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Abstract 

We look at the principal's problem in a principal-agent(s) (p06sibly more than one agent) moral 
hazard problem, which, unlike most existing work, does not preclude the principal from active 
participation in the production process. Also, there is no uncertainty. but joint productiou, wbich 
renders tbe action ofeach individual in the production process unobservable, causes the moral hazard 
problem. The principal and all the agent.s playa multi-stage extensive game, called the Second Boot 
Game, which determines the set of individuals who actually participate in production along with the 
output sharing rule they follow l . Although the principal is not precluded from active participation 
in the production proce8B, we characterize a condition that determines whether she actually ta.kes 
part in production or not. We also dra.w the following concltmions: (i) the principal need not look 
for any output sharing ,rule more sophisticated than th06C that belong to the clllSS of commonly 
observed linear or piecewise linear variety; (ii). the principal can completely mitigate moral hazard 
whenever she does not participate in production; (iii) however, even when the principal does not 
participate in production at an optbna.l outcome, she may still be unable to sustain efficiency; (iv) 
the principal can sustain efficiency if and only if her best option in the First Best situation does 
not require her participation in production; and (v) there are no significant changes to the results 
when limited liability is imposed. We argue that most of the results are driven by the deterministic 
production process and not by the quasilinear form of the utility functions that we use. Hence, 
as long as the production process is deterministic, most of the results will hold qua.lita.tively even 
when individuals do not have quasilinear utilities but their utilities remain additively separable and 
concave. 

1It .ill bcx:omc dear from the leXt. tlw.t t.he adunl partidpa.tlt.s play & noncoopc:rnth'C snmc in the production 
proCess conditiOnal on &he output &baring rule they follow. 



1 Introduction 

ODe of the most prominent features of existing work OD moral hazard in the principal-agent frunework is the 

separation or ownership from ~abour. In most previous work (e.g. GrooBman and Bart[7], Harris and RaviY(8]. 

Bart and Holmstrom[9J, Holmstrom[lO], Rees[15J, Roos[161, Shavell{18]) only the agent takes part in production 

but ber action iB unobservable and unverifiable because of uncertainty in the production process, and the 

principal is there only as a passive residual claima.nt (because she does not take part in productioll). So, as the 

residual claimant, the problem of the principal is to design, before production begins, a payment 8chedule for 

the agent that depends only on the obuervable final output. This payment schedule is designed to induce the 

agent to choooe a level of action which will maximize the expected benefit of the principal (from the residual) 

8ubject to the incentive and individual rationality constraints. 

However, we often obuerve organizations in which there is a residual claimant who hires the uervices of other 

individuals in !he production process, designs the ontput sharing rule, and also takes part in the production 

process unlike the principal in most principal-agent models. In these organizat.ions, as in most principal~agent 

relationships, the residual claimant role of the individual who has the right to design the output sharing rule 

usually stems from her ownership of tangible essential inputs like technology, equipment, capital or even the 

license to operate the business. Also, t.he participation of the residual claimant in the production process is 

often because of her comparative advantage in certain input that is specific to the production technOlogy. Quite 

a siz~ble proportion of the so called "self owned and operated" businesses fall under this category, because 

the self employed owner in such businesses often, tend to hire the services of other individuals as well. Such 

organizations are also quite prevalent in t.he "small-scale and cottage industries" sector of most less developed 

countries... where a single individual (or-household), because of her ability to make the necessary investments or 

her ability to acquire the credits for the necessary investments or even her ability to influence the bureaucracy 

(as is often required) to uecure the proper business license, may often start a business that employs herself and 

others. Also, even though most existing work use the landlord-tenant relationship in t.he agrarian economies 

of t.he less developed countries as a good example of a principal-agent relationship, as Eswaran and Kotwal[6J 

pointed out, often the landlord not only designs the rule for sharing the crop with the tenant but also makes 

farm management deciBions that are not obuervable to the t.enant. 
"".. , 

So there is enough evidence to suggest t.he coexistence of t.he two kinds of principal-agent(s) relationship, 

namely, t.hose in which the principal iB only a residual claimant, and those in which the principal is not only 

a residual claimant but. also an active participant in the production process. Then the following question 

comes to mind immediately. Contrary to the common assumption that the pr~ncipal's non participation (or 

participation) is exogenou$ly determined, is it possible that the principal is not ~recluded from participating 
, " 

in production ex ante in a sizable number of cases, but whether she does participate or not is a choice which 

she makes? For instance, as Eswaran and KotwalI6] pointed out, this question often has an affirmative answer 

in the case of landlord-tenant relationships, because, rather t.han being an absentee landlord, the landlord can 

often choose to participate in farming, for example, by making farm management. decisions. Once t.he principal's 

participation is not precluded, the condition which determines her participation decision wiD depend OIl t.hings 

lik~ h~r opportunity <:oot, th~ d~gree of c:omp'~lTlfmtlLtity betw~n ber ac:tion IIUld tb~ ac:tionl' of th~ agents. tbe 

opportunity costs of the agents, the relative efficiency of any agent whose action can substitute t.he principal's 

action, eic. Thus, using a fairly general model witb some standard assumptions, we want to characterize the 

condition which determines t.he principal's participation decision. 
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Apart from the principal's participation decision, an equally important question is, how do the optimal 

output sharing rules look like? We ha.ve the following answer to this question. If the principal chooses not to 

participate, there is an optimal output sharing rule in which each participating agent (we alIow the pO'Ssibility 

of two or more agents) has a linear payment function with a slope of one. On the otherhand, if the principal's 

best o(1tion is to participate, there is an optimal output sharing rule in which each participating agent has 

a linear payment function with a slope which lies strictly between zero and one, and moreover, the residual 

function of the principal is also linear with a slope which lies strictly between zero and one. Although we have 

. quasilinear utility functions, our result on linearity of optimal output sharing rules depends not on this but 
on another important ft'aiure of our mod",l whkh has to do wit.h t,ht' cause of moral hazard. As we want to 

concentrate on the moral hazard caused by joint production, in contrast to the single-agent case (which precludes 

the principal's participation) where moral hazard is caused by the presence of uncertainty in production, there 

are no uncertainties in our production process and moral hazard is a pure joint production phenomenon. Thus, 

unlike the case with uncertainty where incentive constraints impose conditions on the behaviour of the output 

sharing rtJl~ t.hrotlghout t,ht' support of thf.' dist.ribution of out.put, be('au8e oft.he absencf.' of uncertainty, inc~nt.ive 

constraints impooe only a local condition on the behaviour of the output sharing rule around the equilibrium 

output level and leaves sufficient degrees of freedom to choose the behaviour of the output sharing rule else 

where. So, in contrast to the case where there is uncertainty in production, qualitatively, our result on linearity 

of optimal output sharing rules will hold even if the utility functions are no longer quasilinear provided they are 

still additively separable and concave and there are no uncertaint.ies in product.ion. 

The amount of freedom provided by the absence of uncertainty on the behaviour of optimal output sbaring 

rules away from a local neighbourhood of the equilibrium output level also has another important implication 

for the case where individuals have limited liabilities. Even when individuals have limited liabilities, there is 

still sufficient freedom to modify the linear optimal output sharing rules in such a way that we get piecewise 

linear opt.ima! ollt.put sharing rules t.hat. sat.isfy t.be limited liabilit,y const,raint,s. Tris will not be always po..<lSible 

if there are uncertainties in the production process. 

We also show that, if the principal does not participate in production, then she cannot do any better 

even if the actions of the participating agents were made observable. So moral hazard is completely mitigated 

". whenever the principal acts only as a residual claimant. This is because of the fact that, if the principal docs not. 

participate in production, then, as in Holmstrom[ll], her role is just like the role oCtbe outsider wh~ administers 

"budget-breaking" incentive schemes. It must be pointed out that, like the result on the linearity of optimal 

output sharing rules, this result on complete mitigation of moral hazard in the case of nonparticipation by 

the principal does not depend on the quasilinearity of the utility functions. As long as the utility functions 

are additively separable and concave and the production process is deterministic, moral hazard can be always 

completely mitigated in the case of nonparticipation by the principal. This is in sharp contrast to the case 

where there is uncertainty in production and risk sharing. 

On t~e otherhand, if the principal does participate in production, then she cannot completely mitigate the 

moral hazard problem, and hence, she can do better if the actions were observable. This is because of the fact 

that there is an inherent conflict between the principal '5 role as the residual claimant and her incentive to shirk 

in the prod lIr.tion pror.N1S. 

Thus, the answer to another important question, "Can the principal sustain efficiency?", depends crucially 

on whether she has to participate in the production process in the full information case (which is the hypothetical 

situation where all actions are observable) to get the maximum utility, In particular, if the principal does not 
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have to participate in produdion in Uw full information cllse to get the maximum utility, then and tmly then 

can she sustllin efIlciency when actions are unobservable, 

In the next section, W(! describe a simple deterministic joint production process. There are tW() or more 

individuals, one of whom is tht' principal and the rest are agents, who may take part in the joint produdion, 
process, but their actions in the production process are unobservable, This section also describes th(! preferences 

of the individuals and tbe Second Best Game. The Second Best Game is a multi stage extensive game played 

by the principal and all tbe agents to determine the set of individuals who will take part in production along 

with the output sharing rule they will follow. It is worth noting that the moral hazard problem in the aetual 

produdion prOCetl8 is similar to tbe moral hazard problem in t.eams considered in 8e1',tion 2 of Holm£lt,romIll). 

Hence, as mentioned later on, our efficiency result call also be derived using his results. However, unlike the 

present paper, Holmstrom[ll] focuses attention on the issue of mitigating moral hazard in a joint production 

process and does not look at the problem faced by a principal who can actively participate in the production 

process2• 

Section 3 looks at the First Best situation and describes the appropriate notion of efficiency. We derive $Ome 

optimal outcomes of the Second Best Game that involve linear output sharing rules in section 4. Section 4 also 
looks at the issue of mitigation of moral hazard and sustainability of efficiency. In section 5, we show tbat there 

are no significant changes in our results when there is limited liability. The uniqueness of the subgame perfect 

equilibrium utility tuple in the Second Best Game is established in section 6. Section 7 illustrates most of our 

findings in a simple example. Why our results are robust to more general utility functions is briefly discussed 

in section 8. Conclusions ~e given in section 9. , 

2 Production and Preferences 

There are N (~ 2) individuals who can participate in a joint production process. Whenever an individual, 

indexed i, participates in the production process, she takes an unobservable and/or unverifiable a<.'t,ion aj E 

Ai == 3(+. For each individual i, Ci : Ai - B?+ is the cost function that specifies the cost she incures from her 

action when she participates in the production process. All inputs other than the actions of the individuals are 

.... 	~umed to be observable, and hence, suppressed in the specification of the model. In the production process, 

the actions of the individuals determine a joint monetary outcome. This production process, assumed to be 

deterministic, is represented by a function, f : A - ~+. where A == n~l Ai, 

For each individual i, her preference relation over money-action pairs is represented by a quasilincar utility 

function, 1l.:R x Ai -~, which is of the form (Ji(mi,ai) == rot c.(aj) for any (rna,ai)E!R X Ai. Because We 

consider the case in which it is p06Sible for individuals to get negative payments, note that the utility function Ui 

is defined even for pairs with negative amounts of money. Later on, we discuss how the results are qualitatively 

affedl"d if Wf.' abandon tht' quasilint'ar form of t,ht' utility fundions. 

We use the following standard notations: A_i is the Cartesian product of Aj over all j not equal to i: a = 
(a}, .. " a.~) E A; a_. == (a1 •...• a;_1, ai+!, ... , aN) E A_i; and a = (a_.,a.). 

Throughout, we assume that the production function I, the cost functions c" and the utility functions [Ii 

are common knowledge. In addition, we maintain the following assumptions about the functions Ci and f : 
. :IAlthough t~ outsider ",ho ~lItel'5 the "budget-breaking" incentive scheme in Holmstrom's prop06ed IIOlution to the moral 

hazard problem is often interpreted as the principal. this outsider, unlike the principal in the current paper, ill p~uded from 
taking part in production. 
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At. For tacit. inaividual i, c, ;1 c(Jnlinuousl, diffenmtitlbie, /liriea, .ncreasing and strictl, convez on Ai; 

Ci(O) == 0; ~(O)= 0 and lim••_OQ~(al)= 00, where ~ denote" lfat: aerivative o/Cj. 

A2. I i8 continuollsl, differtntitdlt:, ,'rietl, increuin, and concave on A,' /(0,,,.,0) == 0,. lor elicit i and 

each a_~ E A-i, tim••_oJi(a_I,di) ::> 0 afllllim..._ooJ,(a_I,di) < 00, wltue Ii iJI the partial derivative ofJ 
with re"pect to 'he aetion 0/ indiuidfUll i . 

