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Abstract

We consider a decision-making environment with an outcome space
that is a convex and compact subset of a vector space belonging to a
general class of such spaces. Given this outcome space, we define gen-
eral classes of (a) risk averse von Neumann-Morgenstern utility func-
tions defined over the outcome space, (b) multi-valued mappings that
yield the certainty equivalent outcomes corresponding to a lottery, (c)
multi-valued mappings that yield the risk premia corresponding to a
lottery, and (d) multi-valued mappings that yield the acceptance set
of lotteries corresponding to an outcome. Our duality results establish
that the usual mappings that generate (b), (c) and (d) from (a) are bi-
jective. We apply these results to the problem of computing the value
of financial assets to a risk averse decision-maker and show that this
value will always be less than the arbitrage-free valuation.

JEL classification: C02, D01, D81
Key phrases: Risk aversion, vector outcomes, certainty equivalence,

risk premia, acceptance set

1 Introduction

The theory of risk aversion (Arrow [1], Pratt [19], Yaari [22]) is one of the
most useful applications of the general theory of choice from the set of lotter-
ies over an outcome space. This theory featuring real-valued outcomes char-
acterizes risk aversion and comparative risk aversion in terms of constructs
such as risk premia, certainty equivalents, Arrow-Pratt coefficients and ac-
ceptance sets. Given that these derived concepts are used in various appli-
cations, a natural question arises: can a risk averse decision-maker’s prefer-
ence, usually represented by a von Neumann-Morgenstern utility function,
be represented equivalently in terms of the derived constructions? In other

∗All correspondence should be addressed to: Department of Economics, Delhi School
of Economics, University of Delhi, Delhi 110007, India. Telephone: (+91)(11) 2766-7005.
Fax: (+91)(11) 2766-7159. E-mail: sudhir@econdse.org
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words, can the decision-maker’s von Neumann-Morgenstern utility function
be recovered from the decision-maker’s risk premia, certainty equivalents,
acceptance sets or Arrow-Pratt coefficients? Our objective in this paper is
to identify a general class of preferences for which these questions can be
answered in the affirmative. Towards this end, we shall establish dualities
between the set of continuous and increasing risk averse von Neumann-
Morgenstern utility functions and sets of multi-valued mappings that gen-
erate risk premia, certainty equivalents and acceptance sets, not just in the
real outcomes case, but very generally in the vector outcomes case.

Consider a decision-making setting with an outcome space O that is
a subset of a partially ordered vector space X. Let ∆(O) be the set of
σ-additive probability measures (henceforth, referred to as lotteries) on
O. Let U be a set of von Neumann-Morgenstern (henceforth, abbrevi-
ated to vN-M) utility functions u : O → <. Let F be a set of mappings
F : ∆(O)⇒O, where F (µ) is interpreted as the set of certainty equivalent
outcomes (Pratt [19]) corresponding to a lottery µ.1 Let P be a set of
mappings P : ∆(O)⇒X, where P (µ) is interpreted as the set of risk pre-
mia (Pratt [19]) corresponding to a lottery µ. Unlike in the real outcomes
setting, the notions of certainty equivalent outcomes and risk premia are
necessarily set-valued in the vector outcomes setting. Finally, let A be a
set of mappings A : O⇒∆(O), where A(x) is interpreted as the acceptance
set (Yaari [22]) corresponding to an outcome x. We shall specify the sets
U , F , P and A by imposing appropriate requirements on their elements;
e.g., elements of U are continuous, weakly risk averse and order-preserving
with respect to the given partial order on X. The principal contribution of
this paper is to show the existence of bijections φ : U → F (Theorem 3.6),
ψ : U → P (Theorem 4.1) and ξ : U → A (Theorem 5.5); clearly, these
bijections generate other bijections ψ ◦ φ−1 : F → P, ξ ◦ φ−1 : F → A and
ξ ◦ ψ−1 : P → A.

We describe our methodology with respect to the duality φ between U
and F ; analogous descriptions apply to the other dualities too. Given u ∈ U
and a lottery µ ∈ ∆(O), the set of certainty equivalents φ(u)(µ) is defined
in the natural way and it is straightforward to confirm that the resulting
mapping φ(u) : ∆(O)⇒O satisfies the properties that define the elements
of F , i.e., φ(u) ∈ F . Next, we show that φ is injective. The final step
is to show that φ is surjective. We show this as follows. Given F ∈ F ,
we define a complete preordering ºF on ∆(O); let ÂF be the asymmetric
factor of ºF . The vN-M representation problem with respect to ÂF is to
find uF : O → < such that, for all µ, λ ∈ ∆(O), µ ÂF λ if and only if∫
O µ(dz) uF (z) >

∫
O λ(dz) uF (z). We show that φ is surjective by showing

that the vN-M representation problem with respect to ÂF has a solution
1We use ⇒ to denote set-valued mappings as well as logical implication. The intended

meaning should be clear from the context.
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uF : O → < such that uF ∈ U and φ(uF ) = F .
Our results imply that the information embedded in a mapping from

one of the defined sets of mappings can also be recovered from one and only
one mapping from each of the other sets of mappings as well. These results
promise to ease applications of the theory of risk aversion, especially in the
context of vector outcomes. This is because, in applications of the theory
of risk aversion, one is usually concerned with objects such as risk premia,
certainty equivalents and acceptance sets, while the vN-M utility function is
merely the means for systematically generating these objects of substantive
interest. Our results allow one to directly specify and work with the objects
of interest, safe in the knowledge that, if these objects satisfy the properties
we postulate, then they are indeed generated by some vN-M utility, and
therefore are well-grounded in expected utility theory.

While the classical theory of risk aversion is couched in terms of real out-
comes, which are usually interpreted as “wealth”, there are many potential
applications where outcomes are properly thought of as vectors. Financial
economics is an area where the outcomes relevant to a decision-maker are
typically vectors. In intertemporal financial models, decision-makers are
routinely faced with the problem of choosing among assets whose returns
are random processes. Since random processes can be represented by lotter-
ies over a designated set of sample paths, the decision problem is essentially
one of choosing among lotteries over sample paths. These sample paths are
the relevant outcomes for the decision-maker and cannot be generally re-
duced to a scalar “wealth” outcome. This class of problems, exemplified by
Application 6.4, also motivates the generality of our formalism. As sample
paths in financial economics are typically continuous functions or belong to
an even more general vector space, a useful theory should strive to specify
X and O as generally as tractable and necessary.2

X being a general vector space instead of X = < has a number of
implications for the problem at hand. The salient ones are as follows. First,
if X = <, then the usual order > on < is complete. On the other hand,
with X a vector space, we shall only require that > be a partial order on
it; even in the simplest cases, we do not have complete orders that are
tractable and economically interpretable. Secondly, if X = < and the vN-
M utility u : O → < is strictly increasing, then the sets of risk premia
and certainty equivalents are singletons. If X is a vector space, then these
constructs cease to be singleton-valued. An example of the problems created
by this fact is the question: what meaning is to be ascribed to the relation
“the risk premia generated by a lottery µ are larger than the risk premia

2For instance, the Wiener measure on the space of continuous sample paths results in
the coordinate process being the Wiener process, which generates Brownian motion and
geometric Brownian motion via elementary transformations. Itô and McKean [10] is the
classic reference for the mathematics of diffusions and Duffie [3] is a useful introduction
to the financial theory applications.
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generated by lottery λ”? In the case X = <, as the sets of risk premia are
singletons, this question is answered using the usual ordering on <. Thirdly,
the vector outcome setting also forces one to address additional technical
complications. For instance, we shall need to define the mean of a lottery
over quite general vector outcomes, which entails integrating vector-valued
functions. In this regard, it is important to confirm that a unique mean
exists for every lottery.

Before plunging into the details, we briefly discuss the literature on risk
aversion in the vector outcome setting. There are two distinct strands in this
literature. One strand (Duncan [4], Karni [11], Kihlstrom and Mirman [12],
[13], Levy and Levy [15], Shah [20]) studies risk aversion directly in the
context of vector-valued risks that are given as primitive objects, as we do
in this paper. The emphasis in these papers is to develop measures of risk
aversion and notions of comparative risk aversion that are appropriate in the
vector-outcome context. The other strand (Grant et al. [6], [7], Hanoch [8],
Martinez-Legaz and Quah [16], Stiglitz [21]) studies the relationship between
vector-valued risks (lotteries on commodity bundles) and real-valued risks
(lotteries on wealth) when they are linked by a consumer’s budget constraint.
It is natural in this setting to interpret the von Neumann-Morgenstern util-
ity function on a real domain as the indirect utility function for a fixed price
vector. For each price vector, this enables the application of the classical
theory of risk aversion couched in terms of real-valued outcomes. This con-
text also permits a restricted indirect theory of choice among vector-valued
risks since lotteries over wealth levels amount to lotteries over commodity
bundles on the Engel curve corresponding to a given price vector. While
Stiglitz [21] explores the implications of the purely indirect approach, Grant
et al. ([6], [7]) and Martinez-Legaz and Quah [16] study the nature and
extent of duality between the direct and indirect approaches.

