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Abstract

We look at the principal’s problem in a principal-agent(s) (possibly more than one agent) moral
hazard problem, which, unlike most existing work, does not preclude the principal from active
participation in the production process. Also, there is no uncertainty, but joint production, which
renders the action of each individual in the production process unobservable, causes the moral hazard
problem. The principal and all the agents play a multi-stage extensive game, called the Second Best
Game, which determines the set of individuals who actually participate in production along with the
output sharing rule they follow!. Although the principal is not precluded from active participation
in the production process, we characterize a condition that determines whether she actually takes
part in production or not. We also draw the following conclusions: (i) the principal need not look
for any output sharing rulc morc sophisticatcd than those that belong to the class of commonly
observed linear or piecewise linear variety; (ii). the principal can completely mitigate moral hazard
whenever she does not participate in production; (iii) however, even when the principal does not
participate in production at an optimal outcome, she may still be unable to sustain efficiency; (iv)
the principal can sustain efficiency if and only if her best option in the First Best situation does
not require her participation in production; and (v) there are no significant changes to the results
when limnited liability is imposed. We argue that most of the results are driven by the deterministic
production process and not by the quasilinear form of the utility functions that we use. Hence,
as long as the production process is deterministic, most of the results will hold qualitatively even
when individuals do not have quasilinear utilities but their utilities remain additively separable and
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31t will bocome dear from the text that the actual participants play a mncoopmmwc gamec in the production
process conditional on the output sharing rule they follow.




1 Introduction

One of the most prominent features of existing work on moral hazard in the principal-agent fraxnework is the
separation of ownership from labour In most previous work (e.g. Grossman and Hart[7], Harris and Raviv(8],
Hart and Holmstrom[9], Holmstrom[l()] Rees[15), Ross[16], Shavell[18]) only the agent takes part in production
but her action is unobservable and unverifiable because of uncertainty in the production process, and the
principal is there only as a passive residual claimant (because she does not take part in production). 8o, as the
residual claimant, the problem of the principal is to design, before production begins, » payment schedule for
the agent that depends only on the observable final output. This payment schedule is designed to induce the
‘agent to choose a level of action which will maximize the expected benefit of the principal (from the residual)
subject to the incentive and individual rationality constraints.

However, we often observe organizations in which there is a residual clairnant who hires the services of other
individuals in the production process, designs the output sharing rule, and also takes part in the production
process unlike the principal in most principal-agent models. In these organizations, as in most principal-agent
relationships, the residual claimant role of the individual who has the right to design the output sharing rule
usually stems from her ownership of tangible essential inputs like technology, equipment, capital or even the
license to operate the business. Also, the participation of the residual claimant in the production process is
often because of her comparative advantage in certain input that is specific to the production technology. Quite
a sizable proportion of the so called “self owned and operated” businesses fall under this category, because
the self employed owner in such businesses often tend to hire the services of other individuals as well. Such
organizations are also quite prevalent in the “small-scale and cottage industries” sector of most less developed
countries, where a single individual (or-household), because of her ability to make the necessary investments or
her ability to acquire the credits for the necessary investments or even her ability io influence the bureaucracy
(as is often required) to secure the proper business license, may often start a business that employs herself and
others. Also, even though most existing work use the landlord-tenant relationship in the agrarian economies
of the less developed countries as a good example of a principal-agent relationship, as Eswaran and Kotwal[6]
pointed out, often the landlord not only designs the rule for sharing the crop with the tenant but also makes
farm management decisions that are not observable to the tenant.

~ So there is enough evidence to suggest the coexistence of the two kinds of pnncxpal-agent(s) relationship,
namely, those in which the principal is only a residual claimant, and those in which the principal is not only
a residual claimant but also an active participant in the production process. Then the following question
comes to mind immediately. Contrary to the common assumption that the principal’s nonparticipation (or
participation) is exogenously determined, is it possible that the principal is not precluded from participating
in production ex ante in a sizable number of cases, but whether she does paxtlclpate or not is a choice which
she makes? For instance, as Eswaran and Kotwal[6] pointed out, this question often has an affirmative answer
in the case of landiord-tenant relationships, because, rather than being an absentee landlord, the lnndiorchan
often choose to participate in farming, for example, by making farm managémenl decisions. Once the principal’s
participation is not precluded, the condition which determines her participation decision will depend on things -
like her opportunity cost, the degree of complementarity hetween her action and the actions of the agents, the
opportunity costs of the agents, the relative efﬁcxency of any agent whose action can substitute the principal’s

action, etc. Thus, using a fairly general model with some standard assumptions, we want to characterize the

condition which determines the principal’s participation decision.
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Apart from the principal's participation decision, an equally important question is, how do the optimal
output sharing rules look like? We have the following answer to this question. If the principal chooses not to
participate, there is an optimal output sharing rule in which each participating agent (we allow the possibility
of two or more agents) has a linear payment function with a slope of one. On the otherhand, if the principal’s
best option is to participate, there is an optimal output sharing rule in which each participating agent has
a linear payment function with a slope which lies strictly between zero and one, and moreover, the residual
function of the principal is also linear with a slope which lies strictly between zero and one. Although we have

" quasilinear utility functions, our result on linearity of optimal output sharing rules depends not on this but

x

on another important feature of our model which has to do with the cause of moral hazard. As we want to
concentrate on the moral hazard caused by joint production, in contrast to the single-agent case (which precludes
the principal’s participation) where moral hazard is caused by the presence of uncertainty in production, there

are no uncertainties in our production process and moral hazard is a pure joint production phenomenon. Thus,

* unlike the case with uncertainty where incentive constraints impose conditions on the behaviour of the output

sharing rule throughout the support of the distribution of output, becanse of the absence of uncertainty, incentive
constraints impose only a local condition on the behaviour of the output sharing rule around the equilibrium
output level and leaves sufficient degrees of freedom to choose the behaviour of the output sharing rule else
where. So, in contrast to the case where there is uncertainty in production, qualitatively, our result on linearity
of optimal output sharing rules will hold even if the utility functions are no longer quasilinear provided they are
still additively separable and concave and there are no uncertainties in production.

The amount of freedom provided by the absence of uncertainty on the behaviour of optimal output sharing
rules away from a local neighbourhood of the equilibrium output level also has another important implication
for the case where individuals have limited liabilities. Even when individuals have limited liabilities, there is
still sufficient freedom to modify the linear optimal output sharing rules in such a way that we get piecewise
linear optimal output sharing rules that satisfy the limited liability constraints. This will not be always possible
if there are uncertainties in the production process. .

We also show that, if the principal does not participate in production, then she cannot do any better

even if the actions of the participating agents were made observable. So moral hazard is completely mitigated

- whenever the principal acts only as a residual claimant. This is because of the fact that, if the principal does not

participate in production, then, as in Holmstrom{11], her role is just like the role of the outsider who administers
“budget-breaking” incentive schemes. It must be pointed out that, like the result on the linearit.y of optimal
output sharing rules, this result on complete mitigation of moral hazard in the case of nonparticipation by
the principal does not depend on the quasilinearity of the utility functions. As long as the utility functions
are additively separable and concave and the production process is deterministic, moral hazard can be always
completely mitigated in the case of nonparticipation by the principal. This is in sharp contrast to the case
where there is uncertainty in production and risk sharing.

On t!le otherhand, if the principal does participate in production, then she cannot completely mitigate the
moral hazard problem, and hence, she can do better if the actions were observable. This is because of the fact

that there is an inherent conflict between the principal’s role as the residual claimant and her incentive to shirk

in the praoduction process.
Thus, the answer to another important question, “Can the principal sustain efficiency?”, depends crucially

on whether she has to participate in the production process in the full information case (which is the hypothetical

situation where all actions are observable) to get the maximum utility. In particular, if the principal does not




have to participate in production in the full information case to get the maximum utility, then and only then
can she sustain efficiency when actions are unobservable,

In the next section, we describe a simple deterministic joint production process. There are two or more
individuals, one of whom is the principal and the resi are agents, who may take part in the joint production
process, but their actions in the production process are unobservable, This section also describes the prefcr:mces
of the individuals and the Second Best Game. The Second Best Game is a multi stage extensive game played
by the principal-and-all the agents to determine the set of individuals who will take part in production along
with the output sharing rule they will follow. It is worth noting that the moral hazard problem in the actual
production process is similar to the moral hazard problem in teams considered in section 2 of Holmstrom[11).
Hence, as mentioned later on, our efficiency result can also be derived using his results. However, unlike the
present paper, Holmstrom[11] focuses attention on the issue of mitigating moral hazard in a joint production
process and does not look at the problem faced by a principal who can actively participate in the production
process?, ‘

Section 3 looks at the First Best situation and describes the appropriate notion of efficiency. We derive some
optimal outcomes of the Second Best Game that involve linear output sharing rules in section 4. Section 4 also
looks at the issue of mitigation of moral hazard and sustainability of efficiency. In section 5, we show that there
are no significant changes in our results when there is limited liability. The uniqueness of the subgame perfect
equilibrium utility tuple in the Second Best Game is established in section 6. Section 7 illustrates most of our
findings in a simple example. Why our results are robust to more general utility functions is briefly discussed

in section 8. Conclusions are given in section 9. ,

2 Production and Preferences )

There are N (> 2) individuals who can participate in a joint production process. Whenever an individual,
indexed i, participates in the production process, she takes an unobservable and/or unverifiable action a; €
A; = R,. For each individual 4, ¢; : A; — R is the cost function that specifies the cost she incures from her
action when she participates in the production process. All inputs other than the actions of the individuals are
. assumed to be observable, and hence, suppressed in the specification of the model. In the production process,
. the actions of the individuals determine a joint monetary outcome. This production process, assumed to be
deterministic, is represented by a function, f: A — R, where A= nf‘;! A;. :

For each individual {, her preferénce relation over money-action pairs is represented by a quasilinear utility
function, U/; :® x A; — R, which is of the form I/;(m;, ¢;) = m; — ¢;(a;) for any (mi,a;)€ R x A;. Because we
consider the case in which it is possible for individuals to get negative payments, note that the utility function U;
is defined even for pairs with negative amounts of money. Later on, we discuss how the results are qualitatively
affected if we abandon the quasilinear form of the utility functions.

We use the following standard notations: A_; is the Cartesian product of A; over all j not equaltoi;a =
(a),....,an) € A;a_; = (81, ..-,8i-1,8i41,...,8N) € A_;; and a = (a_;,a;).

Throughout, we assume that the production function f, the cost functions ¢;, and the utility functions {/;

are common know]édge. In addition, we maintain the following assumptions about the functions ¢; and f :

" 2 Although the outsider who administers the “budget-breaking” incentive scheme in Holmstrom's proposed solution to the moral
hazard problem is often interpreted as the principal, this outsider, unlike the principal in the current paper, is precluded from

taking part in production.




- ALl. For each individual i, ¢; i5 conlinwously differentiable, strictly increasing and strictly conver on A;;
¢i(0) = 0; ¢4(0)== 0 and lim,, —ot(d)= 00, where ¢} denoles the derivative of ;. ‘

A2. f is contingously differentiable, strictly increasing and concave on A; f(0,...,0) = 0; for each i and
cach a.; € Ag, limg, .o fi(a.i,a;) > 0 and limg, oo fi(a-i, a5) < o0, where fi is the partial derivative of f
with respect to the action of individwal i . :

Assumption A1 is standard and needs no explsination. In assumption A2, the smoothness, monotonixity
and curvature properties of the production function, and the requirement that the output be zero when everyone
takes zero action are standard. Also, the lim.iﬁng behaviour of the marginal product of any individual’s action
when it approaches infinity is standard. However, our stipulation in assumption A.2 about the limiting behaviour
of the marginal product of an individual’s action when it approaches zero is not so standard, because it says
that the marginal product of an individual’s action in a neighbourhood of zero is positive even when every other
individual takes zero action. This means that, no matter what the actions of the other individuals are, the total
output is strictly increasing in the action of each individual. Hence, nobody is essential for production, as total
output is equal to zero only when every individual takes zero action. This particular property of the production
function along with the quasilinearity of the utilities are exploited in the derivation of the results on uniqueness
»f equilibrium.