Assumption Al is standard and needs DO expltli.Pation. In assumption A2, the smoothness, monotonicity 

andc:urvatureproperties of the production function, and the requirement that the output be zero when everyone 

takes zero action are standard. Also, the limiting behaviour of the marginal product of any individual's action 

when it approac.bes infinity is standatd. However, our stipulation in assumpt.ion A2 a.bout the limiting behaviour 

r)f the marginal product oC "'~ individual's action when it approaches zero is not so standard, because it says 

that the marginal product ofan individual's action in a neighbourhood oC zero is positive even when every other 

individual takes zero action. This means that, no matter what the actions of the other individuals are, the total 

output is strictly increasing in the act.ion of each individual. Hence, nobody is essential for production, as total 

()utput is equal to zero only when every individual takes zero action. This part.icular property of the production 

function along with the quasilinearity of the utilities are exploited in the derivation of the results on uniqueness 

;)f equilibrium. 

We treat individual N as the n!"idual claimant in the Collowing sense- (i) like the principal in the standard 

'lgency models, individual N is the only one who can design and propose output sharing rules; and (ii) whether 

~he takes part in production or not, individual N always keeps that part or the output left after making payments 

to the other participatmg individuals3 . Unlike individual N, each oC the first N -1 individuals receives a payment 

mly if she takes part in production. Thus, throughout the remainder of this paper, we call individual N - the 

principal, and the first N - 1 individuals- the a.gents. However, it mus~ be noted that, unlike the principal in 

;tandard agency models, individual N can choose to participate in the production process. 

If the actions taken by the agents in the production process are unobservable an~/or unverifiable, then the 

principal cannot make the payment to any agent depend on that agent's action. Henc~, the payment to an agent 

:or participating in the production process can depend only on the observable and/or verifiable total output 

)f the production process. Thus, in general, a payment function Cor an agent is a real valued Cunction defined 

m ~h the set of aU possible output levels. However, in this paper we shall require the payment functions to 

,atisfy a regularity condition. This condition essentially says that the curve of the payment Cunction of each 

1gent has only a finite number of jumps and kinks. Thus, the payment function of each agent must be drawn 

'rom the set 

{i) 8 is piecewise continuous on !R+; and } 

S = s: ~+ - ~ I (ii) if Ii if! mntinno1JfI on (zL,:r!1) c ~+, t.hen it. i~ .


{ piecewise continuously differentiable on (zL, xH ) 

Although a technical restriction, requiring the payment Cunctions of the agents be drawn from the class S 
,:ems quite reasonable, because most oC the observed payment functions in joint production processes belong 

rJ this class oC payment functions. 

Let N be the set oC all subsets of {l, ... ,N}. So each member oC JJ' is a subset of t,he set of N individuals. 

Ve call each member oC }I, a team, and denote them by T, t, t, etc. Given a team T and an individual i, we 

J It is implicitly oIIoSSwned !.hat this residual claimant role of individual N is a consequence oC I'eMOns exogenoWi to the specification 
( the modd. All mentioned in the introduction, one sum good reAllon may be individual N owning certain tangible inputs like 
"hnology, equipment, capital, e't:. 
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denote the set of all individuals in T other than i by 1'..,; i.e. 1'-i == T - til. Thus, T ::::: T~" if and only if 
i ~ 1'. 

Given l' € lV, let AT be the Cartesian product of Ai OVer aU i in T, and aT =(ai)iET € AT, Also, given 

a.ny T € lV, let fiT: AT -+ m+ be the restriction of I to AT in the following sense- for each 07' E AT I fIT(aT) 

== I(a'). where (II == (ai. "', aN) € A is such that a~ ai if iE l' and a: =0 if i f/: T. For each T E .IV and each 

i E T, we USc lilT to denote the partial derivative of liT with respect to the action of individual i. 

As production ca.1l take place with the participation of any subset of individuals, it is clear that, when only 

the members of Borne T E lV take part in production, the relevant production process is liT. 
Given any T E lV, if only the members of T take part in prodlld.ion, t.hen an otlipt,t sharing rille for T it.> a 

tuple of payment functions, (Si)iET_N' where 8;. E S is the payment function of agent i E T-N. Obviously, for 

each output level x E !R+, whether the principal belongs to T or not, she gets the residual x - EieT-N Si(X). 
Eacb individual has all outside option which she can exercise instead of taking part in the production process. 

The utility of individual i from her outside option is equal to Ui 2: O. So, when agent i exercises her outside 

option, she allt.oma.t.kally gets zero payment, from the principal and her ut.iIity is equal (,0 t'i. However, as t,he 

principal is the residual claimant, she still gets her residual in addition to UN even when she exercises her outside 

option. 

Because the action taken by any individual in the production process is neither observable not verifiable, 

once the team which will take part in production along with the output sharing rule become common knowledge, 

the members of the team "dually playa nonC'.ooperal,ive game in t.be productionproC',ess conditional on the 
, 

common knowledge output sharing rule. Suppose it becomes common knowledge that a team T will take 

part in production and the output sharing rule will be (Si)iET_N' Then the strategies and payoffs of the 

players in the ensuing noncoQpemtil'e game 01 produdion (NGP), which we denote by {T, (Si)iET_N }, are as 

follows: (i) a strategy of player JET is an action aj E Aj; and (ii) when the actions taken by thep\ayers 

in T are aT E AT, the payoff of player j € T is Bj(fIT(aT» - cj(aj) if j is an agent (i.e. if j ::f:. N ) and 

fIT(aT) - LiET_N si(fIT(aT» - cN(aN) if j is the principal (i.e. if j =N). 
Given any NGP {T, (B,)T-N} such that N ¢ T, aT E AT is a Nash eqUilibrium of this NGP if and only if 

'. l1i E argmaxa'EA, [Jli(fIT(aT_iI ai» - r... (aDl ViE T., 

Similarly. given any NGP {T.(Bi)T_",} such that NET, aT E AT is a Nash equilibrium of th~ NGP if and 

only if 

ai E argmaxa'€A. [B;(fIT(aT_ .. aD) - c;(aDJ ViE T-N; and. . 
aN E argmaxll~EAN [fIT(aT_N' aN) - L 8i(f!T(aT_N ,aAr» - cN(aN~J· 

~~N . 

We denot~ th~ set of all Na!,h equilihria of f:lv.h NGP, {T. ("i)iET_I-'}' by N F,({T, (1l.)iE;T_N})' 

For each team in }I, it is dear t.hat there are countless number of possible output sharing rules. Tbis means 

t.hat, as production can take place with the participation of anyone team in N. t.here are countless number 

of possible team and output sharing rule combinations according to which production can take plaC'e. So we 

n;ed a procedure that determines a single team and output sharing rule combination according to which actual 

produdion tl't."k:t':S ptl't.r.e. 

Suppose the principal deals secretly with different subgroups of agents and ultimately arrives at a single 

team T and a corresponding output sharing rule (Bi)iET_N according to which actual production takes place. 
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'i'hen it is very likely that tbe output sharing rule ('i)'E'l'...N is not common knowledge among the agents in T. 
So the stra.tegic behaviou~ of each agent in T in the production proC688 depends on her belief about the output 

sharing rule, her beliefs about the beliefs of the others in T and so· on. Clearly, the beliefs of each agel1& in T 
depend 00 all the information ,ba~ she has, for example, her own payment fundion and may be that or some of 
the other agents in T, However, ~v.en all the information that is available to an agent, the manner in which she 
uses them to form her beliefs is quite complicated to model and well beyond the scope of this paper; Therefore, 

we assume that the ptincipal does not deal s~retly with any subgroup of agents and whatever she proposes 

becomes common knowledge immediately. 

As we assume that DO one can be forroo to participate in produdion, even though t.he prindpm, 3$ the 

residual claimant, is the only individual who can propose any team and output sharing rule combination. an 

agreement must be reached 'on a single team and output sharing rule combination according to which actual 

production takes place. However, handling the complex strategic issues involved when individuals are allowed to 

collude with one another in trying to reach an agreement on a single team and output sharing rule combination 

are well beyond the scope of this paper. Moreover, it is seldom ,easy to just.ify the credibilit.y of rommitmeot of 

any member of a. coalition to the coalition. Therefore, we assume that the individuals behave noncooperatively 

when trying to reach an agreement on a single team and output sharing rule combination: 

Thus, we use a very simple multi-stage procedure to determine a single team and output sharing rule 
combination according to which production takes place. This multi-stage procedure, which we call the Second 

Best Game (SBG), is described as follows: 

Sta(le 1: In the first stage, the principal announces a NGP which becomes common knowledge immediately. 

Stage II: In the ~ond stage, each agent who is a player of the NGP announced by the principal must 

announce whether she agrees to play this NGP or not. These announcements by the agents are made sequentially, 

80 that, the announcement of an agent becom~ common knowledge befo~e the announcement of any subsequent 

agent. If any agent who is a player of the NGP announced 1>y the prine.ipal announces a disagreement, then 

the procedure terminates at this point and everyone exercise their respective outsidb options. Of course. those 

individuals who are not players of the NGP announced by the principal automatically exercise their outside 

options. 

Stage III: This stage is reached only if every agent who is a player of the NGP announced by the 

principal annonnc:ed I\n I\gt'eement. in the Mcond st.age. Onc:e the t.hird Rt.age is reac:hed, t.h~ NGP annmmc:ed 

by the principal is played in the production process. 

Obviously, if the third stage is not reached, then the payoff of each individual i in the SaG is her outside 

option utility, til' However, if the third stage is reached, then the payoffs in the SBG are given as follows: (i) 

each agent who is not a player of the NGP played in the third stage gets her outside option utility; (ii) each 

agent who is a player of the NGP played in the third stage gets her payoff from this NGP; (iii) if the principal is 

a player of the NGP played in the third stage, then she gets her payoff from this NGP; and (iv) if the principal 

is not a player of the NGP. played in the third stage, then she gets UN (her outside option utility) plus the 

output left after distributing the payments to the players oC the NGP played in the third stage. 

Given TEN' and an output sharing rule (Si)ieT_N such that Sj E S for each i E T_N. there is no gaurantee 

t.hat t.he NG P {T, (.~di€T-N} ha..q 1\ Na..'Ih equilihrium. However, a..q we want. t.o fOCIIR on Iy on sllhgam~ pf'rfed 

equilibria of the SSG, we cannot allow the principal to propose NGPs that do not have allY Nash equilibrium. 

Hence, we impose the restriction that the NGP announced by the principal in the first stage of the SSG be 
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drawn from the set 

3 First Best 

To understand the efficiency properties of the model it is necessary to know the meaning of efficiency in the 

present context. So, as in most standard moral hazard models, we look at the First Best (FB) situation in order 

to find an appropriate notion of efficiency for our modeL 

The FB situation is the hypothetical situation in which the action of each individua.l in the production 

process is observable, and hence, the principal pays each agent who takes part in production according to ller 

action. So, in the FB situation the principal can dictate the action of each agent in the following aense- if the 

principal wants an agent to participate in production and take a particular level of action, then she can solicit 

the desired action voluntarily (rom the agent with a sufficient payment for that action and zero payment for any 

other action. Therefore, when only the members of a team TEN take part in production in the FB situation) 

the principal chooses a tuple of payment-action pairs for all the agents in T and an action for herself if she 

belongs to T to maximize her utility subject to the condition that each agent inT gets at least as much utility 

. as from her outside option. We denote this maximum utility of the principal by B(T). 
Suppose TEN ill the !let of individuals who tak~ part. in product.ion in the FR sit.uation. Then N ¢ l' 

means that the principal exercises her outside option and also gets the residual. So, if N ¢ T, then B(T) is 
given by 

(i) mi - Ci(a.) ~ Ui ViE T; } 
B(T) = ttN + max 

{ 
J!T(aT) - E m t ! (ii) aT EAT; and . 


(oT,mT) iET (iii) mT = (mt)i€T E ~ITI 


On the otherhand, the principal can belong to T only if she does not exercise her outside option. Hencc, if 

T is such that. NET, then B(T) is defined by 

In the definition of B(T) in either case, the constraints, ffli - cs(ai) ~ Ui ViE T-N, ensure that each 

participating agent is no worse off than exercising her outside option. These constraints are obviously necessary 

for the participating agents to be willing participants. Also, we must point out in passing that BeT) is well 

defined for any TEN, becausc, using assumptions At and A2, it can be easily shown that the maximization 

prohlem in t.he definit.ion of R(T) in eit.her case has a solut.ion. 

Suppose the principal chooses to exercise her outside option in the FB situation. Clearly, if B(T) S; UN for 

every TEN such that N ¢ T, then the highest utility she can get is 'UN. On the otherhand, if there exists 

TEN such that N f/. T and B(T) > UN, then the highest utility she can get is the maximum of B(T) over all 

TEN such that N f/. T. Thus, if the principal chooses to exercise her outside option in the FB situation, then 

t.he highest. ut.i1it.y she can get, which we denot.e hy "r;_, i!'l given hy 

UF = { UN if B(T) ::; UN VTEN such that N ¢ T 

N- ma.xTe..... {B(T)! N ¢ T} otherwise. 
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perspective) in {L,v ~ n, which is the set of all outcomes in n where the principal does not participate in 

production; i.e. 

fLN := {({T,(Sj)iET_N haT) E 01 N¢ T}. 
Let TF be a tea:n in N such that Nil. TF, and B(TF) ::: maxTe.V'{B{'f)1 N ¢ 1'}. Also. let (mf".4,) . 