The rest of this paper is organized as follows. In Section 2, we describe
the formal requirements on X, O, ∆(O) and º. We also define the mean
mµ of a lottery µ ∈ ∆(O) and note that, given our formal context, every
lottery µ ∈ ∆(O) has a unique mean. In Section 3, we define the class of
(weakly) risk averse utility functions U and the class F of mappings that
generate lottery-contingent certainty equivalent outcomes. The analysis of
this section leads up to the duality result in Theorem 3.6. In Section 4, we
define the class P of lottery-contingent risk premia. The analysis of this
section leads up to the duality result in Theorem 4.1. Finally, in Section
5, we define the class A of outcome-contingent acceptable lotteries. The
analysis of this section leads up to the duality result in Theorem 5.5. Section
6 is devoted to applications of the duality results. We show in Theorem 6.1
that F ∈ F and A ∈ A are continuous mappings. We use these facts to
compute the value of financial assets to a risk averse investor when the assets
are characterized by a known or random stream of dividends. In Section 7,
we compare the ordinal and cardinal utility representation problems. We
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summarize our results in Section 8.

2 Formal setting

Let X be a metrizable real locally convex topological vector space. Let ≥ be
a reflexive, transitive and antisymmetric binary relation on X such that (a)
if x, y, z ∈ X and x ≥ y, then x+z ≥ y+z, and (b) if x, y ∈ X, t ∈ <++ and
x ≥ y, then tx ≥ ty. (a) requires invariance with respect to vector addition
and (b) requires invariance with respect to scalar multiplication. Define the
relation > on X by: for x, y ∈ X, x > y if and only if x ≥ y and ¬y ≥ x.
Let X+ = {x ∈ X | x ≥ 0} be the positive cone of X. Given nonempty sets
E,F ⊂ X, we say that E ≥∗ F if ¬y > x for all x ∈ E and y ∈ F .

Let O be a convex and compact subset of X+ with 0 ∈ O. Equip O with
the subspace topology and the Borel σ-algebra B(O). As O is metrizable,
every singleton subset of O is closed in O. Consequently, {x} ∈ B(O) for
every x ∈ O.

Let ∆(O) be the set of σ-additive probability measures on O. Let C(O,<)
denote the set of continuous functions g : O → <. As O is compact, every
g ∈ C(O,<) is bounded. Therefore, the formula L(µ, g) =

∫
O µ(dz) g(z)

defines a linear functional L(., g) : ∆(O) → < for every g ∈ C(O,<). We
give ∆(O) the weak∗ topology, which is the coarsest topology on ∆(O) that
makes every functional in {L(., g) | g ∈ C(O,<)} continuous, i.e., it is the
projective topology generated on ∆(O) by the family {L(., g) | g ∈ C(O,<)}.

We note some consequences of our assumptions. ∆(O) is compact and
metrizable when given the weak∗ topology (Parthasarathy [17], Theorem
II.6.4). As O is compact metric, it is separable, i.e., there is a countable set
E ⊂ O that is dense in O. Given x ∈ O, δx denotes the Dirac measure at
x, i.e., for every B ∈ B(O), δx(B) = 1 if x ∈ B and δx(B) = 0 otherwise.
As {x} ∈ B(O) for every x ∈ O, δx ∈ ∆(O) for every x ∈ O. Let ∆0(E)
denote the set of µ ∈ ∆(O) with finite support in E, i.e., µ is a finite
convex combination of Dirac measures in E. Then, ∆0(E) is dense in ∆(O)
(Parthasarathy [17], Theorem II.6.3). Given µ ∈ ∆(O), mµ =

∫
O µ(dz) z

denotes the mean of µ, where the integral on the right-hand side is the
Pettis integral; see Pettis [18] for details.

Theorem 2.1 If O is nonempty, convex, compact and metrizable, and µ ∈
∆(O), then mµ exists, is unique and mµ ∈ O.

We say that u : O → < is weakly risk averse if u(mµ) ≥ ∫
O µ(dz)u(z)

for every µ ∈ ∆(O). For every function u : O → <, the set of functions
[u] = ∪a∈< ∪b∈<++ {v : O → < | v = a + bu} is an equivalence class. We
shall formally identify u : O → < with the equivalence class [u]; a property
α that holds for every v ∈ [u] will be denoted simply by “u satisfies α”. As
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indicated by our notion of equivalence classes, u is to be interpreted as a
vN-M utility function.

3 Utility functions and certainty equivalents

Definition 3.1 U is the set of functions u : O → < such that
(a) u is continuous,
(b) u is weakly risk averse,
(c) u is increasing with respect to >, and
(d) u(0) = 0.

(a) is a regularity condition that is used for various existence arguments.
(b) and (c) are salient and natural properties in most economic contexts.
As O ⊂ X+ and u(0) = 0 for u ∈ U , (c) implies u(x) ∈ <+ for every x ∈ O.
However, (d) is not a substantive restriction on U in the sense that it does not
restrict the class of preferences on ∆(O) that have a vN-M representation in
U . More precisely, if u : O → < satisfies properties (a) to (c), then v : O → <
defined by v = u− u(0) is equivalent to u and v ∈ U . We now define a class
of multi-valued mappings F : ∆(O)⇒O with the interpretation that F (µ)
is the set of certainty equivalent outcomes corresponding to the lottery µ.

Definition 3.2 F is the set of mappings F : ∆(O)⇒O such that
(A) F has nonempty values,
(B) ≥∗ is a complete and antisymmetric preordering on {F (µ) | µ ∈

∆(O)},
(C) for all µ, λ, γ ∈ ∆(O), F (µ) = F (λ) implies F (µ/2+γ/2) = F (λ/2+

γ/2),
(D) for every λ ∈ ∆(O), {µ ∈ ∆(O) | F (µ) ≥∗ F (λ)} and {µ ∈ ∆(O) |

F (λ) ≥∗ F (µ)} are closed in ∆(O),
(E) F (δmµ) ≥∗ F (µ) for every µ ∈ ∆(O),
(F) x ∈ F (δx) for every x ∈ O,
(G) if x, y ∈ O and x > y, then F (δx) ≥∗ F (δy) and ¬F (δy) ≥∗ F (δx),

and
(H) x ∈ F (µ) implies F (µ) = F (δx).

For every u ∈ U , define φ(u) : ∆(O)⇒O by

φ(u)(µ) =
{

x ∈ O
∣∣∣ u(x) =

∫

O
µ(dz) u(z)

}

Given a utility function u and a lottery µ, φ(u)(µ) is the set of outcomes
that yield the same utility as the expected utility derived from u and µ.
In the case of scalar outcomes and an increasing utility function, the set of
certainty equivalent outcomes is a singleton set; this is no longer the case
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when outcomes are vectors. Note that, if u ∈ U and v = a+ bu where a ∈ <
and b ∈ <++, then φ(u) = φ(v).

The main result of this section, Theorem 3.6, shows that φ is a bijection
between U and F . The proof is divided into three lemmas. In Lemma 3.3,
we show that φ(u) ∈ F for every u ∈ U . In Lemma 3.4, we show that φ is
injective. Finally, in Lemma 3.5, we show that φ is surjective by showing
that φ−1({F}) 6= ∅ for every F ∈ F .

Lemma 3.3 If u ∈ U , then φ(u) ∈ F .

Proof. Fix u ∈ U . As u is fixed, denote φ(u) by F . (a) implies that u
is measurable, and as O is compact, u is bounded. Therefore, the gener-
alized Lebesgue integral

∫
O µ(dz) u(z) exists for every µ ∈ ∆(O). Define

U : ∆(O) → < by U(µ) =
∫
O µ(dz)u(z). Thus,

F (µ) = {x ∈ O | u(x) = U(µ)} = {x ∈ O | U(δx) = U(µ)} (3.4)

As ∆(O) is given the weak∗ topology, (a) implies that U is continuous.
(A) As O is convex, it is connected. As O is nonempty and connected,

(a) implies u(O) ⊂ < is nonempty and connected. (b), (c) and (d) imply
that u(mµ) ≥ U(µ) ≥ 0 = u(0). As u(O) is connected, we have U(µ) ∈
[u(0), u(mµ)] ⊂ u(O). Consequently, there exists x ∈ O such that u(x) =
U(µ), i.e., x ∈ F (µ).

Before demonstrating the other properties of F , we note that

F (µ) ≥∗ F (λ) ⇔ U(µ) ≥ U(λ) (3.5)

for all µ, λ ∈ ∆(O).
Suppose U(µ) < U(λ). By (A), F (µ) 6= ∅ and F (λ) 6= ∅. Let x ∈ F (µ)

and y ∈ F (λ). As 0 ∈ O and O ⊂ X+, (c) and (d) imply 0 ≤ u(x) =
U(µ) < U(λ) = u(y). By (d), y > 0. As O is convex and 0 ∈ O, ty ∈ O for
every t ∈ [0, 1). As [0, 1) is connected and X is a topological vector space,
{ty | t ∈ [0, 1)} is connected. Then, (a) implies that {u(ty) | t ∈ [0, 1)} is
connected. (c) implies {u(ty) | t ∈ [0, 1)} = [0, u(y)). As u(x) ∈ [0, u(y)),
there exists t ∈ [0, 1) such that u(ty) = u(x), i.e., ty ∈ F (µ). As ty < y, we
have ¬F (µ) ≥∗ F (λ).