We treat individual ¥ as the residual claimant in the following sense- (i) like the principal in the standard
1gency models, individual N is the only one who can design and propose cutput sharing rules; and (ii) whether
she takes part in production or not, individual NV always keeps that part of the output left after making payments
to the other participating individuals®. Unlike individual N , each of the first N —1 individuals receives a payment
~nly if she takes part in production. Thus, throughout the remainder of this paper, we call individual N~ the
srincipal, and the first N — 1 individuals— the agents. However, it must be noted that, unlike the principal in
standard agency models, individual N can choose to participate in the production process.

If the actions taken by the agents in the production process are unocbservable and/or unverifiable, then the
principal cannot make the payment to any agent depend on that agent’s action. Henc;z, the payment to an agent
‘or participating in the production process can depend only on the observable andfor verifiable total output
f the production process. Thus, in general, a payment function for an agent is a real valued function defined
m R4, the set of all possible output levels. However, in this paper we shall require the payment functions to
satisfy a regularity condition. This condition essentially says that the curve of the payment function of each
1gent has only a finite number of jumps and kinks. Thus, the payment function of each agent must be drawn
‘rom the set A

(i) s is piecewise continuous on R, ; and
S=<¢s:R, —R | (ii)if s is continnous on (z£, ) C RNy, then it is
piecewise continuously differentiable on (z£, z¥)

Although a technical restriction, requiring the payment functions of the agents be drawn from the class S
«ems quite reasonable, because most of the observed payment functions in joint production processes belong
o this class of payment functions. '

Let A be the set of all subsets of {1,...,N}. So each member of A is a subset of the set of N individuals.
Ve call each member of N , a team, and denote them by 1", T, T, etc. Given a team T and an individual i, we

31t is implicitly assumed that this reaidual claimant role of individual N is a consequence of reasons exogenous to the specification
! the model. As mentioned in the introduction, one such good reason may be individual N owning certain tangible inputs like

~hnology, equipment, capital, ctc.




denote the set of all individuals in T other than i by Ty fe. Ty = T ~ {i}. Thus, T' = T.; il and only if
igT. ‘

Given T € N, let AT be the Cartesian product of A; over all i in T, and ar = (a;)igr € AT, Also, given
any T €N, let f|IT: AT — R, be the restriction of f t0-AT in the following sense~ for each ar € A7, ST (ar)
= f(a'), where o’ = (af,..,ay) € Aissuch that al =g, if i€ Tand a = 0if i ¢ T. For each T € A and each
i € T, we use f;|T to denote the partial derivative of f|T with respect to the action of individual 1.

As production can take place with the participation of any subset of individuals, it is clear that, when only
the members of some 7" € A take part in production, the relevant production process is f|T.

Given any T' € N, if only the members of T take part in production, then an ouiput sharing rule for T ig a
tuple of payment functions, (8;)ieT_,, Where 8; € S'is the payment function of agent { € T_n. Obviously, for
each output level z € R4, whether the principal belongs to T or not, she gets the residual £ — 3", si(z).

Each individual has an outside option which she can exercise instead of taking part in the production process.
The utility of individual 1 from her outside option is equal to u; > 0. So, when agcnt i exercises her outside
option, she automatically gets zero payment. from the principal and her utility iz equal to u;. However, as the
principal is the residual claimant, she still gets her residual in addition to uy even when she exercises her outside
option. ‘

Because the action taken by any individual in the production process is neither observable nor verifiable,
once the team which will take part in production along with the cutput sharing rule become common knowledge,
the members of the team mt@xa]ly play a noncooperative game in the production process conditional on the
common knowledge output sharing rule. Suppc;se it becomes common knowledge that a team T will take
part in production and the output sharing rule will be (s;)ier_,. Then the strategies and payoffs of the
players in the ensuing nencooperative game of production (NGP), which we denote by {T,(si)ier_,}, are as
follows: (i) a strategy of player j € T is an action a; € A;; and (ii) when the actions taken by the players
in T are ar € AT, the payofl of player j € T is s;(f|T(ar)) — cj(a;) if j is an agent (ie. if j # N ) and
SiT(ar) ~ Lier_,, 8i(f1T(ar)) — en(an) if j is the principal (i.e. if j = N).

Given any NGP {7 (s:)r_,} such that N @ T, ar € AT is a Nash equilibrium of this NGP if and only if

7

a; € ATEMAXg ey, [5:(fT(ar_,,6))) — ci(a})] ViET. ’
Similarly, given any NGP {T,(s;)7_, } such that N € T, ar € AT is a Nash equilibrium of this NGP if and
only if ' ' ‘

a; € argmaxgeq, [5i(flIT(ar_;,a;)) —ci(a)] Vi€ T_n; and .
an € argmaxg cay [fIT(ary,an) = Y sil/IT(ar_y,ak)) = en(a)}:
€T N .
We denote the set of all Nash equilibria of each NGP, {T,(s))ier_»}, by NE({T,(8i)ier_x})-

For each team in N, it is clear that there are countless number of possible output sharing rules. This means
that, as production can take place with the participation of any one team in A, there are countless number
of possible team and output sharing rule combinations according to which production can take place. So we
need a procedure that determines a single team and output sharing rule combination according to which actual
production takes place. ' | : .

Suppose the principal deals secretly with different subgroups of agents and ultimately arrives at a single
team 7 and a corresponding output sharing rule (s;)ier_, according to which actual production takes place.
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Then it is very likely that the output sharing rule (5;)ier._,, i not common knowledge among the agents in 7.
So the strategic behaviour of each agent in T in the production process depends on her belief about the output
sharing rule, her beliels about the beliefs of the others in T* and g0 on. Clearly, the beliefs of each agent in T°
depend on all the information that she has, for example, her own payment function and may be that of some of
the other agents in 7. However, given all the information that is available to an agent, the manner in which she
uses them to form her beliefs is quite complicated to model and well beyond the scope of this paper. Therefore,
we assume that the principal does not deal secretly with any subgroup of agents and whatever she proposes
becomes common knowledge immediately. '

As we assume that no one can be forced to participate in production, even though the principal, as the
residual claimant, is the only individual who can propose any team and output sharing rule combination, an
agreement must be reached on a single team and output sharing rule combination according to which actual
production takes place. However, handling the complex strategic issues involved when individuals are allowed to
collude with one another in trying to reach an agreement on a single team and output sharing rule combination
are well beyond the scope of this paper. Moreover, it is seldom easy to justify the credibility of commitment of
any member of a coalition to the coalition. Therefore, we assume that the individuals behave noncooperatively
when trying to reach an agreement on a single team and output sharing rule combination.

Thus, we use a very simple multi-stage procedure to determine a single team and output sharing rule
combination according to which production takes place. This multi-stage procedure, which we call the Second

- Best Game k(SBG), is described as follows:

Stage I: In the first stage, the principal announces a NGP which becomes common kaowledge immediately.

Stage II: In the second stage, each agent who is a player of the NGP announced by the principal must
announce whether she agrees to play this NGP or not. These announcements by the agents are made sequentially,
so that, the announcement of an agent becomes common knowledge before the announcement of any subsequent
agent. If any agent who is a player of the NGP announced by the principal announces a disagreement, then
the procedure terminates at this point and everyone exercise their respective outsidé options. Of course, those
individuals who are not players of the NGP announced by the principal automatically exercise their outside
options.
_ Stage III:  This stage is reached only if every agent who is a player of the NGP announced by the
principal annonnced an agreement. in the second stage. Once the third stage is reached, the NGP announced

. by the principal is played in the production process.

Obviously, if the third stage is not reached, then the payoff of each individual  in the SBG is her outside
option utility, u;. However, if the third stage is reached, then the payoffs in the SBG are given as follows: (i)
each agent who is not a player of the NGP played in the third stage gets her outside option utility; (i) each
agent who is a player of the NGP played in the third stage gets her payoff from this NGP; (iii) if the principal is
a player of the NGP played in the third stage, then she gets her payoff from this NGP; and (iv) if the principal
is not a player of the NGP_played in the third stage, then she gets ux (her outside option utility) plus the
output left after distributing the payments to the players of the NGP played in the third stage.

Given T € N and an output sharing rule (s;)ier_, such that s; € S for each i € T_n. there is no gaurantee
that the NGP {T,(s:)icr_n} has a Nash eqnilibrinm. However, as we want, to focns only on subgame perfect
equilibria of the SBG, we cannot allow the principal to propose NGPs that do not have any Nash equilibrium.
Hence, we impose the restriction that the NGP announced by the principal in the first stage of the SBG be




drawn from the set

7 = AY (i) TeN; (i) seSVieT y;and
6= {1 ) N e o) 9 ~

3 First Best \

To understand the efficiency properties of the model it is necessary to know the meaning of efficiency in the
present context. So, as in most standard moral hazard models, we look at the First Best (FB) situation in order
to find an appropriate notion of efficiency for our model.

The FB situation is the hypothetical situation in which the action of each individual in the production
process is observable, and hence, the principal pays each agent who takes part in production according to her
action. So, in the FB situation the principal can dictate the action of each agent in the following sense- if the
principal wants an agent to participate in production and take a particular level of action, then she can solicit
the desired action voluntarily from the agent with a sufficient payment for that action and zero payment for any
other action. Therefore, when only the members of a team T € A take part in production in the FB situation,
the principal chooses a tuple of payment-action pairs for all the agents in T and an action for herself if she
belongs to T’ to maximize her utility subject to the condition that each agent in T gets at least as much utility
- as from her outside option. We denote this maximum utility of the principal by B(T).

Suppose T € N is the set of individuals who take part in production in the FB sitnation. Then N ¢ T
means that the principal exercises her outside option and also gets the residval. So, if N ¢ T, then B(T) is
given by :

() mi —ci(a) 2w VieT;
B(T)=un+ ax fIT(ar) ~ Y my| (ii) ar € A”; and
’ ieT (iii) my = (m;);er € R
On the otherhand, the principal can belong to T only if she ‘does not exercise her outside option. Hence, if
T is such that N € T, then B(T) is defined by
' : (i) m; ~ci(a) > ui Vi € T_n;
B(T) = (X fIT(ar) ~— > mi—cn(an)| (ii) ar € A”; and
r-N $€T.n (iti) my_p = (mi)ier_py € RIT-~

In the definition of B(T) in either case, the constraints, m; — ¢;(a;) > u; V i € Ty, ensure that each
participating agent is no worse off than exercising her outside option. These constraints are obviously necessary
for the participating agents to be willing participants. Also, we must point out in passing that B(T) is well
defined for any T' € N, because, using assumptions A1 and A2, it can be easily shown that the maximization
problem in the definition of B(T) in either case has a solution.

Suppose the principal chooses to exercise her outside option in the FB situation. Clearly, if B(T) < uy for
every T € N such that N ¢ T, then the highest utility she can get is uy. On the otherhand, if there exists
T € N such that N ¢ T and B(T) > un, then the highest utility she can get is the maximum of B(T’) over all
T € N such that N ¢ T. Thus, if the principal chooses to exercise her outside option in the FB situation, then
the highest utility she can get, which we denote by uk;_, is given by

uf, = N fB(T)<un VT e€Nsuchthat Ng T
N=") maxpex{B(T)| N ¢T} otherwise.




perspective) in Q_y C Q, which is the set of all outcomes in Q where the principal does not participate in

~ production; ie.

fon = {({T.(oer.nlar) €01 N ¢ T}

Let T be a team in A such that N g TF, and B(T'F) = maxre,\r{B(F)l N ¢ T}. Also, let (mfp.ﬂorr) L

€ R x AT be payment and action tuples such that mF —~ ¢;(af) > w; Vi € T, and uy + ffTP(“z- )
~ YierrmE = B(TT). So the team T along with the payment and action tuples (mK,,af.) give the
highest utility to the principal if she does not participate in production in the FB situation. Clearly, B(T¥ ) >
*(({T, (s:)ier}, a1)} ¥ ({T' (8:)ier }, o1) € Dn. Then, according to assumptions A3 and AS, B(TF) > uy
and [T*| > 2 are necessary for any outcome in 2_x to be an OO. Thus, unless otherwise mentioned, it must
be understood that we are only looking at the case in which B(TF) > uy and |TF| > 2.