E ~IT"I X AT' be payment and ution tuples such that m[ -- c.(an ~ Iti ViE T, and UN + IITP(4,.) 

-- E,eT' mf ::: B(TF). So the team 1'F along with the payment and action tuples (mf", 4,,) give the 

high('st utility t.o the principal if she doP.8 not pN't.icipate in produdioo in t.he FB sit\laJion. Ci('arly, B(T') ~ 
r«{T,(s')'eT}.aT» V ({T,(Si)'eT},aT) € (LN' Then, according to assumptions A3 and AS, B(TF) > UN 

and ITI'"I ;::: 2 are necessary for any outcome in n_N to be an 00. Thus, unless otherwise mentioned, it must 

be understood that we are only looking at the case in which B(TF) > UN and ITFI 2: 2. 

Because of Lemma 1, we know that the following are true: 

(1) 

(2) uN

m{ ­ c;(af) 

+/ITF(a,f,,)- L m[ 
iETI" 

-
tit 

B(TF); 

ViET; 

and 

(3) IoIT(41") ­ c~(af) ::::: 0 VieT. 

So <.va seek to cooRtnu:t an output Rharing rule which will induce t,he agent$! in TF to t.ake the a.r.tionR {If, 
and altiO pay ",f to each ageuL i E TF at Lbe ouLpuL ievtli IJTF(afl")' Now, (3) says that auy output sharing 

r~)e which induces the actions 41" and is smooth in a neighbourhood of the output level IITF(af,..) must 

only have payment functions that have unit slopes around a neighbourhood of the output level /lTF(af,.)· 

However, because of the deterministic nature of the production function, I, (3) does not say anything about how 

the output sharing rule should behave away from a neighbourhood of the output level flTF(af,.). This gives 

sufficient freedom that alJows us to construct a desired output sharing rule which if! linear. 

Suppose the agents in TF playa NGP in which the payment to each agent i E Tf' is equa.l to the total output 

plus the constant fl. + Ci(an - IITF(af,..) for every level of output. Then the quasilinear utility functions, the 

strict convexity of the coot functions and the concavity of the production function imply that a tuple of actions 

fOl the agents in TF is a Nash equilibrium if the marginal product (which is the same as the marginal benefit) is 

'. equal to the marginal coot for every agent in TF. However, we already know from (3) that the marginal product 

is equal to the marginal coot for each agent in TF at afp. Therefore, af,. is a Nash equilibriun:z. Also. it is 

easy to check that the utilities of each agent i E TF and the principal at af,.. are Ui and B(TF), respectively. 

Furthermore, because of the quasilinear utility functions and the monotonicity, curvature and limiting marginal 

properties of the coot functions and the production function, af" is in fact the unique Nash equilibrium. 

For each i E TF, let erf be the constant such that 

(4) o{ = tli+ci(af)-/ITF(af.p) ViETF. 

Now. for each agent i E TF. define the payment function sf as follows: 

(5) sf(x) = a[ + x V x E ?R+. 

Then. more formally, we have the following proposition. 

Proposition 1 : 11 assumptions Al and A2 are satisfied, then: (i) ({TF,(sf)iET,.},af,) E (L",; (ii) 

sf(fIT1"(a~,,» - ci(ar> = Hi ViE T1"; (iii) UN + /lT1"(a,~,..) - E.er" sfUIT1"{af,.» = 8(TI"); and (iv) 

NE({TF, (sf)iETP }) {af,..}. 
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Pn)(jfi See Applmdix A, 

The inj,uitiofl behind Propor;itiorl 1 is 00 follows. Af:; tbe principal is trw residual cluimant, wlHm the aCLions 

are not obseryo.blt: and only the indh'idurus in '1'1" take part in production, the role of th(: principo.lill this 

paper and the role of the outsider who administers n budget-brnuking incentive scheme in Holmstrom[ll] are 

the same, So, whenever the total output deviates from IITF(af,.), although the principal does noL know the 

agent(s) whose action(s) caused this deviation, she can find the entire team of agents, TF, at faulL H(mce, the 

principal can punish everyone in ']'F for any deviation in the total output from fITF(afF)' In particular, the 

principal can make each agent i E ']'F fully responsible for any deviation in the total output from flTF (afp) 

by paying her the total output plus the constant tit + c,(af) - fITF(a~p) for every level of output. 

Next, let us look at the other half of the lIet 0, denoted by O+N, which contains all those outcomes from n 
where the principal participa.tes in production; i.e. 

O+N ;:::: {({T, (Si)iET_H)' aT) E 01 NET}. 
When the principal is the only player, there is only one NGP, namely, the one in which the principal keeps 

the fmt.ire output for h~raelf. Alt,hongh it if! ohvious that. t,he principal can gPot R({N}) in t.his NGP, heCallRf: of 

assumption A5, there cannot be any 00 which involves this NGP. So we only need to pay attention to those 

outcomes in O+N that have at least one agent participating in production along with the principal. Also, as we 

are interested in 008, assumption A4 allows us to ignore those outcomes in O+N at which some participant in 

the production process takes zero action. 

Thus, among all the outcomes in O+N that have two or more individuals participating in production with 

everyone of them taking a positive action, we are interested only on those that are best from the principal's 

perspective. Therefore, as an intermediate step, for each']' E N such that NET and ITI ;::: 2, we need to look 

at the following maximization problem: 

(PT) 

subject to: 

(CI) ai > 0 ViE T; and 


(C2) . ({T,(Si)iET_H},aT) € O+N' 

" As discussed above, constraint (CI) requires a positive action for every individu'at in T. Constraint (C2) 

obviously follows from the fact that SPE outcomes have to be in the set n. 
Clearly, constraint. (C2) of problem (fT) involves maximizat.ion problems of the players in T. So we use 

a standard method, commonly known as the first order approach, to solve problem (Fr). As the first order 

approach uses only the necessary conditions of the optimization problems involved in the constraint, sometimes 

the solution(s) obtained by using this approach may not be solution(s) of the original problem. However, we 

need not worry about such a possibility in the present case, because the solutions we derive by using the first 

order approach are indeed solutions of problem (..Pr). 

Appendix A proves a technical lemma that enables us to use the first order approach. Given TEN such that 

NET and ITI ;::: 2, if a NGP and an action tuple corresponding to T satisfy (CI) and (C2), then this lemma 

asserts that the curve of the payment function of each agent in T is smooth at the output level corresponding 

to the given action tuple. 

Lemma 3 : SflppO.!.'f. assumptions At and A2 are satisfied, and TEN is such that NET and ITI ;::: 2. If 

({T,(S.)iET_H},aT) satisfies (CI) and (C2), then 5i is differentiable at fIT(aT) for each i E 7'.-N. 
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Proof: S(''e Appendix A. 

Suppose ({l',(Si)iET_N},flT) E (l+N is such that 11'1 ~ 2 and al > 0 ViE T. Because of the quasilincar 

utility functions, it is clear that the margina.l benefit of each individual in T is equal to her marginal cost at aT. 

Also, because of Lemma 3, we know that, for each agent i E 1'.-N, her marginal benefit, a.t aT can be written 

as the product of the slope of her payment function 8, at IIT(aT) and her marginal product at aT- Hence, for 

each agent i E T-N I the slope of Bj at /IT(aT) must be equal to the ratio of her marginal cost and marginal 

product at aT.. As the principal's residual for any level of output il: E m+ is z - EiET_N Si(Z), Lenuna 3 also 

implies that the marginal benefit of the principal at aT is equal to her marginal product at aT times one minus 

the sum of the slopes of the payment functions of all the agents in T at fIT(aT)' Therefore, one minus the 

sum of the slopes of the payment functions of aU the agents in T at fIT(aT) must be equal to the ratio of 

the principal's marginal cost and marginal product at aT. But we already know that the slope of the payment 

function of agent i E T-N at flT(aT) is equal to the ratio of her marginal cost and marginal product at aT. 
So tbe marginal cost to marginal product ratios of all the individuals in T at aT must add up to one. More 

formally, we have the following lemma. 

Lemma 4 : Bupposeassumptions Al and A2 are satisfied, and T E .N such that NET and ITI ~ 2. If 

({T,(S.),eT_N},aT) satisfies (Cl) and(C2), then E'ET[cHa.)/J;IT(aT)] =1. 

Proof: See Appendix A. 

Given T E.N such that NET and ITI ::::: 2, suppose we replace (Cl) and (C2) by the marginal condition in 

',emma 4. A11m, for each i E T_N, 8Upp~ we rep\N'.(! Ri(JIT(aT») hy tli + r.i(ai) in the ohjedive function of 

problem (Pr). Then we get the following new ma.x.imization problem: 

(Pr) max [fiT(aT) - E,ETci(ai) - EiELNUi]
GrEAT 

subject to: 

(C3) EiET[r.aai)/fi IT(aT)] 1. 

Note that the acLions of the individual!> ill Tare 110 longer required to be pOlSiLive iu problew (PT). Also, 

unlike problem (PT), the only choice variables in problem (P:r) are the actions of the individuals in T. The 

'. ~ntuitjve logic behind the transformation of problem (PT), which involves payment functions, into problem 

(P:r), which does not involve any payment function, is as follows. Because of the deterministic nature of the 

production function f, constraints (C1) and (C2) only tell how tbe output sharing rule (Si)iELN 'must behave 

around a neighbourhood of the output level fIT(aT) and not else where. Then, as the payments to the agents 

"and the principal's residual has to add up to the total output, this local condition implied by (C1) and (C2) 

translates into (C3) and eliminates the payment functions. 

Lemma 5 : Suppose assumptions Al and A2 hold, and T E.N such that NET and ITI 2: 2. Then problem 

( PT) ha.t; a s()luti()n. 

Proof: See Appendix A. 

Given any T E .N such that NET and JTI 2: 2, tbe value of the objective function of problem (Pf) at a 

solution is denoted by V(T). So, if aT is a solution of problem (PT), then fIT(aT) - EiET ca(ai) - EiET_ N Uj 

= VeT). 

Remember that, for any combination of (Si)'ET_N and a1' which is feasible for problem (PT), the individual 

rationality conditions of the agents in T, s.(JIT(aT» - cl(a.) 2: 'Ili Y i E T-N. are included in constraint (C2). 
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So the value of the objective function of problem (PT) a.t (aT,(S.)i(!'r~/II) cannot be greater than the 1I1\ltH! of 

tbe objective function of problem (PT) at (IT. But, becau~ of Lemma 4, the action tuple at any fe~ibJe p()int 

of problem (Pr) is also feasible for problem (P.r>. Therefore, we cannot lind a feasible point of problem (Pi) 

at which the value of its objective runction is greater t.han the value of the objective function of problem (Pf) 

at a solution. 

Lemma 6 : Suppose assumptions At and A2 are sati&/ied, and T E '" such that NET and ITI 2: 2. If 

(aT,(si),eT_N) ~ f~asi61~ for prohl~m (Pr), tht.n VeT) ?: fIT(ar) - EiET_N siUIT(aT» - (w(aN). 

Proof. See Appendix A. 


Let T* maximize VeT) over all T E '" such that NET and ITI 2: 2; i.e. 


T* E ar~EN' {VeT) I NET and ITI2: 2} . 

The p.xiRten~p. of T- follows from Lemma 5 ano t.he finit.p.n~ of thp. nllmher of t.p.ams t.hat have th~ prinripal 

and at least one agent. Also, let (JT. e AT" be a solution of problem (Pt,,). Then we have 

(6) LiO'" [c:(a;)/hlT*(aT")] = 1; and 

(7) flT'(a;..) - LiET" Ci(aj) - E'ET!N Ui = V(T'). 

Thus, we want an output sharing rule which will induce the action tuple aT- and pay Hi +ci(ai) to each agent 

i E T:N at the output level Ilr(4.). However, as mentioned above, because of the absence ofuncertaillty in 

the production process, we know that we have some freedom in choosing the behaviour of the desired output 

sharing rule away from the output level flr(aT')' Below, we show that this freedom is indeed enough for us 

construct a linear output sharing rule. 

For each i e T:N, let the two constants Pi and a; be as follows: 

(8) If: = cHai)l fdT* (aT" ); and 
,. 

(9) = Ui + ci(ai) - P; flT'(aT")' 

Then, for each i E T: N , let si be the linear payment function whose slope is P; and intercept is ai; i.e. 
' .. 

(10) s;(:r.) = a; + fi;:r. V:r. e ~+. 