Conversely, suppose µ, λ ∈ ∆(O) and ¬F (µ) ≥∗ F (λ). Then, there
exists x ∈ F (µ) and y ∈ F (λ) such that y > x. By (c), u(y) > u(x). Thus,
U(λ) = u(y) > u(x) = U(µ).

We now check that F satisfies (B) to (H).
(B) (3.5) implies that ≥∗ is a complete preordering on {F (µ) | µ ∈

∆(O)}. To see that ≥∗ is antisymmetric on {F (µ) | µ ∈ ∆(O)}, suppose
µ, λ ∈ ∆(O) are such that F (µ) ≥∗ F (λ) and F (λ) ≥∗ F (µ). (3.5) implies
that U(µ) = U(λ). It follows from (3.4) that F (µ) = F (λ).

(C) Suppose µ, λ, γ ∈ ∆(O) and F (µ) = F (λ). As ≥∗ is reflexive on
{F (µ) | µ ∈ ∆(O)}, we have F (µ) ≥∗ F (λ) and F (λ) ≥∗ F (µ). By (3.5),
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U(µ) = U(λ). The linearity of U implies U(µ/2+γ/2) = U(µ)/2+U(γ)/2 =
U(λ)/2 + U(γ)/2) = U(λ/2 + γ/2). By (3.5) and the antisymmetry of ≥∗
on {F (µ) | µ ∈ ∆(O)}, we have F (µ/2 + γ/2) = F (λ/2 + γ/2).

(D) Consider λ ∈ ∆(O). By (3.5) and the continuity of U , {µ ∈ ∆(O) |
F (µ) ≥∗ F (λ)} = {µ ∈ ∆(O) | U(µ) ≥ U(λ)} is closed in ∆(O). Similarly,
{µ ∈ ∆(O) | F (λ) ≥∗ F (µ)} is closed in ∆(O).

(E) Suppose there exists µ ∈ ∆(O) such that ¬F (δmµ) ≥∗ F (µ). Then,
there exists x ∈ F (µ) and y ∈ F (δmµ) such that x > y. By definition,
u(x) = U(µ) and u(y) = U(δmµ) = u(mµ). As x > y, we have u(mµ) =
u(y) < u(x) = U(µ), a contradiction of (b).

(F) For every x ∈ O, u(x) = U(δx), and so x ∈ F (δx).
(G) Consider x, y ∈ O such that x > y. Let x′ ∈ F (δx) and y′ ∈ F (δy).

If y′ > x′, then (c) implies u(y) = u(y′) > u(x′) = u(x), a contradiction.
So, F (δx) ≥∗ F (δy). As x ∈ F (δx), y ∈ F (δy) and x > y, it follows that
¬F (δy) ≥∗ F (δx).

(H) Let x ∈ F (µ). If y ∈ F (δx), then u(y) = U(δx) = u(x) = U(µ). So,
y ∈ F (µ). Thus, F (δx) ⊂ F (µ). If y ∈ F (µ), then u(y) = U(µ) = u(x) =
U(δx). So, y ∈ F (δx). Thus, F (µ) ⊂ F (δx).

Clearly, a stronger version of (C) holds for F = φ(u): F (µ) = F (λ)
implies F (tµ + (1− t)γ) = F (tλ + (1− t)γ) for every t ∈ [0, 1]. We require
the weaker condition in order to make F as large a class of mappings as
possible.

Lemma 3.4 φ is injective.

Proof. Consider u, v ∈ U such that φ(u) = φ(v). We show that [u] = [v].
(1) We first show that u and v induce the same ordering on O. Without

loss of generality, suppose there exist x, y ∈ O such that u(x) ≥ u(y) and
v(x) < v(y). Then there exists t ∈ [0, 1) such that ty ∈ O and v(ty) = v(x).
It follows that ty ∈ φ(v)(δx). However, as (c) implies that u(x) ≥ u(y) >
u(ty), we have ty 6∈ φ(u)(δx), a contradiction.

(2) By (A), φ(u) and φ(v) have nonempty values. For ν ∈ ∆(O), let
xν ∈ φ(u)(ν). Given µ, λ ∈ ∆(O), (1) implies

U(µ) ≥ U(λ) ⇔ u(xµ) ≥ u(xλ) ⇔ v(xµ) ≥ v(xλ) ⇔ V (µ) ≥ V (λ)

Thus, U and V are linear mappings on ∆(O) that induce the same ordering
on ∆(O).

(3) As ∆(O) is compact and U is continuous, there exist α, β ∈ ∆(O)
such that U(α) ≤ U(µ) ≤ U(β) for every µ ∈ ∆(O). If U(α) = U(β),
then U is constant over ∆(O), say U(µ) = kU for every µ ∈ ∆(O). If U
is constant over ∆(O), then so is V . Let V (µ) = kV for every µ ∈ ∆(O).
Setting a = kV − kU and b = 1 implies V = a + bU .
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Suppose U(β) > U(α). Then, V (β) > V (α). Define

a = V (α)− U(α)
[
V (β)− V (α)
U(β)− U(α)

]
and b =

V (β)− V (α)
U(β)− U(α)

Note that b > 0. Now consider µ ∈ ∆(O). We show that V (µ) = a+ bU(µ).
As U(µ) ∈ [U(α), U(β)], there is a unique t ∈ [0, 1] such that U(µ) =

tU(β) + (1 − t)U(α). As U is linear, U(µ) = U(tβ + (1 − t)α). Therefore,
V (µ) = V (tβ + (1− t)α) and

a + bU(µ) = V (α) + b[U(µ)− U(α)]
= V (α) + bt[U(β)− U(α)]
= V (α) + t[V (β)− V (α)]
= tV (β) + (1− t)V (α)
= V (tβ + (1− t)α)
= V (µ)

It follows that v(x) = V (δx) = a + bU(δx) = a + bu(x) for every x ∈ O.
Thus, [u] = [v].

Lemma 3.5 If F ∈ F , then φ−1({F}) 6= ∅.

Proof. Consider F ∈ F . By (A), F (µ) 6= ∅ for every µ ∈ ∆(O). Define
the relation º∗ on ∆(O) by: µ º∗ λ if and only if F (µ) ≥∗ F (λ). (B)
implies that º∗ is a complete preordering. Define the relation ∼∗ on ∆(O)
by µ ∼∗ λ if and only if µ º∗ λ and λ º∗ µ.

If µ, λ ∈ ∆(O) are such that µ ∼∗ λ, then µ º∗ λ and λ º∗ µ. Therefore,
F (µ) ≥∗ F (λ) and F (λ) ≥∗ F (µ). So, the antisymmetry property in (B)
implies F (µ) = F (λ). Conversely, if F (µ) = F (λ), then the reflexivity
property in (B) implies F (µ) ≥∗ F (λ) and F (λ) ≥∗ F (µ). Thus, µ º∗ λ and
λ º∗ µ, and consequently, µ ∼∗ λ. Thus, µ ∼∗ λ if and only if F (µ) = F (λ).

Consider µ, λ, γ ∈ ∆(O) such that µ ∼∗ λ. Then, F (µ) = F (λ) and (C)
implies that F (µ/2 + γ/2) = F (λ/2 + γ/2). Thus, µ/2 + γ/2 ∼∗ λ/2 + γ/2.

Given γ ∈ ∆(O), (D) implies that S = {µ ∈ ∆(O) | µ º∗ γ} = {µ ∈
∆(O) | F (µ) ≥∗ F (γ)} is closed in ∆(O). Consider µ, λ, γ ∈ ∆(O) and the
function f : [0, 1] → ∆(O) defined by f(t) = tµ+(1−t)λ. As f is continuous
and S is closed in ∆(O),

{t ∈ [0, 1] | tµ + (1− t)λ º∗ γ} = {t ∈ [0, 1] | f(t) º∗ γ} = f−1(S)

is closed in [0, 1]. By an analogous argument, {µ ∈ ∆(O) | γ º∗ µ} = {µ ∈
∆(O) | F (γ) ≥∗ F (µ)} is closed in ∆(O) and {t ∈ [0, 1] | γ º∗ tµ+(1− t)λ}
is closed in [0, 1].

It follows (Herstein and Milnor [9], Theorem 8) that there exists a linear
representation VF : ∆(O) → < of º∗. Clearly, UF : ∆(O) → <, defined by
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UF (µ) = VF (µ)−VF (δ0), is a linear representation of º∗ and UF (δ0) = 0. As
for every λ ∈ ∆(O), the sets {µ ∈ ∆(O) | UF (µ) ≥ UF (λ)} = {µ ∈ ∆(O) |
µ º∗ λ} and {µ ∈ ∆(O) | UF (µ) ≤ UF (λ)} = {µ ∈ ∆(O) | λ º∗ µ} are
closed in ∆(O), UF is continuous. Define uF : O → < by uF (z) = UF (δz).
uF is continuous (Parthasarathy [17], Theorem II.6.1) and uF (0) = UF (δ0) =
0.

