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Abstract

We define vector-valued generalized Arrow-Pratt (GAP) coefficients
for a utility defined on a Hilbert outcome space. Given risk averse,
increasing and twice differentiable utilities on such outcome spaces,
comparisons of their risk aversion using GAP coefficients are congru-
ent to comparisons using well-founded decision-theoretic criteria. The
Hilbert space setting admits risks embodied in a significant class of
random processes, especially second-order processes. We also provide
a theoretically well-founded and computationally tractable method for
estimating the realized GAP coefficient from observed data when the
outcome space is a reproducing kernel Hilbert space. We use the GAP
coefficients to predict the effect of differences in risk aversion on an as-
set portfolio when assets are specified by dividend processes. Finally,
we show a duality between utility functions on Euclidean spaces and
GAP coefficients.

JEL classification: C44, C63, D81, G11
Key words: comparative risk aversion; equivalence results; gener-

alized Arrow-Pratt coefficients; random processes; reproducing kernel
Hilbert spaces; duality; eikonal equation

1 Introduction

1.1 Outline and motivation

Consider a risk averse, increasing and twice differentiable (Bernoulli-von
Neumann-Morgenstern) utility function defined on an open interval in the
real line. The function mapping each point in the domain to the Arrow-Pratt
(henceforth, AP) coefficient of absolute risk aversion (Arrow [2], Pratt [18])
at that point may be called the AP function associated with the given utility.

Although random vector outcomes are commonplace in economic mod-
els, there is hitherto no satisfactory definition of a generalized AP function
derived from a utility defined on a vector outcome space. We provide such
a definition and explore its ramifications.

∗Department of Economics, Delhi School of Economics, University of Delhi, Delhi
110007, India. Tel: +91-9899453559. Fax: +91-1127667159. E-mail: sudhir@econdse.org
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The claim of a satisfactory definition, of course, begs the question re-
garding our notion of “satisfactory”. We begin by describing our desiderata.

Suppose we are given two risk averse, increasing and twice differentiable
utilities defined on a real interval and their associated AP functions. Given
the notion that an AP coefficient at a point is a local measure of risk aversion,
if one AP function pointwise dominates the other AP function over the
interval, then it is plausible to interpret this as implying that the preference
over lotteries underlying the former is more risk averse than the preference
underlying the latter. The substantive justifications for this interpretation
are the following well-known facts:

1. The AP function is determined by the underlying cardinal preference
as it is uniform across all equivalent representations of the preference.

2. The partial order generated on the set of risk averse, increasing and
twice differentiable utilities by comparing the associated AP functions
is congruent to the partial order generated by various well-founded
decision-theoretically compelling criteria for comparing risk aversion.1

We regard the exact replication of these properties as necessary for any
satisfactory generalization of the AP function to a vector outcomes setting.

Random vector outcomes in an economic theory model usually are sam-
ple paths of a random process (henceforth, process). If a process has an
infinite time-domain, as is usually the case, then its sample paths belong to
an infinite dimensional path-space, i.e., a vector space of real-valued func-
tions on the time-domain.

Therefore, in order to facilitate applications, an additional desirable
property of a generalized AP function is:

3. It should be defined for a rich class of infinite dimensional path-spaces
that allow the representation of a significant class of processes as ad-
missible risks in the canonical form, i.e., as lotteries on the path-spaces.

In Section 4, equation (1) defines a vector-valued generalized Arrow-
Pratt (henceforth, GAP) coefficient that is derived from a utility defined on a
Hilbert space. It is easily verified that the resulting GAP function replicates
property (1) and Theorem 4.5 shows that it also replicates property (2).

We show in Section 5 that lotteries on a reproducing kernel Hilbert
(henceforth, RKH) path-space are decision-theoretically equivalent to pro-
cesses whose sample paths belong to that space. This result is sharpened to
an equivalence between second-order processes with an RKH path-space and
lotteries on such spaces that satisfy a square-integrability property. These
dualities show that the GAP function satisfies property (3), i.e., there is

1Proposition 6.C.2 in Mas-Colell et al. [15] is an omnibus version of this result.
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a rich class of path-spaces that serve as domains for GAP functions and
allow the representation of a significant class of processes by lotteries. In
Appendix A, we verify that some familiar, and some less familiar but very
useful, path-spaces are RKH spaces and characterize the second-order pro-
cesses that can be represented by lotteries on these spaces.

