬁatv differently, the noisy game corresponds to one where
actions (which we havc-'_z called intended action here} are private infofmation,
but the signal (which we have called the actual vaction here} is publicly

known.




Consider now an alternative formulation of noise which is the focus of
this paper. | send you an pood orange, but with a very small probability the
orange deteriorates en route. 1 know my action, i.e. that I have sent you a
good orange. However 1 do not know whether you have received a good orange or
a’ bad. one, i.e. 1 do not know what signal you have received. The signal is
almost perfectly correlated with my action, but only almost. Neither the
action nor the signal are mutual knowledge between us, although they are
arbitra;rily close to being so, in a probabilistic sense. |

This formulation creates a drastic discontinuity. Any pure strategy
equilibf'ium of the repeated game must consist of playing the Nash equilibfium
of the stage game G in every siage. In other words, C cannot be played in such
an equilibrium.

To see this consider the twice repeated game. Clearly, C éan only be
played in the first §eriod, and to make the playing of C optimal, a player
should punish a first-period deviation (to D) by playing E rather than D in

‘the second period. However, this punishment, "which depends on varying in

second period behavior with the sighal, is not optimal. Suppose that I believe‘

that my oppolnent is playing the above strategy; i.e. playing C in the .first
period. If I how observe the signal D at the 'end 6f ‘the period, I shduld
believe that the signal arose- by mistake - the application of Bayes’ rule to
my opponent’s strategy irﬁplies that my opponent chose C, and that my
observation of D is due to the noise in the signaling t§chnology. 'I‘ ‘havé
vplayed C, and with a very high probability (i-&) my opponemf has ob;served c
and is going to continue with D. Censequenﬂ);, 1 should continue with D rather
than E. Since varying second period behavior with the signal is not optimal,
~ this makes it ilﬁpossible to support the piaying of C with probability one in

" the first period.

The inability to support cooperation is a robust feature given the
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information structure. In the 'garrie G, the only value of x for which playing C
in the first period can be supported x=3-g/{l~c}). At this value of x, I am
indifferent  between C and D given my opponent"s strategy, and this
indifference holds regardless of the signal 1 receive.. In other words, our
negative result is generically true, as we shall se¢ in the next section.
Consider now the repetition of the stage game for a finite number of periods,
say T. We shall see that our negative results apply no matter what the value
of T. It might be surmised that this is due to a standard backward induction
argumént, using the analysis of the twice repeated game. However, this is not
the case.In our model, the game that remains after T-2 periods is not
analytically the same as a two-period game. After T-2 periods, the player’'s
have imperfect information regarding the history of actions as /’well" as of
-signals. Since the two players are not at the same information set, the
continuation strategies at the end ofT-2 periods do not have to be equilibrium
strategies of the two period game. Consequently, usua!l backward .induction
arguments cannot be used in this case, even though the game is only finitely
repeated. As wke shall see in the ﬁext section, the analysis has to begin in
the first period and pro‘ceed by norrﬁa;l induction. As such,our method of proof’
does not distinguish vbetween ‘firzitely. and infinitely repeated games, Vand our

results apply equally to both.
3. PURE STRATEGY EQUILIBRIA WITH INDEPENDENT SIGNALS: A GENERAL F RAMEWORK

Let I = {1,2,...,n} be the set of players, let Ai’ i e 1 be the action

set for each player. A = )x( Ai' and Ui: A——)R is the payoff function for player

i. U = (Ul'""" Un). The stage game G is the triple (I,A,U). G is repeated

either for T periods or infinitely often. Players seek to maximize the

] expected discounted sum of payoffs, using a common discount rate 3. If G is




repeated  infinitely  often, the discount rate, 8 < 1, incorporates the
probability of termination in every period. If G is repeated finitely often, &
< 1. Payoffs are received at the end of the game.

Al the end of each period player i observes a (n—{l] vector of signals,
bi % {bil,biz,..., bin)Q bij is player i’s signal regarding the action takeq
by player j. Note that i and j are always distinct when we write bi" bij is
drawn from a finite set Bjj’ which is the set of all possible signals that i
could receive regarding j's chosen action. To keep things simple we shall

assume that |B = ]Ajf, i.e. that the number of possible signals regarding

5l
1]
j’'s action is the same as the number of possible actions that j could choose.
Bi = % Bij is th¢ set of all possible signal combinations that i can receive.