Given µ ∈ ∆(O), as ∆0(E) is dense in ∆(O), there exists a sequence
(µn) ⊂ ∆0(E) that converges to µ in the weak∗ topology. As each µn has
finite support and UF is linear,

UF (µn) = UF


 ∑

z∈supp µn

µn({z})δz




=
∑

z∈supp µn

µn({z})UF (δz)

=
∑

z∈supp µn

µn({z})uF (z)

=
∫

O
µn(dz) uF (z)

Using the continuity of UF and the definition of weak∗ convergence, we have

UF (µ) = lim
n↑∞

UF (µn) = lim
n↑∞

∫

O
µn(dz) uF (z) =

∫

O
µ(dz) uF (z)

We now verify that uF ∈ U . By construction, uF satisfies (a) and (d).
(b) Consider µ ∈ ∆(O). By (E), F (δmµ) ≥∗ F (µ). So, δmµ º∗ µ. This

implies uF (mµ) = UF (δmµ) ≥ UF (µ) =
∫
O µ(dz) uF (z).

(c) Consider x, y ∈ O such that x > y. Then, (G) implies F (δx) ≥∗ F (δy)
and ¬F (δy) ≥∗ F (δx). Consequently, δx º∗ δy and ¬δy º∗ δx. Therefore,
uF (x) = UF (δx) > UF (δy) = uF (y).

Finally, we show that uF ∈ φ−1({F}), i.e., φ(uF ) = F . We need to show
that, for every µ ∈ ∆(O),

F (µ) = {x ∈ O | uF (x) = UF (µ)} = {x ∈ O | UF (δx) = UF (µ)}

Observe that, for all µ, λ ∈ ∆(O),

F (µ) = F (λ) ⇔ F (µ) ≥∗ F (λ) ∧ F (λ) ≥∗ F (µ)
⇔ µ º∗ λ ∧ λ º∗ µ

⇔ UF (µ) ≥ UF (λ) ∧ UF (λ) ≥ UF (µ)
⇔ UF (µ) = UF (λ)

The first equivalence follows from the fact that ≥∗ is reflexive and antisym-
metric, while the second and third equivalences follow from the definitions
of º∗ and UF .
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Consider x ∈ O such that UF (δx) = UF (µ). It follows that F (δx) =
F (µ). By (F), x ∈ F (δx) = F (µ). Conversely, consider x ∈ F (µ). By (H),
F (µ) = F (δx). Therefore, UF (µ) = UF (δx). Thus, {x ∈ O | UF (δx) =
UF (µ)} = F (µ).

As is evident from Theorem 8 in Herstein and Milnor [9] and the above
proof, (D) is much stronger than the “continuity” condition that is sufficient
for the existence of a linear representation ofº∗. However, the extra power of
(D) is useful for showing that the derived linear representation is continuous
and admits an expected utility representation.

Lemmas 3.3, 3.4 and 3.5 immediately yield

Theorem 3.6 φ is a bijection from U to F .

4 Utility functions and risk premia

Another object of economic interest is the set of risk premia associated with
a lottery. Given u ∈ U , define ψ(u) : ∆(O)⇒X by

ψ(u)(µ) = {y ∈ X | mµ − y ∈ O ∧ u(mµ − y) = U(µ)}

Given a utility function u and a lottery µ, a weakly risk averse decision-
maker will prefer the mean mµ of the lottery to the lottery itself, i.e.,
u(mµ) ≥ U(µ). Given u and µ, ψ(u)(µ) is the set of all feasible non-random
variations (risk premia) from the mean that leave the decision-maker indif-
ferent between accepting the lottery and accepting the mean of the lottery
adjusted by the risk premia. As in the case of certainty equivalents, while
the set of risk premia is a singleton set when outcomes are scalars and u is
increasing, this is not the case when outcomes are vectors.

Define T : ∆(O)×X → X by T (µ, x) = mµ − x. As X is a topological
vector space, given µ ∈ ∆(O), T (µ, .) is a homeomorphism. Define

P =
⋃

F∈F
{P : ∆(O)⇒X | P (.) = T (., F (.))}

Clearly, β : F → P, defined by β(F )(.) = T (., F (.)), is a bijection. It follows
that ψ = β ◦ φ. Given u ∈ U and µ ∈ ∆(O), we have the identities

φ(u)(µ) = T (µ, ψ(u)(µ)) and ψ(u)(µ) = T (µ, φ(u)(µ))

The following duality result follows.

Theorem 4.1 ψ is a bijection from U to P.
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5 Utility functions and acceptance sets

We now establish the duality between U and the class of mapping A :
O⇒∆(O) that yield the acceptance set A(x) ⊂ ∆(O) for every outcome
x ∈ O. Given A : O⇒∆(O), define the lower inverse mapping A− : ∆(O)⇒O
by A−(µ) = {x ∈ O | µ ∈ A(x)}.

Definition 5.1 A is the set of mappings A : O⇒∆(O) such that
(A) A− has nonempty values,
(B) ⊂ is a complete preordering on {A−(µ) | µ ∈ ∆(O)},
(C) for every λ ∈ ∆(O), {µ ∈ ∆(O) | A−(µ) ⊂ A−(λ)} and {µ ∈ ∆(O) |

A−(µ) ⊃ A−(λ)} are closed in ∆(O),
(D) for all µ, λ, γ ∈ ∆(O), if A−(λ) = A−(µ), then A−(λ/2 + γ/2) =

A−(µ/2 + γ/2),
(E) for µ ∈ ∆(O) and x ∈ O, x ∈ A−(µ) if and only if A−(δx) ⊂ A−(µ),
(F) for every x ∈ O, µ ∈ A(x) implies ¬x > mµ, and
(G) for all x, y ∈ O, x > y implies A−(δx) ⊃ A−(δy) and A−(δx) 6⊂

A−(δy).

Given u ∈ U , define ξ(u) : O⇒∆(O) by

ξ(u)(x) =
{

µ ∈ ∆(O)
∣∣∣ u(x) ≤

∫

O
µ(dz) u(z)

}

The main result of this section, Theorem 5.5, shows that ξ is a bijection
between U and A. The proof is divided into three lemmas. In Lemma 5.2,
we show that ξ(u) ∈ A for every u ∈ U . In Lemma 5.3, we show that ξ is
injective. Finally, in Lemma 5.4, we show that ξ is surjective by showing
that ξ−1({A}) 6= ∅ for every A ∈ A.

Lemma 5.2 If u ∈ U , then ξ(u) ∈ A.

Proof. Fix u ∈ U , replace ξ(u) by A and define U : ∆(O) → < by U(µ) =∫
O µ(dz) u(z). Note that, for every z ∈ O and µ ∈ ∆(O),

z ∈ A−(µ) ⇔ µ ∈ A(z) ⇔ U(µ) ≥ u(z)

It follows that, for all µ, λ ∈ ∆(O),

A−(µ) ⊂ A−(λ) ⇔ [z ∈ A−(µ) ⇒ z ∈ A−(λ)] (1)
⇔ [U(µ) ≥ u(z) ⇒ U(λ) ≥ u(z)] (2)
⇔ U(λ) ≥ U(µ) (3)

(A) (c) and (d) imply that u(x) ≥ 0 for every x ∈ O. Therefore, for
every µ ∈ ∆(O), we have U(µ) ≥ 0 = u(0). It follows that µ ∈ A(0), i.e.,
0 ∈ A−(µ).
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(B) Reflexivity and transitivity of ⊂ is trivial. Given µ, λ ∈ ∆(O), we
have either U(µ) ≥ U(λ) or U(µ) ≤ U(λ). Thus, either A−(µ) ⊃ A−(λ) or
A−(µ) ⊂ A−(λ).

(C) (a) implies that U is continuous. Therefore, given λ ∈ ∆(O), {µ ∈
∆(O) | A−(µ) ⊂ A−(λ)} = {µ ∈ ∆(O) | U(µ) ≤ U(λ)} is closed in ∆(O).
Analogously, {µ ∈ ∆(O) | A−(µ) ⊃ A−(λ)} is closed in ∆(O).

(D) Consider µ, λ, γ ∈ ∆(O) such that A−(λ) = A−(µ). (5.3) implies
U(µ) = U(λ). It follows that U(µ/2 + γ/2) = U(µ)/2 + U(γ)/2 = U(λ)/2 +
U(γ)/2 = U(λ/2 + γ/2). (5.3) implies A−(λ/2 + γ/2) = A−(µ/2 + γ/2).