Because of Lemma 1, we know that the following are true:

(1) _ mf —caf) = w VieT

@ un+fITF(afr )= Y mf = B(TF); and
€T ‘

(3) filT(afe)~ciaf) = 0 vieT.

'So we seek to construet an output sharing rule which will induce the agents in TF to take the actions ok,

and also pay mf Lo each ageal i € TF at the oulput level f|TF (a.;, ). Now, (3) says Lhal any output sharing
rule which induces the actions ag, and is smooth in a neighbourhood of the output level f[TF (a;',.) must

_only have payment functions that have unit slopes around a neighbourhood of the output level fITf (a.,‘:.',),

However, because of the deterministic nature of the production function f, (3) does not say anything about how
the output sharing rule should behave away from a neighbourhood of the output level f|T'F(ake). This gives
sufficient freedom that allows us to construct a desired output sharing rule which is linear.

Suppose the agents in TF play a NGP in which the payment to each agent i € T is equal to the total output
plus the constant u; + c;(af’) — f|T¥(af, ) for every level of output. Then the quasilinear utility functions, the
strict convexity of the cost functions and the concavity of the production function imply that a tuple of actions
for the agentsin T is a Nash equilibrium if the marginal product (which is the same as the marginal benefit) is

- equal to the marginal cost for every agent in TF. However, we already know from (3) that the marginal product

is equal to the marginal cost for each agent in TF at aTF Therefore, a;,. is a Nash equilibrium. Also, it is
easy to check that the utilities of each agent { € TF and the principal at an are u; and B(TF), respectively.
Furthermore, because of the quasilinear utility functions and the monotonicity, curvature and limiting marginal
properties of the cost functions and the production function, ai, is in fact the unique Nash equilibrium.

For each i € TF, let af be the constant such that " “

(@) of = w+tci(al)-fIT (afr) VieT".

Now, for each agent i € T, define the payment function sf as follows:
(5) sf(z) = of +z VzeR,.

Then, more formally, we ﬁa.ve the following proposition.

Proposition 1 : If assumptions Al and A2 are salisfied, then: (i) ({TF,(sf_),'eys-},a;p) € Q_y; (i)
sFUIT (afe)) — cial) = w; ¥V i € T7; (iii) uny + fIT"(afr) = Tigrr sT(FITT (afip)) = B(TT); and (iv)
NE({TF,(sf)ierr}) = {afe}. '

10
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Proof:  See Appendix A.

The intuition behind Proposition 1 is as follows. As the principal is the residual claimant, when the actions
are not observable and only the individuals in 7% take part in production, the role of the principal in this
paper and the role of the outsider who administers a budget-breaking incentive scheme in Holmstrom[11] are
the same. So, whenever the total output deviates from f|TF (af,), although the principal does not know the
agent(s) whose action(s) caused this deviation, she can find the entire team of agents, TF, at fault. Hence, the
principal can punish everyone in T for any deviation in the total output from f |TF(akr). In particular, the
principal can make each agent i € TF fully responsible for any deviation in the total output from f|TF (akr)
by paying her the total output plus the constant w; + ¢;(al’) — f|TF(aks) for every level of output.

~ Next, let us look at the other half of the set €, denoted by Q,, which contains all those outcomes from
where the principal participates in production; f.e.

v = {(T(sdiern),0r) €0 NeT}.

When the principal is the only player, there is only one NGP, namely, the one in which the principal keeps
the entire output for herself. Although it is obvious that the principal can get B({N}) in this NGP, because of
assumption A5, there cannot be any OO which involves this NGP. So we only need to pay attention to those
outcomes in f2+,~ that have at lcast onc agent participating in production along with the principal. Also, as we
are interested in OQs, assumption A4 allows us to ignore those outcomes in Q. at which some participant in
the production process takes zero action. o

Thus, among all the outcomes in Q4 that bave two or more individuals participating in production with
everyone of them taking a positive action, we are interested only on those that are best from the principal’s
perspective. Therefore, as an intermediate step, for each T' € A such that N € T and |T'| > 2, we need to look
at the following maximization problem:

Pry max  [fiT(er) - Dier,, silf1T(0r)) — en(an))]

ar(si)ier_pn

- subject to:
€ a>0 VieT,and
(02) ) ({Tr (si)iGT_N}r OT) € Q+N~

As discussed above, constraint (C1) requires a positive action for every individual in T. Constraint (C2)
obviously follows from the fact that SPE outcomes have to be in the set €. _

Clearly, constraint (C2) of problem (Pr) involves maximization problems of the players in T. So we use
a standard method, commonly known as the first order approach, to solve problem (Pr). As the first order
approach uses only the pecessary conditions of the optimization problems involved in the constraint, sometimes
the solution(s) obtained by using this approach may not be solution(s) of the original problem. However, we
need not worry about such a possibility in the present case, because the solutions we derive by using the first
order approach are indeed solutions of problem (Pr).

Appendix A proves a technical lemma that enables us to use the first order approach. Given T' € N such that
N €T and |T| > 2, if a NGP and an action tuple corresponding to T satisfy (C1) and (C2), then this lemma
asserts that the curve of the payment function of each agent in T is stnooth at the output level corresponding

to the given action tuple.

Lemma 3 : Suppose assumplions Al and A2 are salisfied, and T € N is such that N € T and |T| > 2. If
(T, (si)ieT-n }. ar) satisfies (C1) and (C2), then s; is differentiable at f|T(ar) for eack i € T_n.
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Proof See Appendix A.

Suppose ({T', (i Jier.n },ar) € Q24w is such that || > 2 and a; > 0V i € 7. Because of the quasilinear
utility funciions, it is clear that the marginal benefit of each individual in T is equal to her marginal cost at ar.
Also, because of Lemma 3, we know that, for each agent i € T, her marginal benefit at ap can be written
as the product of the slope of her payment function s; at f[T'(ar) and her marginal produ’ct at ar. Hence, for
each agent i € T.., the slope of & at f|T(ar) must be equal to the ratio of her marginal cost and marginal
product at ap. As the principal’s residual for any level of output ¢ € Ry is 2 — 3, 7 si(2), Lemma 3 also
implies that the marginal benefit of the principal at ar is equal to her marginal product at ar times one minug
the sum of the slopes of the payment functions of all the agents in T at f|T(ar). Therefore, one minus the
sum of the slopes of the payment functions of all the agents in T at f|T(ar) must be equal to the ratio of
the principal’s marginal cost and marginal product at ap. But we already know that the slope of the payment
function of agent i € Ty at f|T(ar) is equal to the ratio of her marginal cost and marginal product at ar.
So the marginal cost to marginal product ratios of all the individuals in T" at ay must add up to one. More
formally, we have the following lemma.

Lemma 4 : Suppose assumplions A1l and A2 are salisfied, and T € N such that N € T and |T| > 2. If
({T, (8i)ier_y ), ar) satisfies (C1) and (C2), then Z‘-eT[c:.(a;)/f.- [T(ar)] = 1.
Proof. See Appendix A.

Given T € N such that N € T and |T'| > 2, suppose we replace (C1) and (02) by the marginal condition in
Lemma 4. Also, for each 1 € T_ i, suppose we replace s;(f|T(az)) by 1; + e;(a;) in the objective function of
problem (Pr). Then we get the following new maximization problem:

75 . [£17(az) = Fier ci(0s) ~ Tir. ]
subject to:
(C3) Lierlai(ad/filT(ar)] = 1.
Note that the actions of the individuals in T are no longer required to be positive in problem (Pr). Also,

uplike problem (Pr), the only choice variables in problem (P}) are the actions of the individuals in T". The

. intuitive logic behind the transformation of problem (Pr), which involves payment functions, into problem

(Pr), which does not involve any payment function, is as follows. Because of the deterministic nature of the
production function f, constraints (C1) and (C2) only tell how the output sharing rule (s:)ieT_, must behave
around a neighbourhood of the output level f|T(ar) and not else wheré. Then, as the payments to the agents

-and the principal’s residual has to add up to the total output, this local condition unphed by (C1) and (C2)

translates into (C3) and ehmmates the payment functions.

Lemma 5 : Suppose assumptions Al and A2 hold, and T € N such that N € T and |T'| > 2. Then problem
(P;) has a solution.

Proof. See Appendix A.

Given any T € N such that N € T and [T} > 2, the value of the objective function of problem (Pr) at a
solution is denoted by AV(T). So, if ar is a solution of problem (Pyp), then f|T(ar) — 3 ;e i@} — i, ti
- ‘/'(T).

Remember that, for any combination of (s;)icr_, and ar which is feasible for problem (Pr), the individual
rationality conditions of the agents in T, s;(f|T(ar)) — ¢i(a:) > w; Vi € T_n, are included in constraint (C2).

12




So the value of the objective function of problem (Pr) at (ap,(s:)ier. ) cannot be greater than the value of
the objective function of problem (P4) at ar. But, because of Lemma 4, the action tuple at any feasible point
of problem (Pr) is also feasible for problem (Pf). Therefore, we cannot find a feasible point of problem ()
at which the value of its objective function is greater than the value of the objective function of problem (/%)

at a solution.
Lemma 6 : Suppose assumplions Al and A2 are salisfied, and T €N such that N € T and |T| > 2. If
(a7, (siier_y) is feasible for prodlem (Pr), then V(T) > f|T(ar) = Licr. , i(fIT(ar)) - cnlaxn).

Proof See Appendix A.
Let T maximize V(T') over all T € A such that N € T and |T| > 2; i.e.

T" € argmaxgey {V(T) | Né€Tand [T|>2).

The existence of T* follows from Lemma 5 and the finiteness of the number of teams that have the principal

and at least one agent. Also, let a}, € AT’ be a solution of problem (Pg.). Then we have

(6) Yier-lci(a})/fIT (a3.)] = L and
(1 fiT"(ap.) - Zae'r-ci(“;) - Zae'r;NW = V(T").

Thus, we want an output sharing rule which will induce the action tuple af. and pay u; + ci(a;) to each agent
+ € TZ ;- at the output level f|T™(a}.). However, as mentioned above, because of the absence of uncertainty in
the production process, we know that we have some freedom in choosing the behaviour of the desired output
sharing rule away from the output level f|T™(a}.). Below, we show that this freedom is indeed enough for us

construct a linear output sharing rule.
For each i € T~ , let the two constants 37 and o] be as follows:

i

® & ci(ai)/ filT (az-); and
@ of = witecla])—FfIT(az.).

Then, for each i € T™ , let s7 be the linear payment function whose slope is 87 and intercept is af; 1.e.
{10) 55(z) = af +8iz YVzeER,.

Clearly, for each i € T, the slope of s, 7, is nonnegative and equal to zero only if = 0, which we
have not yet ruled out. Also, (af JieT=,,, the intercepts of the payment functions in (s])ier= . are set in such
a way that, if (s} )ieT:N is the output sharing rule and a}. is the action tuple taken by the individuals in T,
then the utilities of agent i € T™ 5 and the principal are u; and V(T™), respectively. So Lemma 6 implies that
(at+,(s{)ieT= ) is indeed a solution of problem ( Pr.) if feasible.