Clearly, for each i E T:N , the slope of s; I Pi, is nonnegative and equal to zero only if a; =0, which we 

have not yet ruled out. Also, (a;)iET':N I the intercepts of the payment functions in (S;)i€T: 
N 

, are set in such 

a way that, if (si)iET: is the output sharing rule and 4- is the action tuple taken by the individuals in r,
N 

then the utilities of agent i e T:N and the principal are Hi and Vcr), respectively, So Lemma 6 implies that 

(aT-' (SnET': ) is indeed a sOlution of problem (PT,,) if feasible. 
N 

Suppose agent i e T:N is paid according to s; and the actions of the other individuals in T* are fixed at 

aT:.' Then, because of her quasilinear utility function, the utility of agent i as a function only of ber own 

action, ai E Ai, can be separated into the benefit function, a; +P; fIT*(a;'* ,ail, and the cost function, Ci(a.).-. 
We know that the cost function is strictly increasing. However, the benefit function is just the constant a; if 
Pi is equal to zero, and strictly increasing if Pi is positive. So it is obvious that, if (3; = 0, which can happen 

only if a; = 0, then the best action for agent i is a; (= 0). On the otherhand, if a; > 0, then ,8; is positive and 

the benefit function is strictly increasing, but there is a trade-off between the increase in tbe benefit and the 
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increase in the cost as the action of agent i increa.ses. Then it makes sense for agent i to choose a; if 11'1 :> 0; 

because her marginal benefit is equal to her marginal cost at a; . 
When the agents in 1"" are paid according to the output. sharing rule (SniET: N • the residual function of 

the principal, - E'ET!N Q; +(1 - EiET!N fJt)z, is also linear in the output 1: E ;Ji+. Oe<;a.use of (6) aad (8), 

(1 - E'ET. /1;), the slope of the residual function, is equal to c'N(aiv)/INI1""(t4-), Then, using a. similar 

int.uition as 
-1'1 

in the case of the agents, we can say that aN is the best action for the principal if the output 

sbaring rule is (8; )'ET. and the actions of the agents in 'r are fixed at 4.·
-1'1 -_ 

Proposition 2: II 4S~amptio7U Al~A5 hold, and V(T"') > B(TF), then: (i) (aT., (S;).ET':N) i$ a solution 

01 problem (Pr·); (ii) s;(JI1""(ai-.»-Ci(an ::::: tit ViE T.:N; (iii) 111""(4·)-LiET!N s;(JIT'(ai--»-cN(aiv) ::::: 

vcr); and (iv) NE({1"",(si)iET!N}) = {aT-}' . 

Proof. See Appendix A. 

The condition, VeT"') > B(rF), plays a crucial role in Proposition 2. Whenever it holds, beca.use of 

assumptions A4 and A5, the principal's utility at an 00 tannot exteed V(T-). So, once we establish 

({T"',(s;)iEr:N},a;..) E Q and lI'«{T"',(si)ier:N},a;..» ::;;:; V(r), a1 > 0 for every i E T' foUows from 

assumption A4. 

,Also, note that aT- is the unique Nash equilibrium of {T"',(S;)iET: } according to (iv) in Proposition 2. 
N 

This result follows from the quasilinearity of the utility functions, the concavity of the production function and 

the strict convexity of the cost functions. 

The most obvious but important message of Proposition 2 is that, if it is better for the principal to particip(}.te 

in production, then she need not look for any output sharing rule that is more sophisticated than those in the 

class of simple linear output sharing rules. 

In contrast to the output sharing rule in Proposition 1, there is pure sharing in the output sharing rule in 

Proposition 2 in the sense that- every participating individ~al gets a constant (whith may be negative) plus a 

positive proportion of the total output. This tan be roughly interpreted as folloWs. If the principal is better 

off participating in production, then the principal tan only get worse of[ with an output sharing rule which 
( 

punishes only a particular proper subset of the set of participating individuals for every deviation in the total 

output from the optimal output. 
". 

If the principal is better off participating in production, then, beca.use of (iii) of Lemma 2, the only way 

she can get the FB utility is if the actions taken in the production process are such that the marginal product 

is equal to the marginal cost for each participating agent. But, Proposition 2 says that this cannot happen, 

because the slopes of the payment functions and the residual function of the principal in the output sharing 

rule in Proposition 2 are all less than one. Thus, another important implication of Proposition 2 is that, if it 

is better for the principal to participate in production, then she cannot completely mitigate the moral hazard 

problem; i.e. V(T"') < B(r). This highlights the presence of an inherent conflict between two things, namely, 

the principal's role as a residual claimant and her role as a free rider whenever she participates in production. 

(iv) of Proposition 2 also has an important implication. As we shall demonstrate later, this result along with 

the quasilinearity of the utility fundions can be used to show the uniqueness of the SPE utility tuple. 

Now, what. we originally set out to Rhow, namely, t,here iR ROme 00 in tr where t.he ont.pnt, Rharing rille iR 

linear, is a rather obvious corollary of Propositions 1 and 2. 

Corollary: Suppose assumptions Al~A5 hold. II B(TF) ~ Vcr), then ({TF,(sf)iETF Laf,..) E n". II 

V(T·) > 8(TF), then ({T·, (S;)iET:N},ar.) EO". 
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Fmm our dl~rivllUUIlS up tv till::. p()iut, w~: can naturally draw the fullowing cunclusiolJs about the prindptt\'s 

participo.fion decision: (i) if 8(TF') > V(T·), UHm the principal wilt choose not to participate in production; 

(iiJ if V(1") > 8(1'1'), then the principal will choose to participate in production; and (iii) if }l(~rf'):.::; \/(1'"), 

then the principal mayor may not choose to participate in production . 
• 

Let us now look a.t the principal's ability to sustain efficiency. Obviously, the only way UH1 principal can 

sustain efficiency is if her utility at every 00 is equal to u~. This means tha~ the principal can sustain efficiency 

if B{TF) == U~, because we know that in this case the principal's utility at any 00 is equal to B(TF). So 

the question rema.ins, what if ut; > B(TF)? If u}; > B(TF), then it is dear tha.t the only way the principal 

can sustain efficiency is jf ut; == V(T). We know ihat ut; is at least as large as B(r). But we also argued 

above that B(T) is greater than V(T). Therefore, u~ > V{T*) always holds. So the principal cannot sustain 

efficiency if u~ > B(TF). Thus, we can claim the following. 

Claim 2: Suppose. a.!lsttmption.'J Al~A5 hold. The.n the. principal can 8ttstain efficie.ncy if and only if u1:; == 
B(TF). 

As the principal does not belong to TF, the condition u~ = B(TF) means that the principal does not participate 

in production in the FB situation to obtain the maximum utility. So Claim 2 can also be put in a slightly different 

way as follows. To sustain efficiency it is necessary and sufficient that the principal obtain the maximum utility 

in the FB situation without her participation in production. 

As the principal plays the role of a residual claimant, ifshe takes part in production, _get a joint production 

proctss to which Theorem 1 of Holmatrom[ll] is applicable. On the otherhand, if the principal does not take 

part in production, she is just like the outsider 'in Holmstrom's solution to the moral hazard problem, who 

administers "budget-breaking" incentive schemes. Therefore, Claim 2 can also be viewed as an implication of 

the results in Holrnstrom[ll]. 

The intuition behind Claim 2 is as follows. When the actions are not observable, every individual who 

takes part in production (including the principal) has an incentive to free ride in the production process. So, 

when only t,he memhers of some t.eam TEN t.ake part. in produd.ion, t,o get. R(T), t.he FR sit.uat.ion nt,ilit.y, 

the principal must design an output sharing rule which has sufficient punishments for everyone in T for any 

~. ~eviation of the total output from theFB situation output level corresponding to B(T). But, whenever the 

principal punishes every agent in T, as the residual claimant she can only reward herself, which means that the 

principal cannot punish everyone in T if she herself is a member of T. So, whenever the principal takes part 

in prodlldion along wit.h a group of agent.(s), t.here is honna t,o be an inherent. (':.onflid. bet.ween her residual 

claimant role and her incentive to free ride in the production process. Therefore, when the actions are not 

observable and only the members of some team T take part in production, the principal can get B(T) only if 

she does not belong to T. 

5 Limited Liability 

So far we have,allowed output sharing rules that can award sufficiently large negative payments to some agents' 

or the principal. However, such output sharing rules may no longer be feasible if individuals have limited 

liabilities. Thus, in this section we look at the case where individuals do have limited liabilities, In particular, 

we impose an extreme form of limited liability constraint, namely, no one, including the principal, can commit 

t,o any amount. of negat.ive payment.. So t.he NGP annonnced by t.he principal in t,he firRt Rt.age of t.he SRG must 
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be drawn Crom the following sct: 

(i) s;(x) ;;: 0 V x E 8~+ and eacb i E T-Ni and }Jh := { {T, (8, )U£T..N) e g I 
(ii) x - L'€'J'_N 8.(X) ~ 0 V z Em+ . 

The question we ask is, is there any 00 ({T, (S.)i€1'_N h tl7') E O· such that {T, (Sj)ieT_N} belongs to (.h'l 
The answer is yes. In fa.et, we modify the linear outpnt sharing 1:\11e in the appropriate 00 derived in the 

previouB section in such a way that the limited liability constraint is met and the modified output sharing rule 

along with tbe original action tuple remains an 00, This modifica.tion is carried out in such a way that the 

payment functions of the agents (and the residual function of the principal if V(T-) > B(TF» are continuoU8, 

piec.ewise linear 8lld nondecreasing. 

The reason that allows us to perform our modifications is quite obvious, Suppose B(TF) ;;::: V(T-) (V(T'") 

> B(TF». Then, as long as we keep the output sharing rule (Sni€TI' «Sj)iET:
N

) intact on an appropriate 

range of output around flTF (a:.I") (fIr (aT. », the absence of uncertainty in the production process provides 

enough freedom that allows us to change (sf)iETP «St)iET: ) quite arbitrarily else where such that the action' 
N 

tuple af1" (a1,.) is still induced. 

Let us first consider the case B(TF) 2: V(T+). Then it can be easily checked that, for each i E TF, cx[ < 0 
and the payment function IS[ awards negative payments to agent i only at output levels below -o{. Also, 

the principal's residual, it - LiETF sf(x), becomes negative only beyond a certain output level greater than 

fITF(af,). So, for each i E TF, we can modify sf in such a way that there are no changes between the output 

levels -a{ and flTF (af,), but the payment is fixed at zero for output levels below -a{ and at a{+flTF (tl~F ) 
for output levels above flTF (afF)' More formally, for each i E TF, we define the payment. fune,tion sf as follows: 

0 if 0 :5 it :5 -af 
(11) 8[(:r) = s[{x) if -crf' < it < fITF(afF}

{.. af+fITF(afp) ifz 2: fITF(afF)' 

It is obvious that the payment function sf is continuous, piecewise linear, and nondecreasing. Also, it can be 

easily verified that the NGP {TF, (SniETP } belongs to g+. 
Clearly, for each i E TF, the payment according to sf can exceed the payment according to sf only at 

output levels below -or. However, the payment according to iif for any output level below -af', which is 

". fixed at zero, is no larger than Ui. Also, for each i E TF, if and sf award the same payment at the output 

i~vel fITF(afF)' Then, as we already know that (sf)iETP induces afp, (iniET'" must also induce afF' and 

hence, we have the following proposition. 

Proposition 3: If assumptions Al-AS hold, and B(TF) 2: V(T-), then ({TF,(iif)iETF },afF) E 0-. 

Proof See Appendix A. 

Next., consider the ot,her case, V(T"') > R(TF ). Part.it.ion t.he /'let. of agent.c;. r::.N int.o t.he t.hree RJlhset.s, Tt, 
10 aud T:, tOuch thaL i E T+ if a.nd only if at > 0, i E T; i.f amI ouly i.f at = 0, a.nd i E T::' if aml only if 

a; < O. By relabeling the agents if necessary, without loss of generality, we let T.t be the first IT.; I agents, 10 
be the ITO I agents after 1T.t I, and T: be the IT::'\ agents after IT'; I+ ITo I; i. t. T'; = {1, ... , IT'; D if T'; "I 0, 
10 ={IT.; I+ 1, .. " 1T.t UlOl} if 10 "10, and 1: = {IT+ U 10 1+ 1, ... , IT:NI} if 1: "10. 

For each i E 1:, let Si be the payment function that pays zero wherever si pays a nonpositive amount and 

the same as 8; everywhere else. Formally, for each i E T::, as the critical output level at which st starts paying 

nonnegative amounts is -ai/p:., we have 

(12) 8i(:r) = { 0_ if O$X:5..- ai/J3; 
Sj (z) if it> -o:dp:. 