(E) Suppose x ∈ A−(µ). Then, µ ∈ A(x), i.e., U(µ) ≥ u(x) = U(δx).
If z ∈ A−(δx), then δx ∈ A(z), i.e., u(x) = U(δx) ≥ u(z). This implies
U(µ) ≥ u(z). So, µ ∈ A(z), i.e., z ∈ A−(µ). Thus, A−(δx) ⊂ A−(µ).

Conversely, suppose A−(δx) ⊂ A−(µ), i.e., z ∈ A−(δx) implies z ∈
A−(µ). Equivalently, δx ∈ A(z) implies µ ∈ A(z). Therefore, u(x) =
U(δx) ≥ u(z) implies that U(µ) ≥ u(z). Thus, U(µ) ≥ u(x), which implies
µ ∈ A(x), i.e., x ∈ A−(µ).

(F) If µ ∈ A(x) and x > mµ, then (c) implies U(µ) ≥ u(x) > u(mµ),
which contradicts (b).

(G) Suppose x > y. Consider z ∈ A−(δy). Then, δy ∈ A(z), i.e.,
u(y) = U(δy) ≥ u(z). (c) implies u(x) > u(y). Therefore, u(x) > u(z). It
follows that U(δx) = u(x) > u(z), i.e., δx ∈ A(z). This means z ∈ A−(δx).
Thus, A−(δy) ⊂ A−(δx).

Suppose A−(δx) ⊂ A−(δy). Then, z ∈ A−(δx) implies z ∈ A−(δy), i.e.,
δx ∈ A(z) implies δy ∈ A(z). Equivalently, u(x) = U(δx) ≥ u(z) implies
u(y) = U(δy) ≥ u(z). This means u(y) ≥ u(x), a contradiction of (c).

We now show that ξ : U → A is an injection.

Lemma 5.3 ξ : U → A is an injection.

Proof. Consider u, v ∈ U such that ξ(u) = ξ(v). Define the binary relations
º∗u and º∗v on ∆(O) as follows: for all µ, λ ∈ ∆(O), µ º∗u λ if and only if
U(µ) ≥ U(λ), and µ º∗v λ if and only if V (µ) ≥ V (λ). Combining this with
(5.3), we have

µ º∗u λ ⇔ U(µ) ≥ U(λ) ⇔ ξ(u)−(λ) ⊂ ξ(u)−(µ)

and

µ º∗v λ ⇔ V (µ) ≥ V (λ) ⇔ ξ(v)−(λ) ⊂ ξ(v)−(µ)

As ξ(u) = ξ(v), µ º∗u λ if and only if µ º∗v λ. It follows that

U(µ) ≥ U(λ) ⇔ µ º∗u λ

⇔ µ º∗v λ

⇔ V (µ) ≥ V (λ)
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Copying the argument of Lemma 3.4, there exists a ∈ < and b ∈ <++ such
that V = a + bU , i.e., v = a + bu. Thus, [u] = [v].

Lemma 5.4 If A ∈ A, then ξ−1({A}) 6= ∅.

Proof. Fix A ∈ A. Define the relation º∗ on ∆(O) by: µ º∗ λ if and only if
A−(µ) ⊃ A−(λ). (B) implies that º∗ is a complete preordering. Define the
relation ∼∗ on ∆(O) by µ ∼∗ λ if and only if µ º∗ λ and λ º∗ µ.

If µ, λ ∈ ∆(O) are such that µ ∼∗ λ, then µ º∗ λ and λ º∗ µ. Therefore,
A−(µ) ⊃ A−(λ) and A−(µ) ⊂ A−(λ). It follows that A−(µ) = A−(λ).
Conversely, if A−(µ) = A−(λ), then A−(µ) ⊃ A−(λ) and A−(µ) ⊂ A−(λ).
Thus, µ º∗ λ and λ º∗ µ, and consequently, µ ∼∗ λ. Thus, µ ∼∗ λ if and
only if A−(µ) = A−(λ).

Consider µ, λ, γ ∈ ∆(O) such that µ ∼∗ λ. Then, A−(µ) = A−(λ), and
(D) implies that A−(µ/2 + γ/2) = A−(λ/2 + γ/2). Thus, µ/2 + γ/2 ∼∗
λ/2 + γ/2.

Given γ ∈ ∆(O), (C) implies that S = {µ ∈ ∆(O) | µ º∗ γ} = {µ ∈
∆(O) | A−(µ) ⊃ A−(γ)} is closed in ∆(O). Consider µ, λ, γ ∈ ∆(O) and
the function f : [0, 1] → ∆(O) defined by f(t) = tµ + (1 − t)λ. As f is
continuous and S is closed in ∆(O),

{t ∈ [0, 1] | tµ + (1− t)λ º∗ γ} = {t ∈ [0, 1] | f(t) º∗ γ} = f−1(S)

is closed in [0, 1]. By an analogous argument, {µ ∈ ∆(O) | γ º∗ µ} = {µ ∈
∆(O) | A−(µ) ⊂ A−(γ)} is closed in ∆(O) and {t ∈ [0, 1] | γ º∗ tµ+(1−t)λ}
is closed in [0, 1].

It follows (Herstein and Milnor [9], Theorem 8) that º∗ has a linear
representation VA : ∆(O) → <. Define UA : ∆(O) → < by UA(µ) = VA(µ)−
VA(δ0). Clearly, UA is a linear representation of º∗ and UA(δ0) = 0. Define
uA : O → < by uA(x) = UA(δx). Copying the argument of Lemma 3.5, UA

and uA are continuous, and for every µ ∈ ∆(O), UA(µ) =
∫
O µ(dz) uA(z).

By definition, uA satisfies (a) and (d).
(b) Suppose there exists µ ∈ ∆(O) such that UA(µ) > uA(mµ). As

O is convex, it is connected. As uA is continuous and O is compact and
connected, uA(O) is a closed interval in <. Thus, UA(µ) ∈ uA(O), i.e., there
exists x ∈ O such that uA(mµ) < UA(µ) = uA(x). By the continuity of
uA, there exists y > mµ such that uA(mµ) < uA(y) < uA(x) = UA(µ), i.e.,
UA(δy) < UA(µ). As UA represents º∗, this means A−(δy) ⊂ A−(µ). By
(E), we have y ∈ A−(µ), i.e., µ ∈ A(y). As y > mµ we have a contradiction
of (F).

(c) Suppose x > y. By (G), A−(δx) ⊃ A−(δy) and A−(δx) 6⊂ A−(δy).
Then, δx º∗ δy and ¬δy º∗ δx. It follows that uA(x) = UA(δx) > UA(δy) =
uA(y).
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Finally, we show that uA ∈ ξ−1({A}), i.e., ξ(uA) = A. We need to show
that, for every x ∈ O,

A(x) = {µ ∈ ∆(O) | uA(x) ≤ UA(µ)} = {µ ∈ ∆(O) | UA(δx) ≤ UA(µ)}

Fix x ∈ O. As, for all µ, λ ∈ ∆(O),

UA(µ) ≥ UA(λ) ⇔ µ º∗ λ ⇔ A−(λ) ⊂ A−(µ)

the problem reduces to showing that

A(x) = {µ ∈ ∆(O) | A−(δx) ⊂ A−(µ)}

Using the definition of A− and (E), we have

µ ∈ A(x) ⇔ x ∈ A−(µ) ⇔ A−(δx) ⊂ A−(µ)

as required.
As is evident from Theorem 8 in Herstein and Milnor [9] and the above

proof, (C) is much stronger than the “continuity” condition that is sufficient
for the existence of a linear representation ofº∗. However, the extra power of
(C) is useful for showing that the derived linear representation is continuous
and admits an expected utility representation.

Combining Lemmas 5.2, 5.3 and 5.4, we have

Theorem 5.5 ξ : U → A is a bijection.

6 Applications

Duality results have two competing aspects. On the one hand, when choos-
ing a dual representation such as F ∈ F or A ∈ A to specify a preference,
we want the properties defining F or A to be minimal so that the modeller
has greater latitude in selecting an appropriate F or A. On the other hand,
when using the chosen dual representation, the modeller is free to use not
only the properties used to define F or A, but also other stronger properties
possessed by elements of F or A. So, an important aspect of duality theory
is to derive various non-definitional properties possessed by dual represen-
tations. Our first application of the above duality results will derive such
non-definitional properties of F and A. The proofs of the following three
results are relegated to the Appendix.

Theorem 6.1 If u ∈ U , then
(A) φ(u) is continuous,
(B) ξ(u) and ξ(u)− are continuous.

Moreover, every F ∈ F and A ∈ A is continuous.
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Combining this result with Berge’s Maximum theorem yields the follow-
ing useful facts.

Theorem 6.2 If P : O → < is continuous and F ∈ F , then the mapping
V : ∆(O) → < defined by V (µ) = min{P (x) | x ∈ F (µ)} is continuous and
the mapping M : ∆(O)⇒O defined by M(µ) = {x ∈ F (µ) | P (x) = V (µ)}
is upper hemicontinuous with nonempty and compact values.

A dual result is the following.