.Since  signals are private information, histories are also player
specific. A history uptd ‘to period t for player i, h;. is a sequence of
o 1.2 t-1

realizations of signals, (bi, bi"“”bi ). The set of all possible histories

upto period t vfyor player i, Hti, is simply kthe product (Bi)t*l. The history at
period one for any player is the null history, hl, i.e. H: is a singleton set
for all players.We restrict attention to pure strategies; hence a, strategy for
player i, S;» is a sequence <s§>, v}here s‘ic: HE———)AY Given the reétricticn to
pure strategies there is no loss of generality. in not allowing SE to depend
upon player i's own past actions. A stratégy profile is the n-tuple s =

(S,,5,,....,5_).
1' ’ ? n

2
We turn now to the signallihg technology. Write p{bij/aj} for the
conditional probability that player i receives signal bij given that player J
has chosen action aj. We make the following assumptions.
Assumption 1. Full Support. ¥V i,jel, plb,/a.)>0 Vb eB.,VaeA.

P PP F POy 7 0 V0 By U5 A
Assumption 2. Independence. {or all distinct i,j,k € I,

(b./a., b, ) = plb./a), Vb.€B..,VaeA,Vhb
Plbj/ay Byj) = Plbj/az), ¥ b€ By j Voase 4,

kj€ Bkj'

Our concern in this paper is mainly with signalling technologies which are
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5

almost perfect. To ntake this precise, we define perfect and e-perfcct
signalling technologies @ms follows.
Definition. The repeated game G* has perfect monitoring if for every o ed

pair  of  players  (i,]j), there exists a  one-to-one  corresp adence

f. A ~)B,. such that p{f, (a.})/a,) = 1, € A,
i ) i Pl 1J( J) J) Ya AJ

J
Definition. Let €>0. The repeated game G*(¢) has e-perfect monitoring if it
satisfies the full support assumption and for every ordered pair of players
(i,j), ' there exists a -one-to-one correspondence f ij:Aj—«~) Bij such that
p(fij[aj)/aj) > l-e, V a'je AJ

If a repeated game has e-perfect monitoring, it follows that 1 > p(f ij(aLj)/aj)
2 l-e for every ordered pair (i,j). Consider a strictlyv positive sequence <en>
converging to zero. At E=0, the repeated game is one with perfect monitoring
and therefore violates ~:>j:he full support assumption. Conversely, for any game
G* with perfect monitofing and a sequence (en> converging 1o zer'o,‘ oné can
find a sequence of games f;af imperfect monitoring, G*‘(en). We shall identify G*
with the limit of the sequence 'G*(f:n). Our concern is with equilibria of fhe
game with perfect fnon_itoring which are limits of sequences of games with
e-perfect monitoring where € tends to zéro. |

Given any repeated game, let Vi(s/hlit) denote the expected continuation payoff
from period t to playett i from Strategy combination s conditional on i having
observed thé history h’i;. A strategy combination\ s =  (si,s_i} is a Nash
equilibrium if Vi(s/hl) 2 Vi(s’i,s_i/hl) every every other repeated game
gtratégy s}. |

Definition. Let G* be alrepeated game vyith perfect monitoring. A pure strategy
profile s = (31’52”"" sn] is a robust equilibrium of G* if:
(i) s is a Nash equilibrium of G* and

(ii}) there exists a strictly positive sequence <cn> converging to zero,  with

an associated sequence éG*(enD of games with en—-perf ect monitoring, such that




% s a Nash equilibrium 01" C*(i’:r;) for all n.

Remark: Given our full support assumption it suffices to restrict attention to
Nash equilibria -~ with e-perfect monitoring, each signal is received with
positive probability, sc that there are no information sets that are ruled out
due to the actions of other players.,

To recall, the stage game is the {iriple (1,A,U). The repeated game with
perfect monitoring is G*, which may be either finitely or infinitely
repeatefti‘ The associated repeated game with e-perfect monitoring is G*(g)..In
this section we restrict attention to signalling technologies which satisfy

the independence assumption defined above. This implies that observational

errors made by the player’s (due to the imperfection of the signal) are

independent.

Consider the stage game‘G, ’and fix 1 and A. There are |A| possible action
combinations and n x |A| possible payoff numbers. Let m = n x |A|. Given I and
A, the stage game is fixed by specifying a point in R™, A property P s
satisfied by almost all games if, given 1 and A, the set of points in R such
that P is true is a closed set of Lebesgqe measure zero in R. |
Theorem 1. Consider a signalling tecfmology which satisfies independence. For
almost all stage games G, if s is a f*obust pure strategy equilibrium of the
repeated game G¥, s requires the play of a Nash equilibrium_ of G at every
stagé and after any history.