RKH path-spaces play another important role. The definition of a GAP
coefficient implies that, if the outcome space is a subset of an RKH space,
then the realized GAP coefficient (contingent on the realized random out-
come) is a real-valued function belonging to that RKH space. Suppose this
function is unknown, but we have a finite set of observations from its graph.
The question arises: Can this data be used to estimate the unknown GAP
coefficient in some well-founded way? We show in Section 6 that this can
be done systematically by modeling the estimate as the optimal trade-off
between the competing concerns of goodness-of-fit and regularity.

It is a well-known application of AP functions that, given a stock and
a risk-free bond with real-valued returns, optimal investment in the stock
is inversely related to risk aversion when comparative risk aversion is mod-
eled using AP functions. Now suppose the asset returns are generated by
processes whose sample paths belong to a Hilbert path-space. Theorem 7.2
shows that the scalar comparative statics result can be generalized appro-
priately using the GAP function to model comparative risk aversion.

It is also well-known that there is a duality, i.e., a bijection, between
appropriately defined sets of utility functions on the real line and AP func-
tions. This means that an AP function embodies all the preference-related
information that is embodied in its dual utility. Theorem 8.10 generalizes
this duality by showing that utilities and GAP functions are dual objects
in the general Euclidean setting. This result hinges on there being one and
only solution of a system of non-linear partial differential equations asso-
ciated with a GAP function. We show that (a) this seemingly intractable
problem can be reduced to that of showing the existence of a unique solution
of a single eikonal partial differential equation, and (b) solving the reduced
problem subject to an auxiliary condition.

Apart from the sections outlined above, we shall state our technical
conventions in Section 2, state our formal model in Section 3 and conclude
in Section 9. Proofs of all the propositions in Sections 4-8 are collected in
Appendix B.

1.2 The literature

Given a utility and a lottery over a Euclidean outcome space, Duncan [5]
derived an “approximate vector risk premium” in terms of the “absolute
risk aversion matrix” and Hellwig [7] and Kihlstrom and Mirman [9] have
defined real-valued generalizations of AP coefficients. As comparisons of
these constructs across preferences have not been characterized in terms of
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other well-founded decision-theoretic criteria, these constructs do not repli-
cate property (2), which we regard as a sine qua non for a satisfactory
generalization of an AP coefficient. Given their Euclidean setting, they also
cannot satisfy criterion (3).

Since they are linked to this paper by property (2), we cite here the
papers that compare risk aversion in vector outcome settings using crite-
ria based on increasing concave transformations of utilities, acceptance sets,
sets of risk premia (relations �C , �A and �π, respectively, in Definition 4.2),
sets of certainty equivalent outcomes and certainty equivalent probabilities
(Karni [8], Kihlstrom and Mirman [9], Levy and Levy [13], Paroush [16],
Shah [19]); the results are surveyed in Shah [19]. We should mention here
that, with the exception of the last cited article, all the results are restricted
to Euclidean spaces. The equivalence results in Shah [19] hold for the class
of locally convex topological vector spaces, which (arguably) includes most,
if not all, vector outcome spaces occurring in economic models. In order to
demonstrate the inclusiveness and usefulness of such settings, it is shown
that members of a very important class of processes commonly used in eco-
nomic models, namely Wiener process and various processes derived from
it, are representable by lotteries on such spaces.

2 Conventions

2.1 General conventions

Relation ⊂ denotes weak inclusion. A subset of a topological space is given
the subspace topology. A product of topological spaces is given the product
topology. The real line < is given the Euclidean topology.

A topological space E is given the Borel σ-algebra B(E) and ∆(E) is the
set of countably-additive probability measures (henceforth, lotteries) on E.

Given a set T , let <T be the real vector space of all functions f : T → <
with the usual pointwise definitions of vector addition and scalar multipli-
cation. For x, y ∈ <T , we say x = y if x(t) = y(t) for every t ∈ T .

Given x, y ∈ <, let x ∧ y = min{x, y} and x ∨ y = max{x, y}. Given
D ⊂ < and f : D → <, we say that f is increasing if x > y implies
f(x) > f(y) for x, y ∈ D.

For a function f , we denote the first (resp. second) derivative by Df
(resp. D2f). Subsets of <n with Lebesgue measure zero are called negligible.
If a property holds everywhere on a set other than a negligible subset, then
we say that it holds almost everywhere (henceforth, a.e.) on the set.

2.2 Hilbert spaces

Consider a real vector space X with scalar product 〈., .〉 : X2 → <. The
scalar product yields the norm on X, given by ‖x‖ = 〈x, x〉1/2, and the
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distance function on X, given by d(x, y) = ‖x − y‖. (X, 〈., .〉) is said to be
a (real) Hilbert space if (X, d) is a complete metric space.