Suppose agent i € T, is paid according to s and the actions of the other individuals in T* are fixed at
ay. . Then, because of her quasilinear utility function, the utility of agent i as a function only of her own
act"i'on, a; € Ai, can be separated into the benefit function, o] + 87 f|T° (af}-:',a,-), and the cost function, ¢;(a;).
We know that the cost function is strictly increasing. However, the benefit function is just the constant of if
87 is equal to zero, and strictly increasing if 87 is positive. So it is obvious that, if 7 = 0, which can happen
only if aj = 0, then the best action for agent i is a] (= 0). On the otherhand, if a] > 0, then §] is positive and
the benefit function is strictly increasing, but there is a trade-off between the increase in the benefit and the




increase in the cost as the action of agent i increases. Then it makes sense for agent i to choose ¢} if af > 0,
because her marginal benefit is equal to her marginal cost at af.

When the agents in T* are paid according to the output sharing rule (s})ier=,,, the residual function of
the principal, — E‘GT.’.N of + (1= Figrs, A7), is also linear in the output z € R4. Because of (6) and (8),
(1 - E:’GT;N B7), the slope of the residual function, is equal to cy(ay)/fw|T"(a%.). Then, using a similar
intuition as in the case of the agents, we can say that aj, is the best action for the principal if the output
shaxing rule is (57 )iere,, and the actions of the agents in T are fixed at ay. .

Proposition 2 : If assumptions A1-A5 hold, and V(T*) > B(TT), then: (i) (a%..(s{)ieT=,) © @ solution
of problem (Pr-); (ii) s} (f|T™(a3.))~¢i(a]) = wi ¥ i € T2 ; (i) f1T™(af-)~Liere,, i (/1T (a7-))—en(ay) =
V(T"); and (iv) NE{T™ (&er=, ) = {ar-}.

Proof: See Appendix A.

The condition, V(T) > B(TF), plays a crucial role in Proposition 2. Whenever it holds, because of
assumptions A4 and AS5, the principal’s utility at an OO cannot exceed V(T"). So, once we establish
({T", (s )ier=,, },ax.) € @ and =(({T,(5})ier= }a5.)) = V(T7), af > 0 for every i € T" follows from
~ assumption A4. '

Also, note that aj. is the unique Nash equilibrium of {T™,(s])ier-,} according to (iv) in Proposition 2.
This result follows from the quasilinearity of the utility functions, the concavity of the production function and
the strict convexity of the cost functions. v

The most obvious but important message of Proposition 2 is that, if it is better for the principal to participate
in production, then she need not look for any output sharing rule that is more sophisticated than those in the
class of simple linear output sharing rules. '

In contrast to the output sharing rule in Proposition 1, there is pure sharing in the output sharing rule in
Proposition 2 in the sense that- every participating individual gets a constant (which may be negative) plus a
positive proportion of the total output. This can be roughly interpreted as foliows. If the principal is better
off participating in production, then the principal can only get worse off with an output sharing rule which
punishes only a particular proper subset of the set of pa{'ticipating individuals for every deviation in the total
output from the optimal output.

" If the principal is better off participating in production, then, because of (iii) of Lemma 2, the only way
she can get the FB utility is if the actions taken in the production process are such that the marginal product
is equal to the marginal cost for each participating agent. But, Proposition 2 says that this cannot happen,
because the slopes of the payment functions and the residual function of the principal in the output sharing
rule in Proposition 2 are all less than one. Thus, another important implication of Proposition 2 is that, if it
is better for the principal to participate in production, then she cannot completely mitigate the moral hazard
problem; i.e. V(T™) < B(T*). This highlights the presence of an inherent conflict between two things, namely,
the principal’s role as a residual claimant and her role as a free rider whenever she participates in production.

(iv) of Proposition 2 also has an important implication. As we shall demonstrate later, this result along with
the quasilinearity of the utility functions can be used to show the uniqueness of the SPE utility tuple.

Now, what we originally set. out to show, namely, there ia some OO in Q° where the ontput, sharing rule is

linear, is a rather obvious corollary of Propositions 1 and 2.

Corollary:  Suppose assumptions AL-A5 hold. If B(TF) > V(T*), then ({T“',(sf)sew},a‘;r) eqQ. If
V(T") > B(TF), then ({T",(5} Jier=, },a7-) € 2°.
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From our derivations up to this point, we can naturally draw the following conclusions about the principal's
participation decision: (i) if B(TT) » V(T*), then the principal will choose not to participate in produciion:
(i) if V(T™) > B(TF), then the principal will choose to participate in production; and (i) if B(TF) = V(T*),
then the principal may or may not choose to participate in production.

Let us now look at the principal’s ability to sustain efficiency. Obviously, the only way the principal can
sustain efficiency ig if her utility at every OO is equal to uﬂ This means that the principal can sustain efliciency
if B(TF) = uf;, because we know that in this case the principal’s utility at any OO is equal to B(TF). So
the question remains, what if uly > B(TF)? If uk > B(TT), then it is clear that the only way the principal
can sustain efficiency is if ufy = V(7*). We know that uk is at least as large as B(T™). But we also argued
above that B(T™) is greater than V(T™). Therefore, uy, > V(T*) always holds. So the principal cannot sustain
efficiency if uf; > B(TF). Thus, we can claim the following.

Claim 2 : Suppose assumptions A1-A5 hold. Then the principal can sustain efficiency if and only if uf, =
B(TF). ‘

As the principal does not belong to T'¥, the condition uk = B(T¥') means that the principal does not participate
in production in the FB situation to obtain the maximum utility. So Claim 2 can also be put in aslightly different
way as follows. To sustain efficiency it is necessary and sufficient that the principal obtain the maximum utility
in the FB situation without her partxcxpatnon in production.

As the principal plays the role of a residual claimant, if she takes part in productxon wi get a joint production
procéss to which Theorem 1 of Holmstrom[11] is applicable. On the otherhand, if the principal does not take
part in production, she is just like the outsider in Holmstrom’s solution to the moral hazard problem, who
administers “budget-breaking” incentive schemes. Therefore, Claim 2 can also be viewed as an implication of
the results in Holmstrom({11].

The intuition behind Claim 2 is as follows. When the actions are not observable, every individual who
takes part in production (including the principal) has an incentive to free ride in the production process. So,
when only the members of some team T € N take part in production, to get B(T), the FB sitnation utility,
the principal must design an output sharing rule which has sufficient punishments for everyone in T for any
deviation of the total output from the FB situation output level corresponding to B(T). But, whenever the
principal punishes every agent in T, as the residual claimant she can only reward herself, which means that the
principal cannot punish everyone in T if she herself is a member of T. So, whenever the principal takes part
in production along with a group of agent(s), there is bonnd to he an inherent conflict between her residual
claimant role and her incentive to free ride in the production process. Therefore, when the actions are not
observable and only the members of some team T take part in production, the principal can get B(T) only if
she does not belong to T

5 Limited Liability

So far we have allowed output sharing rules that can award Suﬁicwntly large negative payments to some agents
or the principal. However, such output sharing rules may no longer be feasible if individuals have limited
liabilities. Thus, in this section we look at the case where individuals do have limited liabilities. In particular,
we impose an extreme form of limited liability constraint, namely, no one, including the principal, can commit

to any amount. of negative payment. So the NGP annonnced by the principal in the first stage of the SBG must.
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fixed at zero, is no larger than u;. Also, for each i € TF,

be drawn from the following set: ‘
O = {{erp) €6 GUEZIV =Ry wod ny L Towiond .

The question we ask is, is there any 00 ({T,(s;)ier_n }, a7) € Q* such that {T, (s;)ier. 5} belongs to ¢, 7
The answer is yes. In fact, we modify the linear output sharing rule in the appropriate OO derived in the
previous section in such a way that the limited Liability constraint is met and the modified output sharing rule
along with the original action tuple remains an OO. This modification is carried out in such a way that the
payment functions of the agents (and the residual function of the principal if V(T*) > B(TT)) are continuous,
piecewise linear and nondecreasing.

The reason that allows us to perform our modifications is quite obvnous Suppose B(TF ) 2 V(T) (V(T™)
> B(TT)). Then, as long as we keep the output sharing rule (s );err ((s? )ier=,,) intact on an appropriate
range of output around f|T(afe) (f|T (a}.)), the absence of uncertainty in the production process provides
enough freedom that allows us to change (s )ierr ((s])ier=,,) quite arbitrarily else where such that the action-
tuple ak» (a}.) is still induced.

Let us first consider the case B(TT') > V(T*). Then it can be easily checked that, for each i € 77, af < 0
and the payment function s awards negative payments to agent i only at output levels below —af. Also,
the principal’s residual, 2 — Es‘efrf’ sF'(z), becomes negative only beyond a certain output level greater than
J\T (alr). So, for each i € T", we can modify s in such a way that there are no changes between the output
levels —af and f|TF(af,), but the payment is fixed at zero for output levels below —af and at of +f |TF (ak)
for output levels above fIT'F (ag F.). More formally, for each i € T, we define the payment function & as follows:

0 f0<z<~af
1) ()= F(:c) if aF <z< f]TF(aTF)
- af + fiTF (akr) if z > FITF(af ;).

It is obvious that the payment function 57 is continuous, piecewise linear, and nondecreasing. Also, it can be
easily verified that the NGP {TF, (8] );cprr } belongs to §+

Clearly, for each ¢ € TF, the payment according to 57 can exceed the payment acccrdmg to s only at
output levels below —af. However, the payment according to 5F for any output level below ~af, which is
5F and s award the same payment at the output
level f|TF (afs). Then, as we already know that (sf);cre mduces 65r, (57 )ierr must also induce X, and
hence, we have the following proposition. ‘

Proposition 3 : If éssumpiions A1-AS5 hkold, and B(TT) > V(T™), then ({TF, (5F ),‘efm},ag;o) e Q.

Proof: See Appendix A.

Next, consider the other case, V(T™) > B(TF). Partition the set. of agents 7", into the three subsets, T3,
Tg and T2, such thalt i € T} fand only il of > 0,4 € Ty if and oply if of =0, and i € T2 il and only il
a; < 0. By relabeling the agents if necessary, without loss of generality, we let 77 be the first [T | agents, Tg
be the |T7| agents after [T}, and T be the |T*| agents after [T} + |Tg|; d.e. Ty = {1,...,|T3|} if T # @,
Ty = (T3 1+ 1o [T UTG ) i T3 # 0, and T2 = {|T UT3 |+ 1, o [T 1} if T2 # 0.

For each ¢ € T7, let 57 be the payment function that pays zero wherever s7 pays a nonpositive amount and
the same as s} everywhere else. Formally, for each i € T2, as the critical output level at which s} starts paying
nonnegative amounts is —aj /f;, we have

(12) &(z) = { (@) ﬁifi};‘:m d
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For each i € Ty, let
(13) &(x) = si(x) VzeR,.

! Suppose T is nopempty. Then agent, 1 belongs to T}, Now, if agent 1 is paid z — Zf‘é?‘guT: 57 («) for every

"z € Ry, then it is obvious that there is an output level below which she does not get as much as in s} bui above
which she gets more than in 5. So, let 2! be the unique output level such that s}(z') = #* ~ Liexrurs 8H(E).
Then the payment function 3% is defined as follows:

z—Yiergure 5i(2) if0<z <
s3(z) if z > 21,

(14) 5i(=) = {

Following a similar procedure as above, for any i € T} ~ {1}, ' is iteratively defined as the unique critical

output level such that s} (') = & — EjeTguT; §;(a':‘) - }:‘;;’1 5‘;{5’) Then, for each i € T} — {1}, the payment

function & is iteratively defined as follows:

{1 . . —d

— rrres yee B — s 81 fo< s

(15) 5:‘(:8) —_ { 2. E)&TUUYL 8; (37) Z)....l sj(x) 1 0 — ::S x
5i{z) if > 7.