To prove this theorem we Vneed the following mathematicgl result which is set
out as lemma 1.’ Befqr‘e we present this.‘result, note that & is a fixed

strictly positive real number strictly less than one.

m —-
Let x e R7, x = (XI’XZ""’xk""’ xm).
‘Let X = {weR:w = €% 1 <k <m}, i.e. X= { X (3K Xy peees Xm}
Condition Cl: x has the property that there exist distinct infinite sequences

(> ¢

<yt> and <zt> with range X such that ¥} 6‘L (yt?zt)= 0. , -
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Condition C2: x has the pr;;perty that there exist distinet finite sequences
(yt> and <?‘t>’ 1=1,2,., T with range X such that ){'z’it(ytmzt)mo.
Condition C3: x has the property that there exist finite sequences (yt> and
<z.», t=1,2,...,T, with range X such that —}r: (yt*zt) = (), and <yt> is not a
permut::tion of <21;>’
Lemma llet S = {(x € R™: x satisfies Cl or C2 or C3). S is a closed set of
Lebesgue méasure zero in R™.
Proof: 'Each of the conditions C1,C2, and C3 define a single equation among the
finite number of elements of X, so that the lemma follows. o
Lemma 2. If s is a robust Nash equilibrium, s?:H}«—-}Ai is a constant function,
for every player i, for almost ’all stage games G.
Proof: The proof is by induction.
For t=], s; is obviously constant since Hi is'a singleton set.
Consider now arbitrary t, and consider a game with e-perf et:i monitoring. lLet G
be generic, so that 'by the induction hypothesis, s§ is constant on H:, for
every t ¢ t, and for every piayer j- Let h?,hye H}C be distinct t—pefiod
histories.
We claim that :

Vsl = veaty 31

1 1 1 1
Since s is a pure strategy combination and (by the induction hypothesis) s:ci
is a constant function for every <t, for every player j, by’ Bayes’ rule
player i’s beliefs regarding the éctions chogsen by j in periods 1,2;..,,t—1,
are degenerate: player a assivgns" prebability one to the belief that j has
chosen a deterministic action .sequence, for every pléyer J. .Hence player i’s
beliefs regarding past actions are independent of the observed history. By the
independence of signals (Assumption 2), player i's beliefs regarding the

‘signals observed by other players, is independent of the realization of b-;,

for every t<{t. Hence the probability assigned by player i to player j being at




. ; - ! - t v
history }‘15 € Hti, is the same regardless of whether player i is at hi or hi‘

i

Hence i's  probability  distribution over j's actions in period t and

. ' £ AN,
subsequently is the same, regardless of whether ht},l or h, is the observed

E

history ofsignal. From the full support assumption, h§ and h;"are both
observed with positive probability. Since s s a Nash‘ equilibrium, player i
must play a best response at h}. and at hy, so that the equality of expected
payoffs in (3.1} follows.
Lonsider now the game with perfect monitoring. In the game with perfect
monitoring, at every information set, distinct actions generate distinct
deterministic sequences of payoffs. Since s is -a robust Nash equilibrium,
(3.1) applies. We claim that Si(h§) = si(h‘;’) for almost all stage games G. If
s’i(hzl = Si(llz’)’ so that player i takes two distinct actions, this - genera’;es
two distinct real sequences, with range the set of pure action payoffs to i,
- which can call <ys> and <zs>,« s‘ = 1, ’t+1,....1f G* is an infinitely repeated
o
game, (3.1) implie; that ¥} 5° (ys~zs)= 0, so that <ys> and <zs> satisfy Cl. By
lemma 1, G izu:ﬂxonf~generic, i.e the set of payoffs of G such that this
condition holds is a closed set of Lebesgue measure Zzero.
If G*A is finitely repeated with discounting, (3.1) implies that
; 5° (ys-zs)= 0, where 0 ¢ & < 1. Since <y5> and <zs> 'sati‘sfy Ccz, lizm:na 1
shows that G is non generic.
Tf G* is finitely repeated without dis@:buntiﬁg, (3.1) implies ;5 (ys—zs): 0.
Lemma 1 shows that if G is generic, <ys>A is a pe‘rmutations-t;;E <zs>. qugver, if
<ys> is a permutation of %zs>, then for a ger;eric game, the associated
sequences of action n-tuples are permutations of each other. This i's however
impossible sir;ce there is no public signal on which to base the permutation. o