B ⊂ X is called a Hilbert basis of (X, 〈., .〉) if it is orthonormal and X
is the topological closure of the span of B. A Hilbert space (X, 〈., .〉) with
X 6= {0} has a Hilbert basis (Lang [12], Chapter V, Corollary 1.7).

Consider a Hilbert space (X, 〈., .〉). Let Xd be the vector space of all
continuous real-valued linear functionals on X. Xd is isomorphic to X
(Lang [12], Chapter V, Theorem 2.1). X∗ ⊂ Xd is said to be total if
x∗(x) = 0 for all x∗ ∈ X∗ implies x = 0. If x ∈ X \ {0}, then there exists
x∗ ∈ Xd such that x∗(x) 6= 0 (Dunford and Schwartz [6], Corollary V.2.13).
So, Xd is an example of a total set of continuous linear functionals on X.

The following class of vector spaces will be of particular interest in many
results: a Hilbert space (X, 〈., .〉) is called a reproducing kernel Hilbert
(henceforth, RKH) space if X ⊂ <T for a set T and the evaluation
functional e(t, .) : X → <, given by e(t, x) = x(t), is continuous for every
t ∈ T . For our purposes, the key property of an RKH space (X, 〈., .〉) is
the following: as e(t, .) is a continuous linear functional for t ∈ T , the Riesz
representation theorem (Dunford and Schwarz [6], Theorem IV.4.5) implies
the existence of a unique kt ∈ X, called the reproducing kernel for t, such
that 〈kt, .〉 = e(t, .) on X.2

3 Model

Our results will concern the following setting for outcome spaces.

Definition 3.1 ((X, 〈., .〉), X∗,≥) is called a Hilbert (resp. RKH) set-
ting if (X, 〈., .〉) is a Hilbert (resp. RKH) space with a Hilbert basis B,
X∗ is a total set of continuous real-valued linear functionals on X, and for
x, y ∈ X, x ≥ y if and only if 〈x−y, b〉 ≥ 0 for every b ∈ B. Given x, y ∈ X,
we say x > y if x ≥ y and x 6= y.

A familiar RKH setting is specified by X = <n, 〈x, y〉 =
∑n
i=1 xiyi,

X∗ = {〈ei, .〉 | i = 1, . . . , n} where B = {e1, . . . , en} is the standard basis for
<n, and x ≥ y if and only if xi = 〈ei, x〉 ≥ 〈ei, y〉 = yi for i = 1, . . . , n.

Definition 3.2 O is called a Hilbert (resp. RKH) outcome space if it
is a nonempty convex set that is open in (X, 〈., .〉) for a Hilbert (resp. RKH)
setting ((X, 〈., .〉), X∗,≥).

For a Hilbert outcome space O, we may identify ∆(O) with {µ ∈ ∆(X) |
µ(O) = 1} as Lemma 4.20 in Aliprantis and Border [1] implies B(O) ⊂ B(X).

2See Berlinet and Thomas-Agnan [3] for an exposition of RKH spaces. See Appendix A
for examples of RKH spaces and examples of Hilbert spaces that are not RKH spaces.
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Definition 3.3 Given a Hilbert outcome space O, the set of admissible
lotteries ∆(O)0 consists of lotteries µ ∈ ∆(O) with a mean outcome mµ ∈
O satisfying x∗(mµ) =

∫
O µ(dz)x∗(z) for every x∗ ∈ X∗.3

The definition of X∗ implies that µ ∈ ∆(O)0 has a unique mean mµ ∈ O.
Given a Hilbert outcome space O, a utility u : O → < is said to be

risk averse if u is measurable and u(mµ) ≥ U(µ, u) :=
∫
O µ(dy)u(y) for

every µ ∈ ∆(O)0, where the abstract Lebesgue integral
∫
O µ(dy)u(y) is the

expected utility from µ and u. A utility u : O → < is said to be increasing
if x, y ∈ O and x > y implies u(x) > u(y).

Definition 3.4 Given a Hilbert outcome space O, the set of admissible
utilities U consists of risk averse, increasing and twice differentiable utilities
u : O → <.

We say that u, v ∈ U are ordinally congruent if, for all x, y ∈ O,
u(x) ≥ u(y) if and only if v(x) ≥ v(y).

For u, v ∈ U , let u ≡ v if u = a+bv where a, b ∈ < and b > 0. Then, U/≡
is the quotient set generated by the equivalence relation ≡ and [u] denotes
the equivalence class containing u.