Note that, if 7} has more than one agent, there is an asymmetry in the behaviours of 57 at output levels on
or below z! and 5} at output levels on or below #*, where i € T} is distinct from 1. For each i € T distinct
from 1, 8 pays zero at every output level lower than =1, the critical output level of the agent just before i.
On the otherhand, if T} is nonempty, then 8] pays zero only at zero output level. For each i € T} distinct from .
1, when the final output is on the interval [#~, '), 5 pays agent i the output that is left after paying each
agent h before her according to s; and each agent j € Tg UTZ according to &. So, if T} has more than one
agent, for each i € T} distinct from 1, the behaviour of 57 between £~ and Z' is similar to that of 5] between
0 and 2. '

It can be easily verified that, for each i € T, ‘52‘ is comtinuous, piecewise linear, and nondecreasing.
Furthermore, the principal’s residual, £ — ZieT:N 5;(x), is contintous, piegewise linear, and nondecreasing.
Our construction also ensures that the NGP {T", (5} )ier-, } belougs Lo G,.

Clearly, for each ¢ € T U Ty, the curve of 57 always lies on or below that of 5f. On the otherhand, for each

i €. T, wherever the curve of 5} lies above that of sf its value is equal to zero, and hence, no larger than the

utility of agent i at aT., u;. Also, the curves of the principal’s residual in (] )ie7-,, and (s)ier=,, are such
that, if there are output levels at which the former lies above the later, then the value of the former is equal to

zero at those output levels. Then, because (s} )icr-,, induces aj., (5] )ier=,, should also induce af..

Proposition 4 : If assumptions A1-AS5 hold, and V(T*) > B(TF), then ({T*,(s})ier= . },07-) € Q.

;f Proof See Appendix A.

? Thus, according to Pi'qposit-ions 3 and 4, except for the fact that the principal may have to ook for slightly

}’ more sophisticated output sharing rules than those of the linear variety (namely, piecewise linear rules), there
are no other significant changes when individuals have limited liabilities. This result, as we have pointed out

d all along, is a consequence of the deterministic production process. In contrast, when the production process

&

is no longer determiristic, often, there is not enough freedom to modify the unlimited Hability optimal output
sharing rule to a limited liability optimal output sharing rule. Hence, imposing limited liability condition often

reduces the principal’s optimal utility when there are uncertainties in the production process.
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6 Uniqueness of SPE Payoffs

To begin with, we must p:oint out that the result presented in this section relies on the quasilinearity of the
utility functions, and hence, may not hold for the more general utility functions that are additively se-parable
and concave but not necessarily quasilinear, .

Qur objective is to show that the utility tuple remains the same in every SPE outcome of the SBG. Pxecisely,
we show that at any SPE outcome the utility of each agent i is u; and the utility of the principal is hex utility
from any 00.

Suppose ({T, (8:)ieT_n },ar) € Q", but the utility of some agent j € T_n, s;(f|T(ar)) — c;(a;), is greater
than u;. Now, if we keep the payment function of every other agent intact and give agent j an € > 0 less for
every level of output, where ¢ is such that s;(f|T(ar)) — ¢ — cj(a;) > u;, then, because of the quasilinear
utility functions, ar is still a Nash equilibrium at which every agent in T~ (including agent 7) get al least their
outside option utility and the principal’s utility has increased by €. But this means that there is an outcome in

€ at which the principal’s utility is higher than at an outcome in Q*, which is not possible. So we claim the

following.

Claim 3 : If assumptions A1-AS kold, and ({T, (si)ier_, },a7) € Q°, then 5;(f|T(ar)) — ci(ag) = w; Vi €
T.N. ) ;

Suppose B(TF) > V(T*) (V(T*) > B(TF)). Then, as assumption A3 implies B(TT) > uy > 0 (V(T™)

, > uy 2 0), let € > 0 be such that B(TF) — |TFle > uy (V(T*) — |T:yle > un). Consider the NGP
| {TF, (5T Vierr} ({T, (5])ier:,}), which is obtained from {TF, (s )ierr} ({T7,(s])ier,}) by paying each
agent in TF (T* ) € more for every level of output. Then, because of the quasilinear utility functions and
! Proposition 1 (Proposition 2), it obviously follows that: (i) each agent i"e TF (€ T"y) gets u; + ¢ at
the outcome ({T7, (sf“)iere },afe) (({T", (5;)er= , }, a%.)); (ii) the principal gets B(TF) —{TF)e (V(T*) -
T2 yle) at the outcome ({TF, (sf )ierr}, afr ) ({T*, (5;)iex= .}, 6%-.)); and (iii) af, (aj.) is the unique Nash :E
equilibrium of {77, (sf)ierr} ({T*, (3 %ier= P |
In the case of limited liabilities, we can exploit the freedom provided by the deterministic production process “

to modify the above mentioned NGPs in such a way that the limited liability condition is met without loosing

" any of the conclusions drawn. Thus, Appendix B proves the following lemmas. j

Lemma 7 : Suppose assumplions A1-A5 hold, and B(TF) > V(T*). Then, for each € > 0 such that B(TF) -
[TFle > un, there exists {TF,(55);err} € G4 such that: (i) afo is its unique Nash equilibrium; and (i) the
[ utilities of the principal and each agenti € TF at aF; are B(TT) — [TF|e and u; + ¢, respectively.

Proof. See Appendix B.

Lemma 8 : Suppose assumptions A1-A5 hold, and V(T") > B(TF). Then, for each ¢ > 0 such thet V(T*) —
IT:nle > un and af + € < 0V i € T* (the existence of such an ¢ is assured by the fact that of < 0V i € T2 ),
there ezists {T*,(8])jer=, } € G4 such that: (i) a}. is its unique Nash equilibrium; and (i) the utilities of
the principal and each agent i € T"  al ap. are V(T*) — |T" xle and u; + €, respectively. l

Proof: See Appendix B.
Now, suppose there is a SPE outcome which -does not belong to ©*;-and the principal’s utility at this

outcome is ty. Clearly, @iy is less than the principal’s utility at an QO. Then, because of Lemmas 7 and 8,
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we can find some outcome, say ({7, (#:)icr_n b, ar), such that: (i) {7, (8)icr.n} € Gy; (ii) ap is the unique
Nash equilibrium of {7, (8:)ier- 5 }; (i) T—n is nonempty and the utility of each agent in T_n at dp is more
than her outside option utility; and (iv) the principal's utility at ax is more than iix. But then, using a simple
backward induction Jogic, it is easy Lo see that all the agents in 7. v will always agree to the NGP {7, (& )ier. )
whenever the principal announces it in the first stage of the SBG. So there cannot be any SPE outcome at which
the principal's utility is @5, and hence, our original supposition must be false. Therefore, there are no SPE
outcomes outside Q2°. The unigueness of the SPE utility tuple is then an immediate consequence of Claims 1

and 3.

’Claim 4 : Suppose assumplions A1-A5 hold. Then, whether there is limited liability or not, we have the
following: (i) if B(TF) > V(T™*), then at any SPE the utility of the principal is B(T¥) and the utility of each
agent i is w;; and (ii) if V(T*) > B(TF), then at any SPE the utilily of the principal is V(T™) and the utility

of each sgent § i5 u,. -

7 An Example

Consider a situation with three individuals (N = 3). So individuals 1 and 2 are the agents, and individual 3 is
the principal. The joint production process and the cost functions are given by: (i) f(a) = 2(1/6+a;)?3(1/6+
Ka, + Kgzaz)/? — 1/3V a = (ay,4z,a3) € R, where K; and K3 are constants to be specified; and (ii) ¢;(a;)
= a?/2V a; € Ry, i =1,2,3. All individuals have the same outside option utility, which is equal to 1/3; i.e.
u; = 1/3, i = 1,2,3. The constants Kz and K3 can be interpreted as parameters that express the relative
efficiency between the action of agent 2 and the action of the principal. We look at three different scenarios
corresponding to different values of the efficiency parameters Ky and Kj.
Case I Kg= 1, and K2 > 0 but sufficiently close to zero.

In this case, it can be easily verified that B({1}) = B({3}) = 5/24 and B({1.3}) = 2/3. We can also find K,
small enough such that B({2}) < 5/24, B({1,2}) < 5/24, B({2,3}) < 5/24, and B({1,2,3}) < 5/12. Then it
i8 easy to see that the principal must take part in production along with agent 1 to get the maximum utility in
the FB situation; i.e. «f = B({1,3}) = 2/3. So the principal cannot sustain efficiency in this case. Clearly,
"TF = {1} and B(TT) = 5/24. Also, straightforward maximization shows that V({1,3}) = 5/12, and hence,
T~ = {1,3}. Thus, B(TF) < V(T™) in this case. Therelore, only agent 1 and the principal participates at an
00. The optimal actions are (aj,a3) = (1/2,1/2), and the optimal linear and piecewise payment functions for

" agent 1 are given by:

si(z) = —1/244(1/2)r VzeR,; and
... _ fo if r <1/12
8 = 12440/ ifz > 1/12.

Case 2. K, =1, and K3 > 0 but sufficiently close to zero.
Here, B({1}) = B({2}) = 5/24 and B({1,2}) = 2/3. We can also find K3 small enough such that B({3}) <
5/24, B({1,3}) < 5/24, B({2,3}) < 5/24, and B({1,2,3}) < 2/3. Then it is obvious that only agents 1 and
2 must take part in production for the principal to get the maximum utility in the FB situation; i.e. uf =
B({1,2}) =2/3. So TF = {1,2}, aund B(TF) = uf. Therefore, the principal can sustain efficiency in this case.
Clearly, whatever be the 7™, we have B(TF) > V(T™). Hence, at an 00, ’only the two agents participate in

production and moral hazard is completely mitigated. It can be easily verified that the optimal actions are
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(af ,af’) = (1,1). Thus, the optimal linear and piecewise payment functions for the two agents are given by:

sf(x)=sf(x) = ~7/64+2 VzeR, and

0 if £ <7/6
@) =dl(z) = { ~16+z (1 6<z<2
5/6 ifz> 2.

Lase 30 Kz =1, and K3 > 1 but sufficiently close to one.
As in case 2 above, B({1}) = B({2}) = 5/24 and B({1,2}) = 2/3. Now, we can.find K3 close.enough to one
such that B({3}) < 2/3, B({1,3}) > 2/3, B({2,3}) < 1/3, B({},2,3}) < B({!1,3}, and V({1,2,3}) < V({1,3})
< 2/3. 'Then it is obvious that B({1,3}) = B(T) V T € {1,2,3}. So only agent 1 and the principal must take
part in production for the principal to get the maximum utility in the FB situation; i.e. u§ = B({1,3}) > 2/3.
It is also easy to see that T'F = {1,2}, and T* = {1,3}. This means that u§ > B(TF) > V(T"). Therefore, at
an OO0, as in case 2, only the two agents participate in production and moral hazard is completely mitigated.
Moreover, the optimal actions and the linear and piecewise linear optimal payment functions of the two agents
remain the same as in case 2. However, unlike case 2, the principal can no longer sustain efficiency as her best

option in the FB situation requires her participation in production.

8 Nonquasilinear Utilities

For each agent i, when she participates in production and takes an action ¢; and receives a payment m;,
suppose her utility is given by U;i(m;,a;) = vi(m;) — ¢;(ai), where v; is concave and satisfies all the other
standard assumptions. Similarly, when the principal participates in production and takes an action ay and
receives a residual r, suppose her utility is given by Un(r,an) = vn(r) — ex(an), where vy is concave and
satisfies all the other standard assumptions. On the otherhand, when the principal does not participate in
production but exercises her outsade option and receives a residual r, suppose her utility is given by Uy(r),
where Uy is concave and satisfies all the other standard assumptions.