16 



.. 
) 

I, 

d 

g 

For tjlLch i E 1;) , let 

Suppose T; is nonempty. Then agent 1 belongs to T';. Now, if agent 1 is paid :r; - Li"l'.UT" .~i(x) for every 
"0 ­

:x: € i+, then it is obvious that there is an output level below which she does not get as much as in si but above 

which she gets more than in 6i. So, let it l be the unique output level such that si(xl) ;::::: fl - LiCX'lJT4 sHit).
"" ­Then the payment function ii· is defined as follows: 

) _"'() {X-EiET.UT.S;(X) ifosx..sxl(14 8 It == 0 ­
1 . 8Hx) if :Ii > xl, 

Following 3 similar procedure as above, for any i E T'; - {l}, x' is iteratively defined as the unique critical 

output level such that 6Hx");::::: X" - EjET;UT! ij(xi) - E~:'~ Sj(,xi). Then, for each i € T';' - {I}, the payment 

function s: is iteratively defined as follows: 

(15) s!(z) == { x - LjET;UT: S; (x) - E~;,i Sj(:t) if 0::; :Ii,,~ zi 
• 6Hz) if x > Xl. 

Note that, ifT; has more than one agent, there is an asymmetry in the behaviours of Si at output levels on 

or below Xl and ,; at output levels on or below iii, where i E 1+ is distinct from 1. For each i E 't; distinct 

from 1, it pays zero at every output level lower than xi - 1 , the critical output level of the agent just before i. 

On the otherhand, if 1+ is nonempty, then s! pays zero only at zero output level. For each i E 71. distinct from . 

1, when the final output. is on the interval [ii-l, it), s; pays agent. i t.he out.put. that. is left. after paying each 

agent h before her according to sh and each agent j E To U ~ according to iij. So, if r.; has more than one 

agent, for each i E 1+ distinct from 1, the behaviour of s; between ,xi-l and ,xi is similar to that of si between 

oand xl. 
It can be easily verified that, for each i E T:N , 5; is continuous, piecewise linear, and nondecreasing. 

Furt.hermore, the principal's residual, :r. - EiET' s;(z) , is continuous, piecewise linear, and nondecreasing. 
-N • 

Our construction also ensures tbat the NGP {T· ,(Sni€T: } bdongs Lo g+.
N 

Clearly, for each i E 1+ u '10 j the curve of S; always lies on or below that of si. On the otherhand, for each 

F. i ET':', wherever the curve of s; lies above that of si its value is equal to zero, and hence, no larger than the 

utility of agent i at ar., u •. Also, the curves of the principal's residual in (SZ)iET: and (SnE~':N are such 
N 

that, if there are output levels at which the former lies above the later, then the value of the former is equal to 

zero at those output levels. Then, because (S;)iET': 
N 

induces aT., (SZ)iET!N should also induce aT*' 

Proposition 4: If assumptions AI-AS hold, and V(T*) > B(TF), then ({T"(SniET:N},a~ .• ) E W. 

Proof. See Appendix A . 

Thus, according to Propositions 3 and 4, except for the fact that the principal may have to look for slightly 

more sophisticated output sharing rules than those of the linear variety (namely, piecewise linear rules), there 

are no other significant changes when iQdividuals have limited liabilities. This result, as we have pointed out 

aU along, is a consequence of the deterministic production process. In contrast, when the production process 

is no longer deterministic, often, there is not enough freedom to modify the unlimited liability optimal output 

sharing rule toa limited liability optimal output sharing rule. Hence, imposing limited liability condition often 

reduces the principal's optimal utility when there are uncertainties in the production process. 
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6 Uniqueness of SPE Payoffs 

To begin with, we must p~int out that the result presented in this section relies on the quasilinearity of the 

utility functions, and hence, may not hold for the more general utility functions that are additively separable 

and concave but not. necessarily quasilinear. 

Our objective is to show that the utility tuple remains the same in every SPE outcome of the SBG. Precisely, 

wcshow that at any SPE outcome the -utility of each agent i is Ui and the utility of the principal is her utility 

from any 00. 
Suppose ({T,(sdiET_N},CIT) E 0\ but the utility of80me agent j E T_N. sj(JIT(aT» - cj(aj), is greater 

than Uj. Now, if we keep the payment function of every other agent intact and give agent j an i > 0 less for 

every level of output, where c is such that si(fIT(aT» - t - ci(aj) ~ ui. then, because of the quasilinear 

utility functions, CIT is still a Nash equilibrium at which every agent in T-N (including agent j) get at least their 

outside option utility and the principal's utility has increased by t' But this means that there is an outcome in 

n at which the principal's utmty is higher than at an .outcome in 0·, which is not possible. So we claim the 

following. 

Claim 3: If assumptions AI-A5 hold, and ({T, (Si)iET_N},CIT) EO., then si(JIT(aT» - Ci(a,) = 'Uj 'V i E 

T-N. 

Suppose B(TF) ~ V(r) (V(r) > B(TF». Then, as assumption A3 implies B(TF) > UN ~ 0 (V(T") 

> UN ~ 0), let ( > 0 be such that B(TF) - ITFli > UN (V(T") - IT.:Nl( > UN)' Consider the NGP 

{TF,(sft)iETd ({T",(St')iET': }), which is obtained from {TF,(SniETd ({T",(SnET': }) by paying each
N N 

agent in 1'F (T:N ) f more for every level of output. Then, because of the quasilinear utility functions and 

Proposition 1 (Proposition 2), it obviously follows that: (i) each agent i- E TF (E T:N) gets Ui + (0 at 

the outcome ({TF,(sf<)iETP },afF) {({T", (stf)iET': N}, aT-»i (li) the principal getsB(TF) -ITFI( (V(r) ­

I~N Ie) at the outcome ({TF. (Sff)iETl' },af.l' H({T., (stf)iET': }, a~.• »; and (iii) af.l' (a1.• ) is the unique Nash 
N 

equilibrium of {TF, (Sff)iETP} ({r. (S;<)iET':.I'J). 

In the case of limited liabilities, we can exploit the freedom provided by the deterministic production process 

to modify the above mentioned NGPs in such a way that the limited liability condition is met without loosing 

'. any of the conclusions drawn. Thus, Appendix B proves the following lemmas. 

Lemma 7 : Suppose assumptions AI-A5 hold, and B(TF) ~ Vcr). Then, for each t > 0 such that B(TF)­

ITFk> uN, there exists {TF. (Sff)jETP } E g+ such that: (i) afF is its unique Nash equilibrium; and (ii) the 

utilities of the principal and each agent i E TF at afF are B(TF) -ITFlf and Ili +(., respecti.vely. 

Proof. See Appendix B. 

Lemma 8 : Suppose assumptions AI-AS hold, and Vcr) > B(TF). Then, for each (. > 0 such that V(r)­

IT.:Nk > 'UN and ex; + ( < 0 ViE T.: (the existence of such an (. is assured by the fact that exi < 0 ViE 1':), 

there exists {T·, (S?)jET': 
N 

} E 9+ such that: (i) aT- is its unique Nash equilibrium; and (li) the utilities of 

the principal and each agent i E T:N at a;.- are V(T") -1T:Nlt and Uj + f, respective/yo 

Proof. See Appendix B. 

Now, suppose there is a SPE outcome which -.does not belong to 0"'; and the principal's utility at this 

outcome is UN. Clearly, UN is less than the principal's utility at an 00. Then, because of Lemmas 7 and 8, 
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we can find SOIllO outcome, Ally (('l',(II;)iCT_N},aT), such tlHlt: (i) {T,(8di(T~N} E gi; (ii) aT is the unique 

Na[,h equilibrium of {T,(S!)iE7'_N}; (iii) T-N is nonempl,y and th(~ utility of each agent ill T-N at aT is more 

than her outside option utility; and (iv) tilt' principal's utility at aT is more than UN. But then, using a simple 

backward induction logic, it is easy to see that all tbf: agents in T-N will alw~YIi agree to the NGP {T, (8.)jET_ IV) 

whenever the principal announces it in the first stage of the SHG. So there cannot be any SPE outcome at which 

the principal's utility is UN, and hence, our original supposition must be false. Therefore, there are no SPE 

outcomes outside 0-. The uniqueness of the SPE utility tuple is then an immediate consequence of Claim" 1 

and 3. 

Claim 4 : Suppose tuisumpiions AI-A5 hold. Then, whether there is limited liability or not, we have the 

following: (i) if B(TF) 2: V(T-), then at any SPE the utility of the principal is B(TF) and the utilitll of each 

agent i is tJj; and (ii) if V(T") > B(TF), then af any SPE the utility of the principalts V(T"') and theutilif.y 

of each agent i ls Uj, ' 

7 An Example 

Consider a situation with three individuals (N = 3). So individuals 1 and 2 are the agents, and iv.dividual3 is 

the principal. The joint production process and the cost functions are given by: (i) /(a) =: 2(1/6+01)1/2(1/6+ 

K2a2 +Kaa3)1/'2 - 1/3 Va=:: (all a2, a3) Em, where K"/. and K3 are constants to be specifiedj and (ii) cj(ad 

:;::;; 01/2 Vaj E ~+, i =:: 1,~, 3. All individuals have the same outside option utility, which is equal to 1/3; i.e. 

Ui =:: 1/3, i :;;:; 1,2,3. Tbe constants K"/. and K3 ca.n be interpreted as parameters that express the relative 

efficiency between the action of agent ,2 and the action of the principal. We look at three different scena.rios 

corresponding to different va.lues of the efficiency parameters K2 and Ka. 

(:4..'1(' I: K3 =:: 1, and K2 > 0 but. sufficiently dOSf to zero. 

In this case, it can be easily verifiedthat B({I}) = B({3}) = 5/24 and B({1.3}) = 2/3. We can also find K'J. 

small enough such that B({2}) < 5/24, B({1,2}) < 5/24, B({2,::1}) < 5/24, and B({I,2,::1}) < 5/12. Then it 

is easy to see that the principal must take part in production along with agent 1 to get the maximum utility in 

the FB situation; i.e. uf == B( {I. 3}) 2/3. So the principal cannot sustain efficiency in this case. Clearly, 

'TF = {I} and B(TF) = 5/24. Also, straightforward maximiza.tion shows that V( {I,3}) = 5/12, and hence, 

r ;::: {1,3}. Thus, B(TF) < V(T"') in this casco Therefore, only agent 1 and the principal participates at an 

00. The optimal actions are (aj, a;) ;::: (1/2,1/2). and the optimal linear and piecewise payment runctions for 

agent 1 are given by: 

8i(z) 	 = -1/24 + (1/2)z V x E ~+; and 


= {O if x $; 1/12
ii(z) -1/24 + (1/2)x if x > 1/12. 

C(l$t! 2: K,,;::: 1, and K3 > 0 but sufficiently close to zero. 

Here, B({l}) = B({2}) = 5/24 and B({I,2}) = 2/::1. We can also find K3 small enough such that B({a}) < 
5/24, B({1,3}) < 5/24, B({2,3}) < 5/24, and B({l,2,3}) < 2/3. Then it is obvious that only agents 1 and 

2 must take part in production for the principal to get thE' maximum utility in the FB situation; i.t:. uf = 
B({1,2}) = 2/3. So TF ;::: {I, 2}, and B(TF) = uf. Therefore, the princiJlal can sustain efficiency in this case. 

Clearly, whatever be the r, we have B(TF) > Vcr). Hence, at an 00, only the two agents participate in 

production and moral bazard is completely mitigated. It can be easily verified that the optimal actions are 
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(a[, an :::: (1, 1). Thus, the optimal linear and piecewise payment functioll/J for the two agents are given by; 

Sf(iIl) == 8~'(:r,) =. -7/6 + II V ill E ~\; and 

0 ifz'5,7/6 

lif(;c):::::.;;f(;c):::::. -1/0+& if1/G<;c'5,2


{ 5/6 if J:'.> 2:.. 


0,,«, ;1: K~::::: I, and K:s > 1 but sufficiently close to one. 


As in case 2 above, B({t}) == B({2}):= 5/24 andB({l,2})::::: 2/3, Now, we can. find Ka·dose.enougbtoooe 


such that B({3l) < 2/3, B({I, 3}) > 2/3. B({2. 3}) <: 1/3. B({I, 2, 3}) < B({1.3}, and V( {I, 2,3}) < V({l,3}) 

< 2/3. Then it is obvious that B({l,3}) ~ B(T) VT ~ {1,2.3}. So only agent 1 and the principal must take 


part in production for the pdncipal to get the maximum utility in the FB situation; i.e. uf = B({I,l}) > 2/3. 


It is also easy to see that TJ' = {I, 2}, and r ={I,3}. This means that uf > B(TP) > Vcr). Therefore. at 


an 00, as in case 2, only the two agents participate in production and moral hazard is completely mitigated. 


Moreover, the optimal actions and the linear and piecewise linear optimal payment functions of the two agents 


remain tbe same as in case 2. However, unlike case 2, the principal can no longer sustain efficiency as her best 


option in the FB situation requires her participation in production. 


8 N onquasilinear Utilities 

For each agent i, when she participates in production and takes an action (1j and receives a payment. ml , 


Buppose. her utility is given by U.(mi' a,) :::;; Vi(m;) - cj(aa), where Vi is concave and satisfies all the other 


standard assumptions. Similarly, when the principal participates in production and takes an action aN and 


receives a residual r, suppose her utility is given by UN(r,aN) = vN(r) - cN(aN), where VN is concave and 


satisfies all the other standard assumptions. On the otherhand, when the principal does not participate in 


production but exercises her outside option and receives a residual r, suppose he~ utility is given by UN(r), 


where fjN is concave and satisfies all the other standard &}sumptions. . 