Theorem 6.3 If p : O → < is continuous and A ∈ A, then v : O → <
defined by v(x) = min {∫O µ(dz) p(z) | µ ∈ A(x)} is continuous; moreover,
B : O⇒∆(O) defined by B(x) = {µ ∈ A(x) | ∫

O µ(dz) p(z) = v(x)} is upper
hemicontinuous with nonempty and compact values.

As an application of Theorems 6.2 and 6.3, consider the following prob-
lem.

Application 6.4 Let {1, . . . , n} be the set of future dates. Let X = <n, give
X the Euclidean topology and let O ⊂ X+ be convex and compact with 0 ∈ O.
x ∈ O is interpreted as an asset dividend path, with xt being the dividend
paid at date t ∈ {1, . . . , n}. An asset is denoted by µ ∈ ∆(O). Asset µ is
said to be riskless if µ = δx for some x ∈ O, and risky otherwise. Let asset
prices be given by P : ∆(O) → <, where P (µ) is the price of asset µ and P is
continuous when ∆(O) is given the weak∗ topology. A portfolio of assets is a
function θ : ∆(O) → < with finite support, i.e., |supp θ| ≡ |θ−1(<− {0})| <
∞. Suppose P is arbitrage-free, meaning that there is no portfolio θ of
assets such that

∑
µ∈supp θ θ(µ)P (µ) < 0 and

∑
µ∈supp θ θ(µ)

∫
O µ(dz) z ≥ 0,

i.e., a portfolio with a negative acquisition cost and non-negative expected
dividends. Given this set-up, what is the value to a risk averse investor of
asset µ ∈ ∆(O)? How does this value vary with µ?

If P permits an arbitrage in the above sense, then there exists a port-
folio θ such that

∑
µ∈supp θ θ(µ)P (µ) < 0 and

∑
µ∈supp θ θ(µ)

∫
O µ(dz) z ≥ 0,

i.e., a risk neutral investor would like to acquire an unboundedly large port-
folio. Assuming the existence of a risk neutral investor, the above notion
of “arbitrage-free” asset prices is a necessary property of equilibrium prices.
The functional π : O → <, defined by π(x) = P (δx), yields the prices of risk-
less assets. As O is separable, ∆0(O) is dense in ∆(O) (Parthasarathy [17],
Theorem II.6.3). We note some useful facts about P and π.

Lemma 6.5 Consider Application 6.4.
(A) π is linear on O, π(0) = 0 and π(x) ≥ 0 for every x ∈ O.
(B) π is continuous.
(C) If every unit vector et ∈ O, then there exists (π1, . . . , πn) ∈ <n

+ such
that π(x) =

∑n
t=1 πtxt.

(D) For every µ ∈ ∆(O), P (µ) = π(mµ).
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Proof. (A) follows from the fact that P is arbitrage-free. (B) follows as π is
linear. (C) follows by setting πt = π(et).

(D) As P is arbitrage-free, if µ ∈ ∆0(O), then

P (µ) =
∑

z∈supp µ

µ({z})π(z) =
∫

O
µ(dz)π(z) = π(mµ)

Consider µ ∈ ∆(O). As ∆0(O) is dense in ∆(O), there exists a net (µn) ⊂
∆0(O) converging to µ. As P and π are continuous, we have P (µ) =
limn P (µn) = limn

∫
O µn(dz) π(z) =

∫
O µ(dz) π(z). As π is linear, we have∫

O µ(dz) π(z) = π(
∫
O µ(dz) z) = π(mµ). Thus, P (µ) = π(mµ).

We define an asset’s value to an investor as the maximum amount that
the investor would be willing to pay for it. By Theorems 3.6 and 5.5, a risk
averse investor’s preference on ∆(O) can be specified equivalently by u ∈ U ,
F ≡ φ(u) ∈ F , or A ≡ ξ(u) ∈ A. If the preference is represented by u ∈ U ,
then the value of asset µ ∈ ∆(O) to the given investor is V (µ) = min{P (λ) |
λ ∈ ∆(O) ∧ U(λ) ≥ U(µ)}. The next result provides dual characterizations
of V and notes some properties.

Theorem 6.6 Consider Application 6.4. Let u ∈ U , F ≡ φ(u) ∈ F and
A ≡ ξ(u) ∈ A.

(A) If µ ∈ ∆(O), then V (µ) = minπ ◦ F (µ).
(B) If x ∈ O, then V (δx) = minπ ◦ F (δx) = minP ◦A(x).
(C) P (µ) ≥ V (µ) for every µ ∈ ∆(O).
(D) V is continuous, and the mappings µ7⇒{x ∈ O | π(x) = V (µ)} and

x7⇒{λ ∈ ∆(O) | P (λ) = V (δx)} are upper hemicontinuous with nonempty
and compact values.

Proof. (A) If x ∈ F (µ), then δx ∈ ∆(O) and U(δx) = u(x) = U(µ). By
definition, V (µ) ≤ P (δx) = π(x). It follows that V (µ) ≤ minπ ◦ F (µ).
Let V (µ) = P (λ) for some λ ∈ ∆(O) such that U(λ) ≥ U(µ). As u ∈ U ,
u(mλ) ≥ U(λ) ≥ U(µ) ≥ 0. Consequently, there exists t ∈ [0, 1] such
that tmλ ∈ F (µ). As mλ ∈ O, Lemma 6.5(A) implies that π(mλ) ≥ 0
and π(tmλ) = tπ(mλ) ≤ π(mλ). It follows that minπ ◦ F (µ) ≤ π(tmλ) ≤
π(mλ) = P (λ) = V (µ). Thus, V (µ) = minπ ◦ F (µ).

(B) Specializing (A), we have minπ ◦ F (δx) = V (δx) = min{P (λ) | λ ∈
∆(O) ∧ U(λ) ≥ U(δx)} = min P ◦A(x).

(C) If µ ∈ ∆(O) is such that P (µ) < V (µ), then π(mµ) = P (µ) <
V (µ) = minπ ◦ F (µ) ≤ π(mµ), a contradiction.

(D) follows from (A), (B) and Theorems 6.2 and 6.3.
Now consider the following continuous-time analogue of Application 6.4.

Let [0, 1] be the set of dates and let X = C([0, 1],<) be the set of continuous
real-valued functions with domain [0, 1]. Let P and π be as in Applica-
tion 6.4. Parts (A) and (D) of Lemma6.5 hold in this setting via unchanged
arguments.
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Lemma 6.5(B) is now proved as follows. Consider a sequence (xn) ⊂
O converging to x. If f : O → < is continuous, then

∫
O δxn(dz) f(z) =

f(xn) → f(x) =
∫
O δx(dz) f(z). So, (δxn) ⊂ ∆(O) converges to δx. As P is

continuous, π(xn) = P (δxn) → P (δx) = π(x). Thus, π is continuous.
The analogue of Lemma 6.5(C) is established as follows. By the Riesz

representation theorem (Dunford and Schwartz [5], Theorem IV.6.3), there
exists a unique, non-negative, regular σ-additive measure Q on [0, 1] such
that π(x) =

∫
[0,1] Q(dt) x(t) for every x ∈ X. As π is real-valued, Q is finite.

If Q is absolutely continuous with respect to the Lebesgue measure on [0, 1],
then by the Radon-Nikodym theorem (Dunford and Schwartz [5], Theorem
III.10.2), there exists a unique (upto equivalence) Lebesgue integrable func-
tion q : [0, 1] → < such that Q(E) =

∫
E dt q(t) for every E ∈ B([0, 1]).

Therefore, π(x) =
∫
[0,1] dt q(t)x(t) for every x ∈ X. As Q is non-negative,

q is non-negative on [0, 1], except possibly over a set of Lebesgue measure
0. As in Application 6.4, q(t) is interpreted as the price of delivering $1 at
time t.

7 Ordinal and cardinal representation problems

The question motivating this paper is analogous to that motivating the fa-
miliar duality results in microeconomic theory, e.g., the dualities between
direct utility functions, indirect utility functions and expenditure functions
in consumer theory. Although our dual characterizations of risk averse vN-
M utility functions and the dual characterizations of ordinal utility functions
(e.g., Krishna and Sonnenschein [14]) are almost entirely different in aims,
techniques and the objects being studied, there remains one seemingly com-
mon element. This common element is the set of functions U since a function
u : O → < can be interpreted as an ordinal utility function or as a vN-M
utility function. We analyze this formal commonality by noting three points
of comparison between the theories.