After lemma 2 the pfooof of the theorem is straightforward- if it is G is not

possible to vary in any period in response to signals, no player can be

punished for deviating in any period. Hence in each period, the action
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combination must be a Nash equilibrium of the stage game. o

Remark: 11 seems possible to strengthen Theorem 1 so that it applies directly
to the game with jmperfect monitoring, and not just in the limit. This would
require a stronger version of Jemma 1, relating to sequences of random

variables.
4 CORRELATED SIGNALS

]‘n this séction we examine the implications of relaxing Assumption 2,
that the signals received by players are independent. We do not present a
general analysis, but return to our two-period repetition of Gl. For
example, in our interpretation of -this game as a model of bilateral »irade, the
probability of good fruit spoiling may be related to the weather, and weather
shocks may affect the fruit that both piayers receive.

We adopt the following notation for this sectioﬁ: upper case letters
denote actions, and the corresponding lower case letters denote signals.

Consider the following joim} distribution of signkals‘ conditionavl on the

action pair (C,C):

2’s signal
c d
2 .
c (l-e)” + pell-g) (1-p)e(l-¢)
I's signal 2
d {1-plell-€) e+ pe(l-€)

If player i chooses D, the probability that j observes d is ohe. If i
chooses C and j chooses D, the probability that j observes C is (l-g).

This probability distribution is parametrized by £ and p. As before, € is
the degree of noise in the signal, and is fthe {unconditional) probability that

the signal takes the value d when action C is chosen. p is the degree of

11




A

correlation between signals. p = 0 corresponds to case where the signals are

independent  as earlier, while p>0 correponds to positive correlation between
signaling errors. p=l is tha case where the signals are perfectly correlated,
which may be considered the case where signals are in fact publicly observed.

If  signaling errors are positively correlated, this allows for the
poss;ibility of a player varying his actions depending on the signal he
receives, along a pure strategy path. With positively correlated signaling
errors, if I receive a bad signal, this makes it more likely that my opponent
has also received a bad signals. Consequently an agreement to punish \each
other if we receive a bad signal could be made self enforcing. However, the
degree of -correlation must be Iargé enough, In our game, if we consider the
case where the noise vanishes, (i.e. €—)0), p must be greater than 0.75, if
the payoff parameter x is zem, as we assume for most of this section.

Consider the sustainability of the cooperative strategy, i.e.:
ist period: C
2nd period: D if signal ¢

E if signal d

To check that this is a Nash equilibrium we need to seev that second
period behavior is optimal. It is optimal to play D if the probability of my
opponent playing D is greater than 174, and optimal to play E if this

probability is less than 1/4.  In other words, along the equilibrium path

where the action pair (CC) has been chosen, we require that if I have observed

c, the conditional probability ‘thatk my opponent has also- observed c,

plc/¢;CC), must satisfy:
plc/c;CC) = (1-€) + pe > 1/4 (4

Similarly, if I have observed d, the conditional probability that my oppohent

has observed c, must satisfy:

plc/d;CC) = (1-p)(i-€) < 1/4 A (4.2)
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These two inequalities are graphed in Fig 2. Recall that ¢ and p boih
lic in the unit interval (negative values for p are possible, but they only
reinforce opur earlier ressults); The shaded area shows values of £ and p such
that the second period behavior of the above cooperative strategy is optimal.
Fig 2 illustrates a number of interesting points regarding the sustainability
of cooperation. First, as we have already seen, as s-~>0, p must be greater
than 3/4. Second, consider values of p < 3/4. The figure shows that
cooperation is not possible if ¢ is small and close to zero, but may be
possible for larger values of &, Of .course we still have to check that first
period behavior is optimal. This requires:

8 + 3{(1—82) + pe(l-e)] + 1&:2+ pe(l-£) > 9 + 1 {4.3)

The cooperative strategy is an equilibrium iff (g,p) satisfy inequalities
(4.1)-(4.3). It may be verified that if p=2/3, ¢€=1/3 satisfies these
conditions. However, as we have already seen, the conditions arke violated for
sufficiently small values of ¢g; and further {4.3) is violated if ¢ is too
large.

We summarize the results of this s'ection in the following proposition:
Proposition 1. Consider the game Gi,‘ with correlated signals, parametrized by
(e,p). | |
i} As the noise parameter e~—~)r, cooperation caﬁ be supported only if ‘the
degree 6f correlation between signals, p, is sufficiently high, i.e. p>3/4.

ii) The pure strategy equilibrium set need ndt be ‘monoktoni‘c in €, i.e.
cooperation can be supported at intermediate levels of noise; but not either
at very low br very noise. |

Our result here contrasts sharply with Kandori’s {1992) result. Kandori
shows that if signals are publicly observed, the equilibrium set increases as
the noise in the signai is reduced.