With the above specified utilities, the logic about the deterministic prod uction process leaving sufficient room 


that allows the optimal output sharing rules to behave quite arbitrarily away from the optimal output level is 


T. still applicable. Therefore, although it is slightly more demanding technically, we can derive counterparts of 


conditions (1)-(3) that do not depend on any output sharing rule.8. Also, for any T such t.hat NET and ITI ~ 2, 

I we can eliminate the output sharing rule from the appropriate counterpart of problem (Pr) and 'transform it I 

into the appropriate counterpart of problem (P';'). Thus, except for the section on the uniqueness ofSPE utility 	 I
Ituple (namely, section 6) which relies heavily on the quasilinearity of the utility functions, the analysis in the ~ 


rest of the paper can be repeated with the more general utility functions without any qualitative changes in the 


results. 
 I 
ii 9 Conclusion 

We looked at a simple moral hazard problem in a principal-agent(s) framework. However, unlike most existing 


work, our principal was neit precluded from active participation in the production process. Also, unlike the single 


agent case, there was no uncertainty and the moral hazard problem was caused by joint' production. A simple 


multi-stage extensive game, the SBG, determined the set of individuals who actually took part in production 
 I 
along with the output sharing rule they followed. 
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Although the principal was not precluded from participa.tion in the production prOC(!S9, whether it was optimal 

. for her to participate or not depended OD the value9 or 8(TF) a.nd V(T"'), In particular, it was b~t for bet to 

participate only if V(T") 2: B(TF). 

Whenever the principal did not participate in production, moral hazard was completely mitiga.ted although 

there was potential for moral hazard if two or more agents participated in production. On the <>therhand. it 

was impossible to mitigate the moral hazard problem completely if the principal participated in production along 

with at least one agent. Tbese findings, as we argued, depend on the deterministic production process and not on 

the quasilinear utility functions. In contrast, unless tbere is risk neutrality,moral hazard cannot be completely 

mitigated in most principal~agent moral hazard problems with uncertaint.y. 

From the above remarks we can also draw some other interesting conclusions. Firstly, although the principal 

could completely mitigate moral hazard by not participating in production, it is quite conceivable tba.t she could 

be better off introducing moral hazard by participating in production. Secondly. even if it was optima.l for the 

principal. to completely mitigate moral hazard by not participating in production, she might still be worse off 

I.ban at her b('8t option when 3('.tions are ob~rvable, because her b('8t option when actions are ob...'l<F:"fvable might 

require her participation in the production process. 

Except when agents are risk neutral, in most standard princip~agent moral hazard models with nondeter~ 

ministic production processes, it is the norm rather than the exception that the principal has to look for output 

sharing rules that are much more sophisticated than linear or piecewise linear output sharing rules~ However, 

alt.bough we did not present it formally for the more general additively separable concave ut.ilit.y case, we showed 

that the principal need not look any further than the class of linear output sharing rules (piecewise linear output 

sharing rules in case of limited liability) if the production process is deterministic. 

Also, in principal-agent moral haZard models with nondeterministic production processes, the results that 

are obtained without limited liability may change significantly when there is limited liability, for example, the 

principal's optimal utility often decreases when limitei liability is imposed. But we showed that the deterministic 

production process made most of our results robust to the introduction of limited liability . 

.'. 
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~1!2endb: .A 

Proof a/Lemma 1: Let. T E }/ and (mT,lIT) G ~TI X AT such that N ;. T, fij - Ci(lIi) ~ ut ViE T nnd 

UN +JIT(aT) - EiET mi = B(T). 
Suppooe nlj - Cj(Oj) > Uj (or some j € T. Then let ~ > 0 be such that fii -: C - cj(aJ) 2: UJ, and define 

fflT € RJTI as tni = rrIi Vi € T - {j} and mj:; r;nj -t. Clearly. (tnT.a-r) is such that tn. -C;(tJi) 2: Ui 'tI i E T 
and UN + JIT(aT) - E'ET m. > B(T), a contradiction to the definition of B(T). Hence, (0 of Lemma I bolds. 

(i) of Lemma 1 implies that UN+ IIT(aT)- E'ETet(di)- E'ET Hi = B(T). Now, suppose there exists ar E AT 

sucb that UN + IIT(aT) - E'ETc,(a.) - EiET Hi> UN + IIT(aT) - EiETCi(ai) - E'ET Ui· Let mT €~, be 
such that fiat =u, + et(a-) ViE T. Then it is obvious that (mT,tiT) satisfies m, - Ci(a-) :; Ui ViE T and 

UN + /IT(aT) - E'ET m. :> B(T). which contradicts the definition of B(T). Thus, lIT solves the problem 

max [tIN +JIT(4) -.:'EiETc,(aD - EiET UiJ. 

Q;'EAT 


Because of the limiting properties of the derivatives of et and I, given in assumptions Al and A2, the above 

maximization problem can only have interior solutions. So (li) of Lemma I must hold. Also, as an interior 

solution of the above maximization problem, aT must satisfy the first order conditions, 1.IT(aT) -~(ai) :; 0 V 

i e T, which are exactly the conditions in (iii) of Lemma 1. " 

Proof o/Lemma 2: Similar to the proof of Lemma 1. II. 
Proof o/Proposition 1: (ii) and (iii) of Proposition 1 readily follow from (4) and (5). Also, it is obvious from 

(5) that sf E S ViE TF. So. if we show (iv) of Proposition 1, then we have also shown (i) of Proposition. 1. 

The strict convexity of Ci, the concavity of J and (5) imply that s[UITF(OT"» - c.(a.) is concave in a-rl" e 
AT.II' for each i E TF. Thus, because of (5), if ii".1" E AT," satisfies liITF(ii".F) - «ai) = 0 Vie TF, then 

ii".,. E NE({TF,(sniETP}), But we already know from Lemma 1 that ftITF(a~l") - «an = OVi e TF. So 

af.1" e N E({TF, (sf)iETI" }). . 
Usiug (5) and the l~uiting properties of the derivaLives 'of Ci and f givell ill ~ufllpl.iol1!1 A1 ami A2, iL it! 

quite obvious that, at any Nash equilibrium of {TF, (sf)i€T.II'}, the actions of aU the agents in TF are positive. 
Thus, in fact any a.,.,. E AT'" is II Nash equilibrium of {TF, (Sf)iETI"} if and only if fiITF(iiT ... ) - «ai) .: 0 V 

ieTF. 
" Now, consider the following maximization problem: 

(AI) 

The concavity of f and the strict tonvex:,.ty of Ci imply that the objective function of the maximization problem 
in (AI) is strictly conC3ve in lIT" EAT . Also, because of the limiting properties of the derivatives of Ci and 

f given in assumptions At and A2, the problem in (AI) can only have interior solutions. Thus, aT'" EAT' 

is a solution of the problem in (At) if and only if it satisfies liITF(iiTI") - ~(ad == 0 ViE TF, which are the 

first order conditions. But this immediately implies that a"..II' E AT" is a Nash equilibrium of {TF, (Sf)'ETI"} if 
and only if it is also a solution of the problem in (AI). However, the problem in (AI) can have at the most _de: 

solution, becauSe we already kno\\' that its objective function is strictly convave. Therefor .. (rr"', ~SniET" } can 
have at the moat one Nash equilibrium. Hence, because at... ENE( {TF, (8{);_4' l), (iv) of Proposition 1 mllst 

hold as well. II 
Pro%/Lemma 3: Let T ENbesuch that N ET4nd IT12 2. Suppose ({T,(Sj)jET_N},aT) satisfies (el) 
and (C2). Let i be any member ofT-H' Then the proof of Lemma 3 is completed in two steps. In the first step 

we show that s, is continuolls at flT(a·r). The continuity of Sj at IIT(aT) for every j E T-N is then used in the 

second step to show that s, is diffi:rentiable at IIT(aT). 
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Sl<le,.J. : 
fro prove that 8. is continuous at IIT(ar) (> 0) it wsufficient to show that 

(A2) limsiU/1'(aT) + z) ::::: lim$.UIT(a~d + r) :::: 8iUIT(aT»,.to JlO 

where z t 0 and z l 0 dtmote z a.pproaching 0 through negative and positive values, respectively. 

Cleady. wnstraints (el) and (C2) imply that, if" E nand ai +11 E Ai. then sjUIT(aT_•• aj +y»- ci(ai +11) :s 
s.UIT(aT» - ci(a.), and hence, neither oflirnglo[sIUIT(aT_pGi + V»~ - ci(aj + V)] or lim;lO[SiUIT(aT~tl(li + 
y» - ci(aj + y)1 can be greater than si(JIT(aT» - cI(at). Then, because of the continuity of Ci I we have 

~Fo stUIT(aT- .. ai +Y» ::; sjUIT(aT», and ~:ro siUIT(aT_" aj + V»~ ::; siU!T(aT». 

However, beca.use of the continuity and monotonicity of I, we also have 

and~msiUIT(aLi>aj +y» :::: 
~I~sj(fIT(aT_.. a l +Y» :::: 

Thus, the following must be true: 

(A:l) limsiU/T(aT) +z) ::; BiUIT(ar», and 
~tO 

(A4) limsiU/T(aT) +z) ::; sj(flT(aT».
zlO 

(Cl) and (C2) also imply tha.t, ify E ~ and aN+Y E AN, then IIT(ar..: N,aN+Y)-Li€T_N siU/T(a'r_N' aN+ 
Y» - cN(aN + y) ::; I/T(aT) -LiE'l'_N siUIT(aT» - CN(IlN), and hence, neither of liIIlyTo[JIT(aT_NI aN + y)­
EjET_N si(fIT(aT_N,IlN + Y» - cN(aN + V)] or liIllgJ.o[/IT(aT_N,aN + y) - EiET_NsjUIT(aT_N ,aN + y»­
CN(aN + y)] can be greater than f/T(aT) - LiELN siUIT(aT» - cN(aN). Then, because of the continuity. of 

eN and I, we have 

LjET_N limyTOsjUIT(aT_N,aN +y» ;::: Ej€T_N siUIT(aT», and 


LiET_N limy~o sjUIT(uT_N,aN +y» ~ Li€T_N sjUIT(aT». 


However, for each j E T-N, bec~use of the continuity and monotonicityof I, we a.lso ha.ve 


'. 	 ~~RiUIT(IlT_N,aN+Y» :::: 

~m8iUIT(aT_N,aN + y» = 

and 

Hence, the following must hold: 

(A5) LiET-N limzto sjU!T(aT) + z) ;::: Ei€T_N si(fIT(aT», and 

(A6) LiET-N lim..J.o sjUIT(aT) + z);::: EjET_N 8jUIT(aT». 

Now, (A2) readily follows from (A3)-(A6). Therefore, Si is continuous at IIT(ar). 
Step 2: 
Let xl> = IIT(aT)' Because of «(;1) and «(;2), Si is piecewise continuous and X O > O. Then, as Iii is continuous 

Oat x o , there exists € > 0 sufficiently small such that XO - { > 0 and Si is continuous on (X - (,Xo + i). So, by 

(ii) in the definition of S, we can find iJ > 0 such that iJ ::; i and Si is continuously differentiable on the two 
intervals (Xo - 1>, X O) and (.1:", XO +1». Let s~ demote the derivative of Iii wherever it exists. Then to prove that Sj 

is differentiable at x" it is sufficient to show that 

(A7) lim s~(XO + z) ;::.: lim siC x" + z). 
z fO 	 1 to 
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As / and c, are eontinuoUBly differentiable, (01), (02) and the continuoUB differentiability of $i on (z(l_ 6, .:to) 
and (az ll , azll + 6) immediately imply that 

(AS) liauiUIT(aT~"ai+1I»/iIT(aT)-cHai) :2: 0,,to 

(A9) lim siUIT{aT_jJ Ui +1I»/iIT(aT) - dt(ai) 0,
.,0 
(AlO) ~(l- EJET_N hjUIT(GT_N,aN + 1I»)fNIT(aT) - c'N(aN) a:: 0" and 

(All) t~(l-EJET_NBi(lIT(aT_NlaN+Y»)fNIT(aT)-cj,r(aN) :s o. 
Given (Cl), for each j e T_N, the continuity and monotonicity of f also imply that 

(A12) limsjUIT(GT_i,Gj +11» :: limsjUIT(aT_N,GN +11» :: lim sj (ZO + z), and
,10 . ,10 110 


(A1S) limsjUIT(oTi,Gj+lI» :: limsjUIT(aTN,aN+lI» :: limsj'(zl'l+z).

r!O - ,lO - z!O 


So, by using (A12) and (A13) in (A8)-(Al1). we get. 