The first observation relates to the quotient sets of U generated by the
ordinal and the vN-M interpretations of the elements of U .3 If the elements
of U are interpreted as ordinal utility functions, then elements u, v ∈ U
are considered to be equivalent, denoted by u ≡1 v, if they are increasing
transforms of each other. This notion of equivalence generates the quotient
set U/ ≡1. On the other hand, if the elements of U are interpreted as vN-M
utility functions, then elements u, v ∈ U are considered to be equivalent,
denoted by u ≡2 v, if they are increasing affine transforms of each other.
This notion of equivalence generates the quotient set U/ ≡2. It is easy
to see that U/ ≡2 is a sub-partition of U/ ≡1, i.e., if [u]1 ∈ U/ ≡1 and
[u]2 ∈ U/ ≡2 are the equivalence classes to which u ∈ U belongs, then

3The quotient set of a set S with respect to an equivalence relation ≡ on S, denoted
by S/ ≡, refers to the partition of S generated by ≡.
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[u]2 ⊂ [u]1 and [u]2 6= [u]1.
The second observation relates to the nature of the surjection argument

in the two theories. In the case of ordinal utility functions, the existence of
a utility function generating a given expenditure function or indirect util-
ity function is shown by verifying that explicitly displayed solutions of a
constrained optimization problem yield the values of the required function
(Krishna and Sonnenschein [14]). In our surjection proofs, as we cannot pro-
vide such explicit characterizations, we rely on the general existence results
relating to linear utility functions contained in Herstein and Milnor [9].

The third observation relates to the representation problems underlying
the two theories. Let º∗ be a complete preordering on ∆(O) and let º be
induced on O via the definition: x º y if and only if δx º∗ δy; let ∼ be
the symmetric factor (indifference) of º and Â the asymmetric factor (strict
preference). Define the function o : O → O/ ∼ by the formula: given x ∈ O,
z ∈ o(x) if and only if z ∼ x; o(x) ∈ O/ ∼ is the indifference curve containing
x. If o1, o2 ∈ O/ ∼ and o1 6= o2, then either x Â y for all x ∈ o1 and y ∈ o2,
or y Â x for all x ∈ o1 and y ∈ o2. Therefore, by identifying equivalent
elements of O with the equivalence class to which they belong, we may say
that Â orders the elements of O/ ∼. The ordinal representation problem is
to find u : O/ ∼→ < such that, for all o1, o2 ∈ O/ ∼, o1 Â o2 if and only
if u(o1) > u(o2), i.e., real numbers are assigned to the indifference curves in
O/ ∼ in a manner consistent with Â. Subject to this ordinal requirement on
the chosen real numbers, each indifference curve may be assigned a number
in isolation from the numbers assigned to the other indifference curves. The
vN-M representation problem is to find u : O/ ∼→ < such that, for all
µ, λ ∈ ∆(O), µ Â∗ λ if and only if

∫
O µ(dz) u ◦ o(z) >

∫
O λ(dz) u ◦ o(z).

A solution u of this problem also solves the ordinal representation problem
since

x Â y ⇔ δx Â∗ δy

⇔
∫

O
δx(dz) u ◦ o(z) >

∫

O
δy(dz) u ◦ o(z)

⇔ u ◦ o(x) > u ◦ o(y)

Unlike in the ordinal representation problem, the indifference curves in O/ ∼
cannot be assigned values in isolation as the expected utility function aggre-
gates these numbers via integration. Thus, the assigned values have cardinal,
and not merely ordinal, significance. While the ordinal representation prob-
lem can be solved locally with respect to O/ ∼, the vN-M representation
problem has to be solved globally.
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8 Conclusions

We have considered an outcome space O that is a convex and compact subset
of the positive cone of a metrizable, partially ordered, real locally convex
topological vector space X with 0 ∈ O. Given this outcome space, we
defined a class U of risk averse vN-M utility functions defined on O, a class
F of multi-valued mappings that yield the certainty equivalent outcomes in
O corresponding to a lottery in ∆(O), a class P of multi-valued mappings
that yield the risk premia in X corresponding to a lottery in ∆(O), and a
class A of multi-valued mappings that yield the acceptance set of lotteries
in ∆(O) corresponding to an outcome in O.

We show that the usual definitions of the set of certainty equivalents,
the set of risk premia and the acceptance set generate mappings φ : U → F ,
ψ : U → P and ξ : U → A respectively. Our main results (Theorems 3.6,
4.1 and 5.3) are that these mappings are bijective.

We also note in Theorem 6.1 that φ(u), ξ(u)− and ξ(u) are continuous
mappings for every u ∈ U . Consequently, every F ∈ F and every A ∈ A is
continuous. We use these facts to study two applications. Both applications
involve the derivation of a risk averse investor’s valuation of assets that are
characterized by known or risky dividend paths. The first application derives
such an investor’s valuation of a risky asset and the second application
derives the investor’s valuation of a riskless asset. We reduce these problems
to optimization problems and use our results to show that the value functions
generated by these problems are continuous and the underlying optimal
choice mappings are upper hemicontinuous.

Appendix

Proof of Theorem 2.1. Let X∗ be the set of all continuous linear func-
tionals h : X → <. Local convexity of X ensures that, if x ∈ X is such
that h(x) = 0 for every h ∈ X∗, then x = 0 (Dunford and Schwartz [5],
Corollary V.2.13). Define H : X → <X∗

by H(x) = (h(x))h∈X∗ . Give <X∗

the product topology. Consequently, H is continuous as every component
function Hh = h is continuous. Moreover, H is injective; if H(x) = H(y)
for some x, y ∈ X, then h(x− y) = h(x)− h(y) = 0 for every h ∈ X∗, which
implies x − y = 0. As O is compact and <X∗

is Hausdorff, H imbeds O in
<X∗

. This implies H(O) is closed in <X∗
and metrizable.

First, consider µ ∈ ∆(O) with |suppµ| < ∞. For every h ∈ H, the
linearity of h implies

∫

O
µ(dz) h(z) =

∑
z∈supp µ

µ({z})h(z) = h


 ∑

z∈supp µ

µ({z})z

 (A.1)

Setting mµ =
∑

z∈supp µ µ({z})z, we have mµ ∈ O as O is convex and
suppµ ⊂ O. Thus, H(mµ) ∈ H(O) for every µ ∈ ∆(O) with |suppµ| < ∞.
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Consider µ ∈ ∆(O). As O is compact and metric, it is separable. Con-
sequently, there exists a sequence (µn) ⊂ ∆(O) converging to µ such that
|suppµn| < ∞ for every n ∈ N (Parthasarathy [17], Theorem II.6.3). By
the above argument, mµn exists, mµn ∈ O and H(mµn) ∈ H(O) for every
n ∈ N . Using (A.1) and the definition of weak∗ convergence, we have

lim
n↑∞

h(mµn) = lim
n↑∞

∫

O
µn(dz) h(z) =

∫

O
µ(dz) h(z)

for every h ∈ X∗. Thus, limn↑∞H(mµn) = (
∫
O µ(dz) h(z))h∈X∗ . As the

sequence (H(mµn)) ⊂ H(O) and H(O) is closed in <X∗
and metrizable, we

have (
∫
O µ(dz) h(z))h∈X∗ ∈ H(O). As H imbeds O in <X∗

, there exists a
unique x ∈ O such that H(x) = (

∫
O µ(dz) h(z))h∈X∗ . By the definition of

H, we have h(x) =
∫
O µ(dz) h(z) for every h ∈ X∗. Set mµ = x.

Proof of Theorem 6.1. Suppose (A) and (B) hold. Consider F ∈ F
and A ∈ A. By Theorem 3.6, φ−1(F ) ∈ U . Therefore, F = φ ◦ φ−1(F )
is continuous. By an analogous argument, A is continuous. It remains to
prove (A) and (B).

Fix u ∈ U , denote φ(u) by F , denote ξ(u) by A, and denote the mapping
µ 7→ ∫

O µ(dz) u(z) by U . As u ∈ U , u is continuous. As ∆(O) is given the
weak∗ topology, U is continuous. Therefore, G : ∆(O)×O → <, defined by
G(µ, x) = U(µ)− u(x), is continuous.

(A) It follows that GrF = {(µ, x) ∈ ∆(O) × O | x ∈ F (µ)} = {(µ, x) ∈
∆(O) × O | G(µ, x) = 0} = G−1({0}) is closed in ∆(O) × O. As O is
compact, F is upper hemicontinuous.

To show that F is lower hemicontinuous at µ ∈ ∆(O), consider a se-
quence (µn) ⊂ ∆(O) converging to µ and let x ∈ F (µ). As O and ∆(O) are
metrizable, it is sufficient to construct a sequence (xn) ⊂ O converging to x
such that xn ∈ F (µn) for every n ∈ N .

As U is continuous and ∆(O) is compact, there exists ν ∈ ∆(O) such
that U(ν) ≥ U(µ) for every µ ∈ ∆(O). If U(ν) = 0, then O = {0} and lower
hemicontinuity is trivial. Suppose U(ν) > 0. As F (ν) 6= ∅, there exists
y ∈ O such that u(y) = U(ν) > 0. Thus, y > 0. We consider three cases.