With the above specified utilities, the logic about the deterministic production process leaving sufficient room
that allows the optimal output sharing rules to behave quite arbitrarily away from the optimal output level is

-still applicable. Therefore, although it is slightly more demanding technically, we can derive counterparts of

conditions (1)-(3) that do not depend on any output sharing rules. Also, for any T such that N € T and [T} > 2,
we can eliminate the output sharing rule from the appropriate counterpart of problem (Pr) and ‘transform it
into the appropriate counterpart of problem (Pr). Thus, except for the section on the uniqueness of SPE utility
tuple (namely, section 8) which relies heavily on the quasilinearity of the utility functions, the analysis in the
rest of the paper can be repeated with the more general utility functions without any qualitative changes in the

results.

9 Conclusion

We looked at a simple moral hazard problem in a principal-agent(s) framework. However, unlike most existing
work, our principal was not precluded from active participation in the production process. Also, unlike the single
agent case, there was no uncertainty and the moral hazard problem was caused by joint production. A simple

multi-stage extensive game, the SBG, determined the set of individuals who actually took part in production

along with the output sharing rule they followed.
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Although the principal was not precluded from participation in the production process, whether i t was optimal
for her to participate or not depended on the values of B(TF) and V(T™). In particular, it was best for her to
participate only if V(T™) > B(TF).

Whenever the principal did not participate in production, moral hazard was completely mitigated although
there was potential for moral hazard if two or more agents participated in production. On the otherhand, it
 was impossible to mitigate the moral hazard problem completely if the principal participated in production along

with at least one agent. These findings, as we argued, depend on the deterministic production process and not on
the quasilineaf utility functions. In contrast, unless there is risk neutrality, moral bazard cannot be completely
mitigated in most principal-agent moral hazard problems with uncertainty.

From the above remarks we can also draw some other interesting conclusions. Firstly, although the principal
could completely mitigate moral hazard by not participating in production, it is quite conceivable that she could
be better off introducing moral hazard by participating in production. Secondly, even if it was optimal for the
principal to completely mitigate moral hazard by not participating in production, she might still be worse off
than at her best option when actions are ohservable, because her hest option when actions are observable might
require her participation in the production process. ,

Except when agents are risk neutral, in most standard principal-agent moral hazard models with nondeter-
ministic production processes, it is the norm rather than the exception that the principal has to look for output
sharing rules that are much more sophisticated than linear or piecewise linear output sharing rules, However,
although we did not present it formally for the more general additively separable concave utility case, we showed
that the principal need not look any further than the class of linear output sharing rules (piecewise linear output
sharing rules in case of limited liability) if the production process is deterministic.

Also, in principal-agent moral hazard models with nondeterministic production processes, the results that

~ are obtained without limited liability may change significantly when there is limited liability, for example, the
principal’s optimal utility often decreases when Iimitediliability is imposed. But we showed that the deterministic
production process made most of our results robust to the introduction of limited liability. ’




Appendix A
Proof of Lemma 1: Lot T € N and (mp,ar) € ®7 x AT such that N ¢ T, m; ~ c(m)>w Vi€ T and
un + fIT(ar) = Lier mi = B(T)-

Suppgse my - cj(a,») > u; for some J € T. Then let ¢ > 0 be such that m; ~ ¢ — ¢j(a;) 2 uj, and define
g € RIT) ag i = my Vi € T — {j} and ;= my — . Clearly, (sir, ar) is such that iy —ci(a:) 2w Vi€T
and uy + f|T(ar) - }:ie'r i; > B(T), a contradiction to the definition of B(T). Hence, (i) of Lemma 1 holds.

(i) of Lemma 1 implies that un + fIT(ar) = Tep €i(8i) — Lier i = B(T). Now, suppose there exists & € AT
such that uy + fIT(Gr) — Tier 66(@) = Lier i > vn + fIT(0r) = Lser ciai) = Tigr ui- Let iy € RIT! be
such that /iy = u; + ¢;(@) V i € T. Then it is obvious that (r,dr) satisfies it — c;(d&) = % Vi€ T and
un + fIT(@r) = Lier mi > B(T), which contradicts the definition of B(T"). Thus, ar solves the problem

ap?},[w + fIT(dp) = Tser 6ilaD) = Lier wl-

Because of the limiting properties of the derivatives of ¢; and f given in assumptions Al and A2, the above
. . . . ! ’
maximization problem can only have interior solutions. So (i) of Lemma 1 must hold. Also, as an interior
* 1
solution of the above maximization problem, ar must satisfy the first order conditions, f;|T'(ar) ~ci(a;) =0V
T o

i € T, which are exactly the conditions in (iii) of Lemma 1. ||

Proof of Lemma 2: Similar to the proof of Lemma 1. ||

Proof of Proposition 1: (ii) and (iit) of Proposition 1 readily follow from (4) and (5). Also, it is obvious from
(5)that sf e SVie€ TF | So, if we show (iv) of Proposition 1, then we have also shown (i) of Proposition 1.

The strict convexity of ¢;, the concavity of f and (5) imply that s¥(f|ITF (arr)) — ci(a;) is concave in arr €
AT" for each i € TF. Thus, because of (8), if drr € AT" satisfies fi|TF(Gre) — ¢(&) = 0 Vi € TF, then
arr € NE({T (8] )ierr]})- But we already know from Lemma 1 that f;|T"(af,) —ci(af) =0Vie€ T:P So
ofe € NE({TF, (sl Jierr })- |

Using (5) and the luniting properties of the derivalives ‘of ¢; and [ given in assumptions Al and A2, it is
quite obvious that, at any Nash equilibrium of {TF,(sF)icrr}, the actions of all the agents in 77 are po.'::itive.
Thus, in fact any drr € AT is a Nash equilibrium of {T'F,(sF)icrr} if and only if f;|TT(@rr)—cj(@&) =0V
ieTF.

Now, consider the following maximization problem:

(A1) . "?;‘T,, (FITF (are) = Liere ci(ai)].

The concavity of f and the strict wnvex‘ity of ¢; imply that the objective function of the maximization problem
in (A1) is strictly concave in arr € AT". Also, because of the limiting properties of the derivatives of c; and
f given in assumptions A1l and A2, the problem in (Al) can only have interior solutions. Thus, dr» (:" AT*
is a solution of the problem in (A1) if and only if it satisfies f;|T'F(drr) — ci(@&) = 0 ¥V i € TF, which are the
first order conditions. But this immediately implies that drr € AT" is a Nash equilibrium of {TF,(sF)iezr} if
and only if it is also a solution of the problem in (A1). However, the problem in (A1) can have at the most <
because we already know that its objective function is strictly convave. Therefore (= (8{ Jierr } can

solution,
um. Hence, because af, € NE({TF, (s V:cx- 311 (iv) of Proposition 1 must

have at the most one Nash equilibsi
hold as well. ||

Proof of Lemma 3: Let T € A be such that N €T end [T} > 2. Suppose ({T,(s;)jer. v}, ar) satisfies (C1)
and (C2). Let i be any member of T-4- Then the proof of Lemma 3 is completed in two steps. In the first step
we show that s; is continuons at ﬂT(a'r)' The continuity of s; at f|T'(ar) for every j € T~ ig then used in the

second step to show that s; is diffzentiable at f|T(ar).
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Step 1:
To prove that s; is continuous at f|T(ar) (> 0) it is sufficient to show that

(A2) lima(fT(ar) +2) = lima(fiT(er)+2) = si(fIT(ar)),

where z 1 0 and z | 0 denote z approaching 0 through negative and positive values, respectively.

Clearly, constraints (C1) and (C2) imply that, f y € R and a;+y € A;, then s;(f|T(ar_;,ai +¥))— ci(ai +y) <
8;(f|T(ar)) ~ ¢;i(a:), and hence, neither of limyrolsi (f|T(ar.,, a + y)) ~ ci(a;i + y)] or Bmyo[s:(f|T(ar..,, ai +
) — cia; + y)] can be greater than s(f|T(ar)) — ci(a;). Then, because of the continuity of c;, we have

13%1 si(fIT(ar.,,ai +v)) < s(f|T(ar)), and lylfg si(fIT(ar-,, ai + ¥)) < si(fT(ar)).
However, because of the continuity and monotonicity of f, we also have

B?g Si(flT((lT_s y 4+ y)) = g{gsl(flT(aT) + Z)v and

ims;(flT(ar_,,a; +¥)) = hms;(fIT(ar)+ 2).

vio 210
Thus, the following must be true:
(A3) 1};}} si(fIT(ar) 4+ 2) < s(f|T(ar)), and
(A4) lim si(f|T(ar) +2) £ si(flT(ar)).

(C1) and (C2) also imply that, ify € R and ay +y € Ay, then f|T(ar_,,,an +y)~§3,~eg~_,, 5; (fIT(ar_,an+

) —en(an +y) < fIT(ar) = L er 5 (fIT(ar)) - cn(ay), and hence, neither of limygo[f|T(az_y,an +3) ~
2ier.n SilfIT(ar_y, an + 9)) — en(an + v)] or limyo[f[T(ar_y,an + ¥) — Tjer_, 5i(fIT(ar_y, an + y)) —

en(an + y)] can be greater than f[T{(ar) ~ 3 ;cp . 8i (fIT(ar)) ~ en(an). Then, because of the continnity of
ey and f, we have

et imyro UM an +9) > Tier_, 5(fIT(ar)), and
Yt Wmyos;(fIT(ar_y,an +¥)) 2 Yjer, 5i(f[T(ar)).

However, for each j € T_n, because of the continuity and monotonicity of f, we also have
lyi;g 5i(fIT(ar_p,an +v)) = lim s;(f [T(ar)+z), and
lim s;(f IT(ar_y,an+y)) = §Ig3j(f|T(“’I') + z).

Hence, the following must hold:

(A5) Tjer_y limagos;(fIT(ar)+2) 2 Tjer, s(fT(ar)), and

(Aﬁ) ZjeT_N lim, o 3j(flT(“T) +2z). > ZjET-N ;i (f|T(ar))-

Now, (A2) readily follows from (A3)-(A6). Therefore, s; is continuous at f|{T(ar)-

Step 2: . ‘

Let z° = f|T(ar). Because of (C1) and (C2), s; is piecewise continuous and z° > 0. Then, as s; is continuous
at z°, there exists ¢ > 0 sufficiently small such that z° — ¢ > 0 and s; is continuous on {z° — €,z° 4 ¢). So, by
(ii) in the definition of S, we can find & > 0 such that § < é and s; is continuously differentiable on the two
intervals (2° — 4, 2°) and (2°,2° + 8). Let s} denote the derivative of s; wherever it exists. Then to prove that s;
is differentiable at z¢ it is sufficient to show that

A i{. 0 —_ 1 0
(AT) ggsi(s +2) = leigs,(z + z).
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As f and ¢; are continuously differentiable, (C1), (C2) sud the continuous differentiability of 5; on (2° ~ 8, 2°)
and (2°,2° 4+ 0) immediately imply that

(A8) lim 8}(fT(ar..., a; + y)) fi|T(ar) - ci(a:)
(A9) {gg s(f1T(ar. i, i + 9)) filT (ar) - €i(ai)
(A10) ﬁg(l ~Yieton 8 (fIT(a7-n,an + ¥))fNIT(ar) ~ ciy(an)
(A11) %r)x(l ~ Ljer_n 81T (ar_y, an + ¥)))In T (az) ~ ey (an)
Given (C1), for each j € T.., the continuity and monotonicity of f also imply that |

(A12) lime(fiT(or 0 +3) = Bms(fIT(ary,on+3) = limsj(z*+2), aud
(A13) limsi(fT(ar.;,0; +¥)) = Lmsi(f|T(ar_y,an +y) = lim 55 (z° + z).