'( (I ) > ~(ai) l' '( 1'1 ) and(A14) Iim ai z + z _ .~ IT( ) ;:::: un 8i z + z , 
.. to Ji aT "lO 


(A1S) E'€T_N~imzlo sj(ZO + z)] S; 1- c'N(aN) $ E''''T_N~imZ!O sJ~(ZO + z)]. 

.. fNIT(aT) .." 


. Now, (A7) easily follows from (A14) and (A1S). Hence, Si is differentiable at zO. II 

Proof o/Lemma 4: Let T E J{ be such that NeT and ITI ;:::: 2. Suppose {{T, (Sj );ET_N},aT) satisfies (C1) 

and (03). Then, becaul:Je of LeUWJi:\ 3, (01) and (02) iuuueuial.ely imply that 

(A16) B~UIT(aT»fiIT(aT)-~(ai) := 0 ViET_N, and 

(A17) (l-EjET_NsjUIT(aT»)fNIT(aT)-cr.,(aN) := O. 

Also, because .ofthe mono tonicity .of.the i:08t functions and the production function and (C1); it-is obvious that, 

for each i E T, ~(ai) > 0 and fiIT(aT) > O. Hence, by some simple algebraic manipulations of (A16) and (A17), 

we get EiET[~(ai)/f,IT(aT)] = 1. 11--_.-­

Proof ofLe~ 5: Let T E .N' be such that NET and ITI2: 2. The limiting properties of the derivatives of the 

'. ~t functions and the production function in assumptions Al and A2 imply Iimuarl1-+o Li€T[cHai)/filT(aT)] = 0 

and liIDjlaTII-oo 2:ET[~(ai)lf"T(GT)] :: 00, where 11.11 is the standard Eucleadian norm. Then, because of the 
continuous differentiability and the monotonicity and curvature properties of the cost functions and the production 

function in assumptions Al and A2, it is easily verified that the feasible set of problem (PT) is nonempty and 

co~pact. As the cost functions and the production function are-continuously differentiable,··it is obvious that the 

objective function of probl~ (PT) is continuous. Hence, the-tboorenn)f-Weierstrass implies the existence of a 

solution to problem (Pf)· II 
Proof of Lemma 6: Let T E.N'be such that NET and ITI2: 2. Suppose ({T,(Sj)jET_N},aT) satisfies (el) 
and (02). Then Lemma 4 implies that aT is feasible for problem (Pf). Obviously, because of Lemma 5, V(T) is 

well defined. Bence, V(T);:::: fIT(aT) - EiETCi(Gi) - Ej€T_N Hj. But (C2) implies sj(fIT(aT» -cj(aj) 2: Hj V 

j E T_N· Therefore, fIT(aT} - EiET Ci(Gi) - Ej~T_N Hj ;:::: fIT(OT) - EjET_.v sj(fIT(aT» - cN(aN). Thus, it 

must be the case that V(T) 2:: fIT(aT} - 'EiET_N 6j(fIT (aT» -cN(aN). II 
Proof ofProposition 2: Suppose assumptions AI-A5 are satisfied and V(r-) > B(TF). 

(7), (9) and (10) immediatdy imply (ii) and (iii) of Proposition 2. It is obvious from (10) that st E S V 

i E T:N' SO, if we show that oj > 0 ViE r- and (iv) of Proposition 2 holds, then, because of Lemma 6, the 

proof of (i) of Proposition 2 is also complete. 

24 



Clearly, (tl), (R) aDd the monotonidLy of the cost functions and the production function imply that ;Jj ~ 0 

'V i E T:N and (1 - EiEr!N Pj) 2: n. Then, because of the strict convexity of the cost functions, the concavity 

of the production function and (10), siUIT"(aT-)) - c.(a,) is concave in ar- e 11r - for each i E T:N and 

flr(a·r·) - Lif:r :: ..... sjUIT*(aT-» - CN(ON) is conca.ve in or. e AT·, Thus, because of (10), if aT" eAT" 

satisfies Pi"1T*(ar") - G(ad :::: 0 Vie T:N and (1 - LieT:.,.JJj)/NIT*,(aT.) - <1Y(aN) :::: O. then liT" E 
NE({T",(Sj)i€T:: N })· Hence, (6) and (8) imply at" e NE({T-, (sj)iEr::

N 
}). 

Thus, it immediately follows that ({T",(sj)JEr:: },4.) en. But suppose aZ ::: 0 (or some It: E r. Then 
N 

assumptions A4 and A5, and V(T*) > 8(TF) imply that. there is some ((T,(Sj)jEiT_H},aT) € O+N such 

tbat lr«{T.(Sj)jET_N}.OT» > V(T'), aj > 0 V JET, and ITI?! 2. But then, be<:ause of Lemma 6, we 
get ;r«{T,(sj)jEr_N},ar» > V(T')?! V(T)?! If'(({T.(SJ)JEr_N},a.r)), which is impossible. Therefore, at > 0 
ViET'. 

Having shown that. at > 0 ViE T', we can jmmedia~ely conclude that 

(AlB) 1 > Pi > 0 ViE T: N , and 1 > (1- E jET': Pi> > O. 
N 

So, using (10), (AlB) and the limiting properties of the derivatives of the cost functions and the production 

function given in assumptions At and A2, it is quite obvious that at any Nash equilibrium of {T-,(sj)iEr!/It} 
theactious of aJJ the indiviqua18 in T' are positive. Thus, in fact any aT' E AT' is a Nash equilibrium of 

{T"', (Sj)jET:
N 

} if and only if fJI = ~(iii)jli/T'(iir-) ViE T:N and (1 - EjET!/It fJj) = c'N(aN)1INIT-(iir-). 
Consider the following maximization problem: 

(A19) 

The concavity of the production function, the strict convexity of the cost functions and (AI8) imply that the 
objective function of the maximization problem in (A19) is strictly concave in aT' EAT'. Also, because of (A1S) 
and the limiting properties of the derivatives of the cost functions and the production function given in assumptions 

At and A2, the problem in (A19) can only have interior solutio~s. Thus, ar' E AI'· is a solution of the problem 

in (AI9) if and only ifit satisfies Pi =G(iil)1 fdT'(aT!") ViE T:N and (1- LiEr!N t3j) = c'N(iiN)/IN/r(ar-), 

which are the first order conditions. But this immediately implieS that a~. E AT' is a Nash equilibrium of 

{T', (Sj)JET': } if and only if it is also a solution of the problem in (A19). However, the problem in (AI9) can 
N 

have at the most one solution, because we already know that its objective function is strictly convave. Therefore, 

", {T',(Sj)iET!N} can have at the most one Nash equilibrium. Hence, as aT' E NE({T",(sj)jET':
N 

}), (iv) of 
ProposiLioli 2 must hold. II . 

Proof of Proposition 3: Using (11), and (ii) and (iii) of Proposition 1, it is quite obvious that 

(A20) s[UITF(afp» -Ci(an Ui ViE T F, and 


(A2l) UN + IITF(afp) - L s[(fITF(a~p» = B(TF). 


Then, given B(TF) 2:: V(T'), it is sufficient to show that afp E N E( {TF, (aniErpD. 
For each i E T F, as Ci is strictly increasing and c.(O) = 0, (11), (A20) and Hi 2:: 0 implysr(fITF(a~.:.,ad)-

c.(ai) S s{UITF(a~p» - Ci(an for any a. E Ai such that 0 S; IITF(a~p ,a.) S -af-
For each i E T F, using (ii) and (iv) of Proposition 1. (ll) and (A20), it ~~ be verified that sf(fITF(af,..-. •ad)­

e.(a.) S sf(fITF(a~F» - Ci(an for any ai E Ai such that -aT < fITF(a~p ,a.) < fITP(a~p). 
For each i E TF, as both c. and f are strictly increasing in ai E i:. it is obvious that, for any ai E 

Ai flTF(a~p.llt) ~ IITF(afp) if and only if c.(aa) 2:: Ci(an. Hence. for each i E TF, (11) implies thatI 

~f(fITF(a~F :~i» - et(a.) S; sf(JlTF(afp» - Ci(an for any ai E Ai such that IITF(~I' ,ail ~ IITF(afp)· 
_. -l 
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ffhUIJ, for (~ath i e TF, we have established that afCl/TF(af, .tlt» - Ci(tlt) ~ irUITF(afl'» - Ci(caf) for-. 
anya. e Ai. Therefore, 4,.. e N E( {yF, (if)IET'})' II 
Proof of PropositiaD 4: Suppose assumptions AI-AS ate satisfied and V(T") > B(TF). 


Because of (ii) and (iii) of Proposition. 2, (12H 15) readily imply that 


(A22) iiUIT"(ai-.. »- c,(an == Ui Vie T:N, and 

(A23) flT'(4.) - E B;UIT"(ai-·» - cN(aN) =: VeT'"). 
,ET:N 

So it is sufficient to show that aT. E N E( {T', (inIET:,J). 
It is obvious from (13) and (iv) of Proposition 2 that, for each i E 70. iiU/T·(ai-. ,tit» - ci(a.) :$-. 

SiUIT'(4.» - coCa;) V<Ii·E.A •. 
For each i e r:,as c, is strictly increasing and Ci(O) =0, (12), (A22) and u. ~ 0 imply S:(flT'"(4- .a.»­

, -. 
Ci (ai) :$ sjUIT'" (a,j.. » - Ci (an for any ai e Ai such that 0 :$ fiT'" (a,j.. ,ai) :$ -ailP; . 

For each i e 7':., using (iv) of Proposition 2 and (12),.it is easily;;erified that s;UIT"(a.j·. ,ai» - c.(ai) :$-. 
S1UIT"(aT'» - ci(a;) for any at E Ai such that flr(aT' ,a.) > -aUP;. 

It can be checked in (14) and (15) that, for each i E r;: 8;(X):$ a;(x) V x E R+. So, for eath i E r.;., (ii) and 

(iv) of Proposition 2 and (A22) imply that. i;UIT'"(a,j._ ,ai» - ci(ai) :$ siUIT"(af.» - coCa;) V tit E Ai. 
Clearly VCr) > UN ;?: O. Now, suppose IT';' I :;: O. Then it is easily verified from (12)-(15) that z ­

L>ET' sJ~(z)::::; 0 V x E [0, zIT;l] and :E - E 'ET" sJ'!(z) s-; x - L'ET- a~(x) V Z > ZiT'; I , Then, as CN is strictly
J -N J _N J -N J 

increasing and CN(O) ::::; 0, (A23) and V(T") > 0 imply that fiT'" (aT.: N , aN) - LiET:NsjUIT"(aT:N, ON» ­

CN(aN) s-; flT'"(af.)- LiET: SjUIT'(af.» -CN(aN) VaN E AN such that 0 ~ flT'(aT:N,aN):$ ;tIT';I. Also,
N 

(iii) and (iv) of Proposition 2 and (A23) imply that flT"(aT.:N,aN)'- LiET': ijUIT" (c4': ,aN» - CN(aN) ~ N N 

fiT'" (a.;.. ) - LiET':NSjUIT'" (a.;.. » - cN(aN) for ~y aN E AN such t~at fiT'" (a.;.:N' aN) > zIT';'I. 

Next. suppose ITtI ::::; O. Then it is clear from (12) and (13) that x - LiET!.N Sj(x) :$ X .- LiET: .sj(:e) V 
x E ~+. So (iii) and (iv) of Proposition 2 and (A23) imply that flT"(a.;.':N ' aN)'- L;iET: Sj(fIT·(a,j.:"" 

N 

aN»'­
N 

cN(aN):$ flT-(a,j..) - LjET':", s]UIT-(4.» - cN(aN) V aN E AN· ' 
Thus, we have established that, for each i e ~N' S;UIT'"(a.;.. ,ai» -ci(a.) ~ S;UIT'"(af.» -ci(a;) for any 

al E Ai, and flT*(IlT: N,IlN) .- LiET:N ·'jUIT*(aT.:N,aN)) - C~'(IlN) s-; fIT '"(4.) - EieT: Niij(flT'(4·» .­
,cN(aiv)foranyaNEAN. Hence,a,j.. E NE({T"',(S;)'ET: 

N 
})· II 

Appendix B 

We first prove Lemma 9 below, which is u~d in the construction of the output sharing rule used to prove 

Lemma 7. 