(1) Suppose U(µ) = 0. Then, u(x) = 0, i.e., y > 0 = x and U(µn) ≥
0 = U(µ) for every n ∈ N . Given n ∈ N , let A = {t ∈ [0, 1] | u((1− t)y) ≥
U(µn)} and B = {t ∈ [0, 1] | u((1−t)y) ≤ U(µn)}. Clearly, 0 ∈ A and 1 ∈ B;
both A and B are closed in [0, 1]; and A ∪B = [0, 1]. As [0, 1] is connected,
A ∩ B 6= ∅. Let tn ∈ A ∩ B and set xn = (1 − tn)y. Clearly, xn ∈ F (µn).
If (tn) converges to 1, then (xn) converges to x, as required. Suppose (tn)
does not converge to 1. Then, there exists r ∈ [0, 1) and a subsequence (tm)
of (tn) such that (tm) ⊂ [0, r]. Therefore, U(µm) = u(xm) = u((1− tm)y) ≥
u((1 − r)y) > 0 = U(µ), which contradicts the fact that limn↑∞ µn = µ
implies limm↑∞ µm = µ, and therefore, limm↑∞ U(µm) = U(µ).
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(2) Suppose U(µ) = U(ν). Then, u(x) = u(y), x > 0 and U(µn) ≤ U(µ)
for every n ∈ N . Let A = {t ∈ [0, 1] | u(tx) ≥ U(µn)} and B = {t ∈
[0, 1] | u(tx) ≤ U(µn)}. Clearly, 1 ∈ A and 0 ∈ B; both A and B are
closed in [0, 1]; and A ∪ B = [0, 1]. As [0, 1] is connected, A ∩ B 6= ∅. Let
tn ∈ A ∩ B and set xn = tnx. Clearly, xn ∈ F (µn). If (tn) converges to
1, then (xn) converges to x, as required. Suppose (tn) does not converge
to 1. Then, there exists r ∈ [0, 1) and a subsequence (tm) of (tn) such that
(tm) ⊂ [0, r]. Therefore, U(µm) = u(xm) = u(tmx) ≤ u(rx) < u(x) = U(µ),
which contradicts the fact that limn↑∞ µn = µ implies limm↑∞ µm = µ, and
therefore, limm↑∞ U(µm) = U(µ).

(3) Finally, suppose U(µ) ∈ (0, U(ν)). Then, u(x) ∈ (0, u(y)). Consider
n ∈ N such that U(µn) ≥ U(µ). Let A = {t ∈ [0, 1] | u(tx + (1 − t)y) ≥
U(µn)} and B = {t ∈ [0, 1] | u(tx + (1 − t)y) ≤ U(µn)}. Clearly, 0 ∈ A
and 1 ∈ B; both A and B are closed in [0, 1]; and A ∪ B = [0, 1]. As [0, 1]
is connected, A ∩ B 6= ∅. Let tn ∈ A ∩ B and set xn = tnx + (1 − tn)y.
Clearly, xn ∈ F (µn). Now consider n ∈ N such that U(µn) ≤ U(µ). Let
A = {t ∈ [0, 1] | u(tx) ≥ U(µn)} and B = {t ∈ [0, 1] | u(tx) ≤ U(µn)}.
Clearly, 1 ∈ A and 0 ∈ B; both A and B are closed in [0, 1]; and A ∪ B =
[0, 1]. As [0, 1] is connected, A ∩ B 6= ∅. Let tn ∈ A ∩ B and set xn = tnx.
Clearly, xn ∈ F (µn).

If (tn) converges to 1, then (xn) converges to x, as required. Suppose (tn)
does not converge to 1. Then, there exists r ∈ [0, 1) and a subsequence (tm)
of (tn) such that (tm) ⊂ [0, r]. Therefore, either U(µm) = u(xm) = u(tmx +
(1− tm)y) ≥ u(rx+(1−r)y) > u(x) = U(µ) or U(µm) = u(xm) = u(tmx) ≤
u(rx) < u(x) = U(µ), which contradicts the fact that limn↑∞ µn = µ implies
limm↑∞ µm = µ, and therefore, limm↑∞ U(µm) = U(µ).

(B) As projections are continuous, the mapping π : O×∆(O) → ∆(O)×
O, given by π(x, µ) = (µ, x), is continuous. Then, GrA = {(x, µ) ∈ O ×
∆(O) | µ ∈ A(x)} = {(x, µ) ∈ O×∆(O) | G◦π(x, µ) ≥ 0} = π−1 ◦G−1(<+)
and GrA− = {(µ, x) ∈ ∆(O) × O | x ∈ A−(µ)} = {(µ, x) ∈ ∆(O) × O |
G(µ, x) ≥ 0} = G−1(<+) are closed in O×∆(O) and ∆(O)×O respectively.
Therefore, as O and ∆(O) are compact, A and A− are upper hemicontinuous.
It remains to show that A and A− are lower hemicontinuous.

To show the lower hemicontinuity of A at x ∈ O, consider a sequence
(xn) ⊂ O converging to x ∈ O and let µ ∈ A(x). By definition, U(µ) ≥ u(x).
We need to construct a sequence (µn) ⊂ ∆(O) converging to µ in the weak∗

topology such that µn ∈ A(xn) for every n ∈ N . As U is continuous and
∆(O) is compact, there exists ν ∈ ∆(O) such that U(ν) ≥ U(µ) for every
µ ∈ ∆(O).

Suppose U(µ) = U(ν). Then, clearly, u(xn) ≤ U(µ) for every n ∈ N .
Set µn = µ for every n ∈ N . Clearly, µn ∈ A(xn) for every n ∈ N and (µn)
converges to µ.

Now suppose U(µ) < U(ν). If n ∈ N is such that u(xn) ≤ U(µ), then
set µn = tnµ where tn = 1. Clearly, µn ∈ A(xn).

22



Now consider n ∈ N such that u(xn) > U(µ). Then, U(ν) ≥ U(δx) =
u(x) for every x ∈ O. In particular, U(ν) ≥ u(xn) > U(µ). Let tn ∈ [0, 1]
be such that U(tnµ + (1 − tn)ν) = tnU(µ) + (1 − tn)U(ν) = u(xn). By
construction, µn = tnµ + (1− tn)ν ∈ A(xn).

It suffices to show that (tn) goes to 1. Note that |U(µn) − U(µ)| ≤
|u(xn) − u(x)|. Suppose (tn) does not go to 1. Then, there exists r ∈
[0, 1) and a subsequence of (tn) in [0, r]. As this subsequence must have a
convergent subsequence, there exists a subsequence (tm) of (tn) such that
(tm) ⊂ [0, r] and converges to t ∈ [0, r]. As U is continuous, |U(tµ +
(1 − t)ν) − U(µ)| = |U(limm↑∞ µm) − U(µ)| = | limm↑∞ U(µm) − U(µ)| =
limm↑∞ |U(µm) − U(µ)|. As t ≤ r < 1 and U(ν) > U(µ), we have 0 <
|rU(µ) + (1 − r)U(ν) − U(µ)| = |U(rµ + (1 − r)ν) − U(µ)|, and therefore,
0 < |U(rµ+(1−r)ν)−U(µ)| ≤ |U(tµ+(1−t)ν)−U(µ)| = limm↑∞ |U(µm)−
U(µ)| ≤ limm↑∞ |u(xm)− u(x)| = 0, a contradiction.

To show the lower hemicontinuity of A−, we shall use the fact that
∅ 6= F (µ) ⊂ A−(µ) for every µ ∈ ∆(O). Consider a sequence (µn) ⊂ ∆(O)
converging to µ ∈ ∆(O) and let x ∈ A−(µ). If x ∈ F (µ), then by the lower
hemicontinuity of F established in (A), there exists a sequence (xn) ⊂ O
converging to x such that xn ∈ F (µn) ⊂ A−(µn) for every n ∈ N . Suppose
x ∈ A−(µ) − F (µ). It follows that u(x) < U(µ). As U is continuous and
(µn) converges to µ, we have limn↑∞ U(µn) = U(µ). Thus, there exists
N ∈ N such that n > N implies U(µn) > u(x), i.e., x ∈ A−(µn). Define the
sequence (xn) as follows: for n ≤ N , pick any xn ∈ A−(µn) (this selection is
feasible by property (A)), and for n > N , set xn = x. Clearly, limn↑∞ xn = x
and xn ∈ A−(µn) for every n ∈ N .

Proof of Theorem 6.2. Consider F ∈ F . By (A), F has nonempty values.
By Theorem 6.1, F is continuous. By Theorem 3.6, there exists uF ∈ U such
that F = φ(uF ). (a) implies that F (µ) = φ(uF )(µ) is closed in O. As O
is compact, this means F has compact values. The result follows from the
Maximum theorem (Berge [2], Section VI.3).

Proof of Theorem 6.3. Consider A ∈ A. By Theorem 5.5, A = ξ(uA)
for some uA ∈ U . As δx ∈ ξ(uA)(x) for every x ∈ O, we have A(x) 6= ∅
for every x ∈ O. By Theorem 6.1, A is continuous. (a) implies that uA,
and therefore UA, is continuous. It follows that A(x) = ξ(uA)(x) is closed
in ∆(O). As ∆(O) is compact, this means A has compact values. As p is
continuous, the mapping µ 7→ ∫

O µ(dz) p(z) is continuous. The result follows
from Maximum theorem (Berge [2], Section VI.3).
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