There is a distinct point which may be worth mentioning here, which

i3




*

arises when we vary the game Gl, by varying parameter X. Let e-—)0, and
consider the values of p required to support cooperation as a function ofk X,
p{x)‘ is decreasing in x, i.e. as x becomes larger, less correlation ig
required in order to support cooperation in the game with almost perfect
monitoring. As X increases, the relative riskiness of the 1iwo stage game
equilibria changes - (E,E) becomes less risky as compared to (D,D). This

suggests that a conflict between Pareto-dominance and risk-dominance may help

support cooperative behavior in repeated games.
5. MIXED STRATEGY EQUILIBRIA

In this section»we discuss the role of mixed strategies. We consider
again our ’example, Gl. Further‘,‘ we éssume that signals éu*e independent, i.e,
we retain AsSumption 2. The inability to support playing C in the first period
can be seen as due to the following reason. In a pure strategy equilibrium, I
can “perfectly forecast my opponent’s actions in the next period from his
strategy alone. His signal consequently does not convey any additional
inforfrpation to me. Even though the signaling technology is almost perfect, it
is only almost so, and my prior information takes preceaence. To give the
signal some bite, it must convey some information about my opponent’s second
" period actions in equilibrium, i.e. even in the absence of any noise. This is
possible if we allow for mixed strategies. Once again, the payoff par‘améter X
in Gl is zero.

Consider the following strategies for the repeated game.
Strategy A: lst period: C
2nd period: D if signal c
E otherwise

Strategy B: Ist period: D

2nd period: E for all contingencies
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The payoff matrix for these two supergame stralegies is:

A B
A . BaBe(l-eg)e 3
B 10 4

Since A and B are best ‘responses to each other in this matrix, the mixed
strategy where A is played with probability approximately one~half
(pzl/(2~Se+382)) is a an equilibrium of the above matrix.

Proposition 2: The above mixed strategy equilibrium is a Nash equilibrium of
the repeated game,

Proof: ¥ my opponent plays p, it is sub-optimal to choose E in the first
period, and 1 should start with C or D. If ‘I start with D, my opponent
receives signal d, and hence 1 should continue with E. If I start with C, 1
should continue with D or E, since C is strictly dominated. If 1 receive
signal ¢, 1 know that he is _playing the supergame strategy A, and that he has
with very high probability(1/1+e) received signal c, and‘ will play D in with
probability close to 1, so that I should play D as well. If 1 rgceive signal
d,the probability that he has played D is (1/2)/(1/2 +e/2)*1. Hence he is most
likely to continue with E, and I should play E as well. Hence I should conform

to A if I start with A. Since only A and B are best responses against ‘the

mixed strategy p in the r‘epéated game, p is an equilibrium. ) n)

The payoff in the miXed _strategy equilibrium vis 4+6p, which converges to
7 as £ tends to zero. This is gréater than thev payoff of 6 which can be
supported as a pure strategy equilibrium, but strictly less than the payoff
of 11 which is achievable in the game without noise, i.e. when £=0. It is also
possible to show that a payoff of 'greater than 7 cannot be Supported. as long
as € is positive. This highlights a 'discontinuity in the transition from agame

without noise to the game with noise. The set of sequential equilibria fails
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to be lower~hemicontinuous in & at 1ihe point £=0. This implies that the
outcomes in the game with noise can be drastically different from the outcomes
in the game without nojse,even though the noise itself may be infinitesmal.
This contrasts sharply with the standard way of analyzing a noisy game, where
the signals are mutual knowledge between fhe players. As we saw in section 2,

the payoff of 1l is the limit of the equilibrium payoffs in the noisy game as

the noise vanishes.

6. CONCLUSIONS

The analysis of this paper is preliminary and much remains to be done.
Repeated 'games with private signals are obviously a rich area for further
resear‘ch,v and this paper has only pmbewd the surface. To our knowledge, the
only other paper on this area is the paper by Fudenberg and lLevine (1990).
They consider approximate equilibria, and prove a version of the folk theorem.
Our results are dramatically different, at least insofar as pure strategies
are concerned. However, it is well known (see Radner, 1980} that the set of

approximate equilibria can be qualitatively different from the set of exact

equilibria.
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