AV 7 N AV
e o o
g
[

7aS
=

So, by using (A12) and (A13) in (AB)-(A] 1), we get

. ci(a;)
f(2® e 3 el 700
(A14) \ | 1‘%'3‘(‘ +z) 2 FilT(a) Pt luns(z +z), and

cylan )

(A1) Fjer. ylimarosi(=®+2)] < L= ey S Zieryllimaiosi(@ +2)]

‘Now, (AT) easily follows from (A14) and (A15). Hence, s; is differentiable at z°. ||

Proof of Lemma 4: Let T € N be such that N € T and |T] > 2. Suppose ({T, (55 )jer_y},01) satisfies (C’l)
and (C3). Then, because of Lemma 3, (C1) and (C2) immediately imply that

(A16) si(fIT(ar)) filT(az) —¢i(a;) = 0 VieT.y, and
(A17) (1- EjeT,.N 3;'(f|T(“T)5)fN [T(ar) —ey(an) = 0. . -
Also, because of the monotonicity of-the cost functions and the production function and (C1), it is obvious that,

for each i € T, cj(a;) > 0 and f;|T'(az) > 0. Hence, by some simple algebraic manipulations of (A16) and (A17),
we get 3 erlci(a)/filT(ar)]=1. || L e

Proof of Lemma 5: Let T'€ N besuch that N € T and |T| > 2. The limiting properties of the derivatives of the

_cost functions and the production function in assumptions A1 and A2 imply imy, 0 2 serlei(ai)/filT(ar)] = 0

and limya, f—oo 2 serl€i(ai)/ filT(ar)] = oo, where ||| is the standard Euclecadian norm. Then, becausc of the
continuous differentiability and the monotonicity and curvature properties of the cost functions and the production
function in assumptions Al and A2, it is easily verified that the feasible set of problem (Fy) is nonempty and
compact. As the cost functions and the production function are-continuously differentiable,-it is obvious that the
objective function of pxoblem (Pg) is continuous. Hence, the theorem of Weierstrass iroplies the existence of a
solution to problem (Pr). ||

Proof of Lemma 6: Let T € N be such that N € T and |T]| > 2. Suppose ({T,(s; );iET_N};“T) satisfies (C1)
and (C2). Then Lemma 4 implies that ar is feasible for problem (P}). Obviously, because of Lemma 5, V(T) is
well defined. Hence, V(T') > fIT(ar) — 3 ;er ciai) — 2 jer_y - But (C2) implies s;(f|T(ar)) ~ ci(a;) > u; V
7 € T-.i. Therefore, fIT(qT) — Yer cila) — Ejﬁ_'r..” u; 2> fIT(ar) — Tjer_, 5i(f1T(ar)) — en(an). Thus, it
must be the case that V(T) 2> f|T(ar) — Zje,r_" si(fIT(ar)) —cn(an). |l

Proof of Proposition 2: Suppose assumptions A1-A5 are satisfied and V(T*) > B(TF).

(7), (9) and (10) immediately imply (ii) and (iii) of Proposition 2. It is obvious from (10) that s; € SV
i € T>y. So, if we show that @} > 0 Vi € T™ and (iv) of Proposition 2 holds, then, because of Lemma 6, the
proof of (i) of Proposition 2 is also complete.
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Clearly, (6), (8) and the monotonicity of the cost functions and the production function imply that 37 > 0
Vie '{‘IN and (1 — zj €Ty B;) 2 0. Then, because of the strict convexity of the cost functions, the concavity
of the production function and (10), s{(f|T"(ar-)) ~ ci(a¢) is concave in ap- € AT for each 4 € T7 5 and
HT(a1<) = Feps , 87(fIT* (az+)) = cn(an) is concave in ar. € AT". Thus, because of (10), if drs € AT
satisfies 07 f.lT*(aT-) ~c(d) =0VieTlyand (1 - g‘;e?" B; ) fu|T"(@rs) — cy(@n) = 0, then dr. €
NE({T",(s})jer=,,}). Hence, (6) and (8) imply ay. € NE({T" (s, ):eT'N})

Thus, it immediately follows that ({T*, (s})jer=,}, a5.) € Q. But suppose aj = 0 for some k& € T*. Then
assumptions A4 and A5, and V(T*) > B(TF) fmply that there is some ({T'(s;)jer_y}or) € Q. n such
that #(({T,(sj)jer_r}rar)) > V(T"), a; > 0V 5 € T, and [T| > 2. But then, because of Lemma 6, we
get ®({T,(sj)jer_n hrar)) > V(T?) 2 V(T) 2 =(({T\(s))jeT-n}, o7)), which is impossible. Therefore, ai > 0
VieT".

Having shown that aj >0VieT", wecan immediately conclude that

(A18) 1> >0 VYieT:y, and 1>(1 "ZjeT:Nﬂ;) > 0.

So, using (10), (A18) and the limiting properties of the derivatives of the cost functions and the production

function given in assumptions Al and A2, it is quite obvious that at any Nash equilibrium of {T‘,(x}');eT:N}

the actions of all the individuals in 7" are positive. Thus, in fact any ar. € AT is a Nash equilibrium of

{77, (s])jer=,, } if and only if 57 = cj(&)/fi|T"(ar-) Vi € T2y and (1 = Tjere 7)) = Sy(an)/fn|T"(@r-).
Consider the following maximization problem:

(A19)  max [fIT"(ar-) = Ders, e 0}/ 8] = (en(am)/(1 = Tyes,, AL

The concavity of the production function, the strict convexity of the cost functions and (A18) imply that the
objcctive function of the maximization problem in (A19) is strictly concave in ap. € AT . Also, because of (A18)
and the limiting properties of the derivatives of the cost functions and the production function given in assumptions
Al and A2, the problem in (A19) can only have interior solutions. Thus, dp- € A*" is a solution of the problem
in (A19) if and only if it satisfies 87 = ¢j(a;)/fi|T*(ars) Vi€ Ty and (1 "Z;e’l“ ;) = oy (@n)/ fNIT™ (@1-),

which are the first order conditions. But this immediately implies that ar. € AT is a Nash equilibrium of
{T",(s})jer=,} if and only if it is also a solution of the problem in (A19). However, the problem in (A19) can
have at the most one solution, because we already know that its objective function is strictly convave. Therefore,
. AT".(s})jer=, } can have at the most one Nash equilibrium. Hence, as aj. € NE({T*,(s})jer=, }), (iv) of

Proposition 2 must hold. ||

Proof of Proposition 3: Using (11), and (ii) and (iii) of Proposition 1, it is quite obvious that ‘

(A20) sF(fIT (afe)) —ci(al) = w VieTF, and
(A21) un + fITT(afe) = N s (FITF(afr)) = B(TF).
i€TF :

Then, given B(T¥) > V(T), it is sufficient to show that ak, € NE({TF,(5F)icrr})-

For each i € TF, as ¢; is strictly increasing and ¢;(0) = 0, (11), (A20) and u; > 0 imply ﬁ(!ITF(a;f.,Of DR
ci(ai) < 5F(FITF (afe)) — ci(al) for any a; € A; such that 0 < fITF(cT,, ,a;) € —af

Foreach i € TF, using (ii) and (iv) of Proposition 1, (11) and (A20), it can be verified that 5/ (f{TF(aTr , 7)) =
ci(ai) < SF(f|TF (akr)) — ci(af) for any a; € A; such that —of < f[TF(a - ,@;) < fIT  (aks).

For each i € TF, as both ¢; and f are strictly increasing in a; € A., it is obvious that, for any a; €
Ai ffTF(aT, \ai) > ffTF(an) if and only if ¢;(a;) > ¢i(af). Hence, for each i € TF, (11) implies that

af (flT"(an,a.)) ci(as) < SF(JITT (afe)) — ci(af) for any a; € A; such that f|TF(afe ,ai) > JIT (afs).
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Thus, for each i € T, we have established that 3 (f|T¥ (af, ,a;)) ~ ci(@) < sE(SITF (afr)) — ci(@]") for
any a; € Aq. Therefore, ab, € NE({TF;(ﬁf)¢éfp}). I ‘ \

Proof of Proposition 4: Suppose assumptions A1-A$ are satisfied and V(T") > B(TF).
Because of (ii) and (iii) of Proposition 2, (12)-(15) readily imply that

(a22) FUIT (@) —a(e) = w VieToy, and
(A23) fIT(ap) - Y. B(fIT(a3.)) ~en(ap) = V(T7).
€T, k

So it is sufficient to show that a3. € NE({T",(5])ier= . })-
It is obvious from (13) and (iv) of Proposition 2 that, for each i € Tg, & (fIT*(a}. ,a)) — ci(ai) <

S (fIT" (ap.)) — ci(a]) ¥ ai € A;.

Foreach i€ T, asc; ia stnctly increasing and ¢;(0) = 0, (12), (A22) and u; > 0 imply 5‘(]{7"(01’ ) ~
ci(a;) € 51T (ag.)) - c.(a ) for any a; € A; such that 0 < ﬂT‘(aT. ,a;) < —a /8]

For each i € T2, using (iv) of Proposition 2 and (12), it is easily verified that §(fIT"(a3= 1)) — ci(ai) <
5 (fIT*(ay.)) — ci(a}) for any a; € A; such that f|T"(ay. ,a;) > —a}/5;.

It can be checked in (14) and (15) that, for each i € T}, 57(z) < s}(z) ¥ = € ;.. So, for each i € T3, (ii) and
(iv) of Proposition 2 and (A22) imply that 37 (f|T(az. ,a)) - ci(a:) < & (fIT"(a%.)) — ci(a})Va; € A;..

Clearly V(T*) > uy > 0. Now, suppose |[T;| > 0. Then it is easily verified from (12)-(15) that z -
Tier-, 5(2) =0V € (0,2 and 2~ Fjeqe  55(2) Sz~ Tjeps, 53(2) ¥ 2 > 274, Then, as e is strictly
increasing and cy(0) = 0, (A23) and V(T™) > 0 imply that f|T*(a7. ,an) ~ Ljer-, 5 (fIT" (a7, an)) =
en(an) < fIT*(a5-) = Tjer-, 51T (af-)) —cn(ay) ¥ an € Ay such that 0 < f|T(ag. ,an) < &7+, Also,
(iii) and (iv) of Proposition 2 and (A23) imply that fIT"(a,}-:N,aN) - ZJ.GT:NE;(f!T*(u}:N,aN)) —cen{an) <
fIT*(a52) = Tjer-,, 5 (fIT" (a3-)) — cn(aky) for any an € Ay such that f|T"(a5. ,an) > 2TH.

Next, suppose [T7] = 0. Then it is clear from (12) and (13) that z — Tiere, 5(=) S 2= Ljer-, si(x) V
x € R,. So (iii) and (iv) of Proposition 2 and (A23) imply that f!T‘(aT. LN}~ E, €T, §; (flT’(aT- Lan))—
en(an) < fIT*(ar.) = Ljer-,, 5 (fIT (af+)) — cn(ay) ¥V an € An.

Thus, we have established t.hat foreachi €Ty, 3 (flT'(aT:' a;)) —ci(a;) < 3 (f|T(ap.)) —ci(a]) for any

€ Ai, and f|T"(a3. ,an) — Eje:r:" FfIT" (ax- , an)) — en(an) < fIT"(az.) — Liers, GUIT (a}.)) -
cn(ay) for any ay € Ay. Hence, aj. € NE({T‘,(s‘f),-GT:_“}). Il

Appendix B

We first prove Lemma 9 below, which is used in the constmctxoa of the output sharing rule used to prove
Lemma 7.

Lemma 9 ;. Suppose assumplions Al and A2 are salisfied, and {TF,(s8)ierr) is such thal s{(z) = z/|TF| ¥
r € R, and each i € TF. Then there exists y* > 0 such that y¥ < fIT  (agr) V¥ are € NE({TF,(s{)ier=})-
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Proof of Lemma 91 Suppose {17, (5{)icrr) is as given in the statement of the lemma. Then 1]1( Jimiting
properties of the derivatives of ¢; and f given in assumptions Al and A2 imply that, if apr € A7 is a Nash
equilibrium of {T°F, (sf )icrr), then a; > 0V i € TF, and hence, f|TF (apr) > 0. So Lemma 9 must hold. i

Suppose B(TF') 2 V(I™). Then it is obvious that B(7") > uy > 0. Now, pick any ¢ > 0 such that B(IT) ~
ITF|¢ > un. Define sf(z) = sf'(2) + ¢V z € R4 and each i € T'7. Using Proposition 1 and the quasilinearity
of the utility functions, it can be easily checked that

(B1) sP(ITF (6hr)) —ci@f) = wi+¢ VieTF,

(B2) un+fIT (afw) = Y sf (/T (afr)) = BTF)-|T")e, and
SETP .