Lemma 9: Suppose assumptions Al and A2 are satisfied, and {TF , (snETF} is such that sHx) ::::; z/ITFI V 
x E !ll+ and each i E TF. Then there exists yF > 0 such that yF < flTF (aTP) V aTP E N E( {TF, (Si.)ieTI' }). 
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II 

Proof of LmmU/l 0: SUPPOHC {'1'}", (Sj)H:'l' p} it:! I!."I given in \.lw stal,em(mL of the lemma. Then t,h(~ limiting 
properties of the derivativ(!s of Ci and 1 given in assumptions Al and A2 imply that, if (1:1'1' E _41 '1' is a Nash 
equilibrium of {Tr,(,~l)i€'l'/")' then (l, > 0 ViE ~rf'! and hence, 111'1-'(<11'1") > 0, So Lemma 9 mUtlt hold, 

Suppose B(TF) ~ Vcr). Tben it is obvious that B('l'F) > UN 2! O. Now, pick any c > 0 such that 8(TF) _ 
ITf'lc > UN. Define s(t(x) :::::: af'(:::) + c V ::: E ~+ and eacll i E 1'1". Using Proposition 1 and the quasilinearity 

of the utility functiona, it can be easily checked that 

(BI) 	 sP(fITF(iif,» - cI(an = UJ +c ViE Tl' , 

(B2) UN +IITF'(af,.) -	 r: sPUITF'(af,,» = B(TF') -ITl'/c, and 
ieTf' 

(B3) N E({Tl' , (St't)iETP }) {afp }.= 
Next, let 1L' > 0 be such that 1l < mini€TP{Ui} + f, 1L' < /lTF'(afp), and t < yF, where yF is as given in 

Lemma 9. Al'!o, let t < fjE < IITF(afr). Furthermore, let yC > IITl' (afF) be such that y' - LieTZ' srt(lY) 
> O. The existence of 1/ is gauranteed by B(TF) - ITFlc > UN and (B2). Then, for each'i E '1'F, defint> the 

payment function i[l as follows: 

(B4) . 

if 0 ~ x < y' 
if y~ ~ x ::{il
ify( < x < j? 

. if x ~ yl, 

It can be easily checked that the output sharing (S[')iETl" always awards nonnegative payments to every agent 

in TF, and also, the principal's residual is always nonnegative. 

Proof 01 Lemma 7: Suppose B(TF) ~ V(T"'). Let f > 0 be such that B(TF) - ITFlc > UN. Then it is obvious 

from (Bl), (B2) and (B4) that 

(B5) 	 sfC(flTF(af.p» c.(an U. + (; ViE Tl', and 

(86) 	 'LtN+/ITF(afF)- 2: sf'(fITF(af,,» B(TF) -ITl'l£. 

iET" 


So it is sufficient to show that afp is the unique Nash equilibrium of {Tl' ,(SP)iETP }, 


.'. As It < 'Lt. + c ViE T F, using (BI) and (B3)-(B5), we can develop a.n argument similar to the one in the 

proof of Proposition 3 and show that afE' is a Nash equilibrium of {Tl', (S[l)iETF }. Thus, it remains to be shown 

that {Tl', (S[<)iETp} does not have any Nash equilibrium other than afro 
(B4) and the limiting properties of the derivatives of Ci and I given in assumptions Al and A2 imply that, 

ifar" E NE({Tl',(s[£)iETd) and 0 ~ IITl'(aTF) < y', then IdTF(arF)/ITl'l- «ai) = OViETF. But it 
is obvious that,.if aTF E ATE' satisfies hlTl'(aTF )/ITFI- ~(ad = 0 ViE Tl', then, because of the concavity of 

I and the strict convexity of Ci, ClTF is a Nash equilibrium of {TF, (eniETE'}, as given in Lemma 9. Hence, there 

does not exist aTF E N E({TF, (S[{)iETF}) such that 0 ~ IITF(aTF) < t. . 
Suppose aTF E N E({TF, (Sf')iETF}) is such that It ~ IITF(aTF) ~ f/ or IITF(aTF) ~ yl. Then there 

exists j E Tl' such that aj > 0, and hence, cj(aj) > O. So sf'(!ITF(aTF» - cj(aj) 0 - cj(aj) < 0 ~ 
sr(flTF(ar!j' 0» - Cj (0), where the last inequality follows from the fact that ift: always pays a nonnegative 

amount to agent j and Cj(O) =O. But. this contradicts our supposition that aTF E N E( {Tl', (s[l);'ETF }). Hence, 

there does not exist aTF E N E({TF,(s[")iETd) such that yl ~ IITF(aTF) ~ ii' or flTl'(ar F) ~ 1l. 
From (5) and (B4) it is clear that, if IITP E NE( {Tl', (S[{)iETp}) and i/ < IITF(aTF) < fl, then liITF(arF) 

- «a.) = 0 ViE TF. But we also know from the proof of (iv) of Proposition 1 that, if aTF E AT" and 

1.ITF(aTF) - ~(ai) =0 ViE Tl' , th~n aT!" = afF' So, if aTF E NE({TF,(s[')i€Td) and fi' < flTF(aTF) < 
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So we have shown that {Tf',(ift)iCTF'} has only one possible clilldidaf,(! for a Nash equilibrium, nanH~ly, 4p, 
Thus, as .we IllrCl~dy kn()w that 41' E N E({rF • (Sft);€TJ' }), the proof of Lemma 7 is complete. II 

Suppose V(T·) > B(1'1). 'fllen V(T") > UN ~ O. Now, pick any , > 0 such tbat V(T") - IT':N Ie :> UN and 

exi + € <: 0 ViE T:, and define 8t'(:c) = 8Hx) + (V x E 3(+ and each i E T: N· Using Proposition 2 and the 
quasilinearity of the utility functions, it is obvious that 

(87) sjC(fIT*(aT")) - Ci(ai) = fl, +t 'rJ i E T: N , 

(BS) flT"(aT·) - I: sit(J/T(aT_» - cN(aiv) Vcr) -IT':NI{, and== 
ieT:: N 

(ll9) 	 N /t.'( {1'" (s~l). • }), t 'ET_ N = 	{aT- }. 

1~t. 11*( > 0 he Im~h that. 11;11"( < 1£1 + t: ViE T:N' and (1 - E.eT:N 11;)?r < V(r·) - Ir':Nk. Also. for ear-h 

i E T:', let Ii be the smallest positive integer such that -(exi + ()IP; ~ 1111*t. Then, for each i E T:, define tbe 

payment function sr a..~ follows: 

(810) i;!C(x) = {P;[x - (I - 1)11*<] if (I -1)11"< ~ x <: Iy"l for 1= 1, ... ,It 
.• . sj«x) if z ~ 'ty... 

Given any nonnegative integer 1 and any i E T:, let 

jf 1 =0 
if 0 < 1 < If 
if I =If 
if 1> It. 

Then, for ea.ch nonnegative integer 1, let A£(I) =E,ET': A~(I), and Al(I) =Ef=o A«I). Also, let Il/l be the 

largest positive integer such that A«rH ) > o. 
Now, if - E.ET':)exi' + f:)~ 0, then, for each i E TO U1+, define the payment function s;' as follows: 

(Bll) si«x) = { 	 [_ 2:i:!:;a;+<)] A£(I) + Pix. if Iy·< ::; x < (I + l)y.. t for I = 0, .n, IfH - 1 

sit(x) if x ~ J<Hy.t. 

On the otherhand, if - E'ET:,.. (o:i +£) < 0, then let IIv be the smallest positive integer such that E'ET:: (ex; + 
N 

t)/(1 - EiET: Pi) ::; IJ./y.£. Now, given any nonnegative integer I, define 
N 

ifI =0 
irO < 1 < IN 
ifI=/,v 
if j > IN' 

-	 - [- - ­
Then, for each nonnegative integer I, let At:(I) = A«I) + AN(l), a.nd A<(I) == El=o N(I). Also, let I eH be the 
largest positive integer such tha.t )'£(/,H) > O. 

Thus, if - EiET" (0:; +~) < 0, then, for each i E TO U1+, replace the definition of .s;< in (Bll) by the 
-N 

following: 

if Iy·c ::; x < (I + l)y*e for I = O ••••• I£H - 1(BI2) s;e(x) = { h:;,:,;;(.;+.)1A'(I) HI' 
s;£(x) 	 if x ~ j£H y.£. 
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It can be verified that. the output sbaring <S;f)i€T': , as defined a.bove, always awards nonnegative payments 
N 

to every agent in T: N • and also, the principal's residual is always nonnegative. 

Proof of Lemma 8: Suppose V(T') > B(TF). Let c > 0 be such that V(T') - 1T:.vle > U.¥ and ai + ( < 0 
ViE T:,. Then, using (81), (B8) and (81O)-(B12). it can be checked that 

(B13) s;~(fIT'(a;... »-q(an :::: Ui+C ViET: N, and 

(BI4) flT'(a;..) - L s;~UIT'(a;.·n -cN(ail) :::: Vcr) -I'r:.vlf. 
.eT:N 

So it ill Iluffkip.nt to Ilhow that 4. ilt t.h~ IIniqn~ Nl\Rh ~qllilihr;lJm. of {T'" I (lii( )i€T:}. ,
N 

For each i E 7':. if x E [0, lty"~). then (810) implies that's;t(x) < Hi + c, So, for each i E ~. as c. is strictly 

increasing and Ci(O) =:: 0, (B 10) and (813) imply that srUIT"(t4- •ai» - Cl(ai) ::; ·W(fIT"(ai-,,» - Ci(an for 
. -. 

anyai E Ai such that. 0 :5 flT"'(ar- ,ail < l;y'~, 
Also, it is dear from (B9) and fino) that, for each i E T:, ·WUIT"(aT':••at»~ - ci(ai) ::; 5:«(/1T"(a:;.-» ­

Ci(an for any ai E Ai such that flT"(ar- ,a.) ~ fly"t.-. 
For each i ETO U'It. using (Bll) or (812) depending on whether - LiET* (aj + c) is nonnegative or not. 

-N 
it can be checked that .i;t(.:c) S s;t(z) V.:c E ~+. Thus, for each i E TO U T.;.. because of (87), (B9) and (813), 

·WUIT'(a;,. ,tIt» - ct(tIt) ::; sitUIT"(t4_» - ci(a;) V tIt E Ai. 

It can b~'verified that., if - LiET:)aj + c) ~ 0, then (BI0) and (Bll) imply z - EiET': WCz) ~ ;e ­
N 

EiET:,., 81'(Z) V Z E ~. Thus, because of (B8). (B9) and (814), if - LjET:)aj +f) ~ 0, then flT"'(ai-: I aN)
N 

- EiET:NsrUIT"(4:N•aN» - CN(aN):5 flT"(ar-) - LiET: st(flT"(4-» - CN(a;") V aN E AN. 
N 

It can also be verified that, if - EiET.:N(aj + c) < 0, then (810) and (BI2) imply.:c - LjET':NBr(.:c) < 
V(T') - JT:Nlf V.:c E [0, l~yH). So, if - E "eT- (aJ~ +c) < 0, then the monotonicity of CN, CN(O) == 0 and (BI4)

J _N 

imply that flT"(4- .aN) - L'eT" stUIT"(a:;.- ,aN» - c.v(aN) :5 flT"(a;.-) - EjET- srUlr(aT-»­
-N J -N -N -N. 

cN(aN) for any aN E AN such that 0:5 flT"(4:I\I,aN) < livy·~. 
Once again, it can be verified that, if - EiET': (a] + c) < 0, then (B10) ~nd (BI2) imply x - EiET': st(x)N N 


== z - LjET': sr(.:c) V Z 2: livy"t. So. if - EiET.:)aj + c) < 0, then. because of (89). fJT"(4: ,a.v) ­
N N 

EjET':
N 

s?UIT"(4:N,aN» - cN(aN) $ flT"(a;..) - EiET: s?UIT"(aT-» - cN(aN) for any aN E AN such 
N 

that flT"(ar:N.aN) 2: l~yU_ 
Thus, we have shown that 4" E NE({T',(sr)iET: })'

N 

For each i E T: N , it is dear from the definitions in (BI0)-(B12) tha.t §r is piecewise linear and has a slope 

of Pi (> 0) on each linear piece. Similarly, (BI0)-(BI2) also imply that .:c - EiET': s?(x), the principal's 
N 

residual, is piecewise linear in Z € ~+ and has a slope of 1 - Pj (> 0) on each linear piece, Therefore, E iET': 
N 

the limiting properties of the derivatives of the cost functions and the production function in assumptions At 

and A2 immediately imply that, if aT" E N E({T', (Sr>iET: }), then at > 0 ViE T" . 
N 

It can be easily checked that the proof of Lemma -3 uses only the Nash equilibrium condition in constraint 

(C2). So, if aT- E N E( {T", (S~t)J'ET" }), then an argument similar to the one in the proof of Lemma 3 shows
J -N 

that, for each i E 7':N' sit is differentiable at flT'(ar-). Hence, if aT" € N E( {T", (Sj')jET: }), then (B1O)­
N 

(BI2) imply that Pi = da(a·d/falT"(aT·) ViE T:N and 1 - EiET: Pi = c'N(a,v)/ fNIT" (aTO ). However, we 
N 

know from the proof of (iv) of Proposition 2 that aT- E .-iT- satisfies 11; :::: da(a;)/fdT"(aT.) ViE r:.. N and 

1 - L'ET- Pi = c'N (aN) / f NIT· (aT-) if and only if aT. = aT.' Therefore, as we have already shown that a:;.­
J -lVl 

E N E( {T" I (Sj')iET: 
N 

}), the proof of Lemma 8 is (:omplete. II 
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