(B3) NE{TT, (s “Nerr}) = {age).

Next, let y¥>0 be such that ¥ < min;ere{ui} + ¢, g‘ < flTF(agp), and ¥* < y¥, where y¥ is as given in
Lemma 9. Also, let y* < §* < flTF(agy). Furthermore, let ¢ > f]'I'F(agp) be such that §° — Yierr sF(F°)
> 0. The existence of §° is gauranteed by B(TF) — [TT|e > uy and (B2). Then, for eachr i € TF, define the
payment function §f'¢ as follows: :
/ITF| f0<z<y"

fy'<z<y
sfe(z) iy <f€ <y

fa>y '

(B4). §(z) =

It can be easily checked that the output sharing (8/¢);ers always awards nonnegative payments to every a,gent
in 7, and also, the principal’s residual is always nonnegative.

Proof of Lemma T:  Suppose B(TT) > V(T™). Let € > 0 be such that B(T*) — [T¥|¢ > uy. Then it is obvious
from (B1), (B2) and (B4) that

(BS) SFfITF (aF2)) — ilaF) = wite VieTF, and
(B6) un+fIT (afr) = Y T(fIT (afr)) = B(TF)~|T7|e.
i€T¥

So it is sufficient to show that ak is the unique Nash equilibrium of {TF, (8] )iz}

L Asy <ui+eVieTF, using (Bl) and (B3)-(B5), we can develop an argument similar to the one in the
proof of Proposition 3 and show that af. is a Nash equilibrium of {TF, (sF Yierr}. Thus, it remains to be shown
that {T'F, (5F¢);err} does not have any Nash equilibrium other than af...

(B4) and the limiting properties of the derivatives of ¢; and f given in assumptions A1 and A2 imply that,
ifapr € NE({TF,(:?f"),GTF}) and 0 < f|TF (arr) < y<, then fi|TF (apr)/|TF| — ci(a:) =0V i € TF. But it
is obvious that, if apr € AT satisfies f;|TF (arr)/|TF| — ci(a;) = 0V i € TF, then, because of the concavity of
f and the strict convexity of ¢;, arr is a Nash equilibrium of {T'F, (s{);err }, as given in Lemma 9. Hence, there
does not exist apr € NE({TF, (8] )ierr}) such that 0 < fIT  (arpr) < y-.

Suppose apr € NE({TF, (37 )icrr}) is such that y¢ < f|TF(arr) < ¥ or fITF(arr) > §°. Then there
exists j € TT such that a; > 0, and hence, cj(a;) > 0. So &7 (f AT (arr)) — cj(a;) = 0 — ¢j(a;) < 0 <
sF ;(f |TF (an 0)) ~ ¢;(0), where the last inequality follows from the fact that § “F ¢ always pays a nonnegative
amount to a.gent; j and ¢;(0) = 0. But this contradicts our supposition that apr € NE( {TF,(5Fierr}). Hence,
there does not exist arr € NE({TF,(5])icrr]}) such that y¢ < fITF (apr) < ¥ or fITF(arr) > ¥

From (5) and (B4) it is clear that, if apr € NE({T'F,(5F)ie7r)) and § < fITF (arr) < ¥, then f|TF (apr)
— ci(a;) = 0V i e TF. But we also know from the proof of (iv) of Proposition 1 that, if apr € AT" and
f,‘{TF(ag-r) - cz(a;) =0VvVie€ TF, then apr = agp. So, f arr € NE({TF,(§{‘€)i€TF}) and §* < flTF(GTF) <
7, then arr = af;.
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So we have shown that {TF,(8F);cr# } has only one possible candidate for a Nash equilibrium, namely, k.
Thus, as.we already know that af., € N E({TF,(5F)ierr)), the proof of Lemma 7 is complete. ||

Suppose V(T™) > B(T'T). Then V(T™) > uy > 0. Now, pick any € > 0 such that V(T™) — |17 x| > uy and
af + €< 0VieT:, and define 87(z) = s}(z) + ¢V = € R4 and each 1 € T . Using Proposition 2 and the
quasilinearity of the utility functions, it is obvious that

(B7) U (a7-)) —ci(a]) = w+e VieTly,

(B8) fIT"(ap-) - Y si(JIT"(a}-)) —en(ay) = V(T")-|T-yle, and
i€T*

(B9) NE{L", (51 Yerz, ) = {op-)-

Tet y*¢ > 0 be such that Bfy" < w; + e Vi € T* y, and (1 - ZSGT'N By < V(T*) — [T yle. Also, for each
1 € T2, let If be the smallest positive integer such that —(a? + €)/f; < Ify*“. Then, for each i € T*, define the
payment function 4}¢ as follows:

ey [ Ble—-U—-1y™] H{I-Dy“<z<Iyfol=1..I
(B10) &(z) = { sre(x) if 2 > Ifyre.

Given any nonnegative integer I and any i € T2, let
0 ' fIi=0
Bryte < I<If
£ fd i . 13
Aill) By —sy(lfy™) i I=1If
0 i 1> If.
Then, for each nonnegative integer I, let A(I) = Y70 A{(), and AS(T) = Y7o A(I). Also, let I¢¥ be the
largest. positive integer such that A¢(I<H) > 0. T
Now, if — )::-'GT:N(“: +¢€) > 0, then, for each i € Ty UTY, define the payment function $}¢ as follows:

o} ¢ € x : e *t — eH _
(B11) &¢(z) = [W]A (N4 Bz if Iy _<_x<(1+1)y’ forI =0,..,I 1
57(2) if o > 1y

On the otherhand, if — deT:N(a; +¢€) < 0, then let I be the smallest positive integer such that 3 ;e 7. (af+

e)/(1— EEET_'_N B:) < Iyy°°. Now, given any nonnegative integer /, define

0 ifI=0"
M) = (1 “EieT;N By HOo<I<I,
i (1- ZieT_:N By —(z— ZieT;N si(Iny™)) I=Iy
0 > I

Then, for each nonnegative integer I, let X(I) = A<(I) + A% (1), and A*(J) = TF_, A¢(I). Also, let I*¥ be the
largest positive integer such that X¢(I‘H) > 0. .

Thus, if "}:ieT;N (o7 + €) < 0, then, for each i € Ty U T}, replace the definition of 57 in (B11) by the
following:

[ 3€ m M *€ *€ — yeH __
(B12) &(z) = [W] AN+ Btz Iy <z<(I+yforl = 0.....1 1
5:¢(x) if z > THye.
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It can be verified that the output sharing (3]dier= ., 28 defined above, always awards nonnegative payments
to every agent in T2, and also, the principal’s tesidual is always nonnegativc

Proof of Lemma 8: Suppose V(T™) > B(TF). Let ¢ > 0 be such that V(I") ~ |TZyle > uny and af + ¢ < 0
Vi€ T2. Then, using (B7), (B8) and (B10)-(B12), it can be checked that

(B13) ~ §°(fIT (ags)) —ci(ef) = wi+e VieTTy, and
(BU) [IT"(af.) = 3 $“(fIT"(ap-)) ~en(ay) = V(T7)—[Toyle
€T,
So it ia sufficient to show that aj. is the uniqne Nash equilibrium.of {7, (8] )ier= . }- .

Foreachi € T2, if £ € [0, Ify**), then (B10) implies that ${¢(z) < u; + €. So, for each i € T , as ¢; is strictly
increasing and ¢;(0) = 0, (B10) and (B13) imply that s"(f[T‘(aT. ,87)) — cifa;) < s“([[T"(aT.)) -~ ¢;(a}) for
any a; € A; such that 0 < f!T‘(aT. ,8i) < Ify™s.

Also, it is clear from (B9) and (B10) that, for each i € T~ s STUSIT (ags s @) = eilai) < $7(fIT (7)) -
ci(a;) for any a; € A; such that f|T"(a}. ,a;) > Ify*.

For each i € Tg U T3, using (B11) o:"('Bli?) depending on whether — Z:jer:."(a; + ¢€) is nonnegative or not,
it can be checked that 5;¢(z) < s7%(z) V 2 € R,. Thus, for each i € Ty U T}, because of (B7), (B9) and (B13),

(1T (a3= 00)) — cilai) < $7(fIT" (ag.)) — ci(e) V @i € A;.

It can be verified that, if '”ZjET:N(“; + ¢) > 0, then (B10) and (B11) imply = - Zief,-:”&;‘(z) <z -
E;‘e'r;,, 37°(z) V z € Ry. Thus, because of (B8), (B9) and (B14), if —~ Yjere (of +¢€) 20, then fIT"(a7. ,an}
= Sjere, 5 (1T (04, an)) = enlan) < fIT*(a5.) = Siere, 55T (az-)) = enlar) ¥ an € An.

It can also be verified that, if — Z,e'r‘ (o +¢) < 0, then (B10) and (B12) imply z - Z;e'r- §i°(z) <
V(T") -T2 nle Yz €[0,I5y"). So,if — Z,e:r‘ (a; +¢) < 0, then the monotonicity of ey, cn(0) =0 "and (B14)
imply that fIT" (a3, an) = Tyers  UIT (@-,an)) = enlan) S fIT(a5.) = Tjer= , 51T (a5.)) -
en(ay) for any ay € Ay such that 0 < f{T‘(a%- an) < Ifgy°e.

Once again, it can be verified that, if — E)GT. (a’+e) < 0, then (B10) and (B12) imply z — Z;e'l" 8% (x)
=z - Z}G’I‘:N si(z) Vz > Ify™. So, if - E eTe,, (e +¢€) < 0, then, because of (B9), f]T'(aT. ,a,v) -
jere 51 (@5, an) — enan) € ST (67) = Tyeqe, 51T (a5.)) = cn(ak) for any an € Ay such
that fiT(aj. ,an) 2 Iy™.

Thus, we have shown that a}. € NE({T", (3}*)jer- . })-

For each ¢ € T, it is clear from the definitions in (B10)-(B12) that §7* is piecewise linear and has a slope
of B (> 0) on each linear piece. Similarly, (B10)-(B12) also imply that z — Yjer=, $i*(+), the principal’s
residual, is piecewise linear in x € R; and has a slope of 1 ~ Yjer-, Bj (> 0) on each linear piece. Therefore,
the limiting properties of the derivatives of the cost functions and the production function in assumptions Al
and A2 immediately imply that, if ar- € NE({T*,(5;")jer=,}) thena; >0V ie T".

It can be easily checked that the proof of Lemma 3 uses only the Nash equilibrium condition in coustraint
(C2). So, if ay. € NE({T™,(3}*)je7=,}), then an argument similar to the one in the proof of Lemma 3 shows
that, for each i € Ty, 5;° is differentiable at f|T"(ar-). Hence, if are € NE({T",(3;")jer ,}), then (B10)-
(B12) imply that g7 = C‘:(d,)/f;]?(aqw) VieT:yand 1~ Eje‘l‘_’_,, B; = cylan)/fniT"(ar+). However, we
know from the proof of (iv) of Proposition 2 that ap. € AT  satisfies g7 = cf(a:)/fi|T"(ar+) Vi € T2y and
1~ ZJGT' B; = cylan)/ fn|T(ar-) if and only if aps = a}.. Therefore, as we have already shown that af.

€ NE({T*, (s ‘Yjer=, }), the proof of Lemma 8 is complete. ||
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