The derivative of u ∈ U is a mapping Du : O → X and the second
derivative of u is a mapping D2u : O → L(X,X), where L(X,X) is the
space of continuous linear maps from X to X.

4 Equivalence result

We prepare for our main definition with the following observation.

Lemma 4.1 If O is a Hilbert outcome space and u ∈ U , then Du(.) > 0
and ‖Du(.)‖ > 0 on O.

Using this fact, we define the generalized Arrow-Pratt coefficient
(GAP coefficient) of u ∈ U at x ∈ O by

au(x) =
−D2u(x)Du(x)

‖Du(x)‖2
(1)

If X = <, then au reduces to the AP coefficient. Moreover, au is invariant
across utilities equivalent to u: if b, c ∈ < with c > 0, then au = ab+cu.
So, au is determined purely by the cardinal preference underlying u. As
D2u(x) ∈ L(X,X) and Du(x) ∈ X, we have au(x) ∈ X. So, au : O → X is
the GAP function generated by u ∈ U .

3Outcome mµ is the weak integral of the identity function on O à la Pettis [17]. For
example, in the Euclidean setting, the mean mµ of µ ∈ ∆(O)0 must satisfy 〈ei,mµ〉 =∫
O
µ(dz) 〈ei, z〉 for i = 1, . . . , n, which amounts to computing it component-by-component.
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Consider a Hilbert outcome space O and u ∈ U . The acceptance set
of u at x ∈ O is A(x, u) = {µ ∈ ∆(O)0 | u(x) ≤ U(µ, u)} (Yaari [20]). The
set of risk premia of u at µ ∈ ∆(O)0 is π(µ, u) = {π ∈ X | u(mµ − π) =
U(µ, u)} (Paroush [16]).

With this preparation, we now define various alternative criteria that
may be used to compare risk aversion. Our aim is to show their equivalence.

Definition 4.2 Given a Hilbert outcome space O and u, v ∈ U , we say
(a) u �G v if u and v are ordinally congruent and au ≥ av on O,
(b) u �C v if there exists an increasing concave function f : v(O) → <

such that u = f ◦ v,
(c) u �A v if A(x, u) ⊂ A(x, v) for every x ∈ O, and
(d) u �π v if, for every µ ∈ ∆(O)0, there do not exist πu ∈ π(µ, u) and

πv ∈ π(µ, v) such that πv > πu.

The auxiliary ordinal congruence condition in the definition of �G re-
quires some discussion.

We first show that the comparability of GAP functions per se does not
imply that the underlying utilities are ordinally congruent. Let X = <2 and
O = <2

++. Consider utilities u : O → < and v : O → < given by

u(x, y) = x+ e−3y and v(x, y) = lnxy (2)

It is easy to verify that u, v ∈ U and

au(x, y) = (0, 0) ≤
(

y2

x(x2 + y2)
,

x2

y(x2 + y2)

)
= av(x, y)

for every (x, y) ∈ O, but u and v are not ordinally congruent as

u(e, e) = e+ e−2 > 2 = u(1, e3) and v(e, e) = 2 < 3 = v(1, e3) (3)

In the real outcomes setting, i.e., O ⊂ X = <, all the utilities in U are
ordinally congruent as they are increasing. Since the auxiliary condition is
trivially satisfied, it can be dropped in this case.

Now consider a general Hilbert outcome space O and utilities u, v ∈ U .
Examples such as u and v in equations (2) and (3) show that utilities in
U may not be ordinally congruent. So, unlike in the real outcomes case,
assuming that utilities are increasing does not ensure ordinal congruence.
However, ordinal congruence is necessary for well-founded comparisons of
risk aversion, as the next result shows.4

4Indeed, this result holds in far more general settings and for much larger sets of
admissible utilities (Shah [19], Lemma 4.4).
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Theorem 4.3 Consider a Hilbert outcome space O and u, v ∈ U .
(A) If u �C v (resp. u �A v), then u and v are ordinally congruent.
(B) Suppose, for all x, y ∈ O, there exists z ∈ O such that z ≥ x and

z ≥ y. If u �π v, then u and v are ordinally congruent.

Given these facts, it is clear that, if we wish to define a criterion that (a)
compares risk aversion by comparing GAP functions, and (b) is equivalent
to well-founded criteria embodied in relations �C , �A and �π, then such a
definition must require ordinal congruence as an auxiliary condition. This
has been done in the definition of �G.

We note the following facts as preparation for our main result.

Lemma 4.4 If O is a Hilbert outcome space and u, v ∈ U are ordinally
congruent, then

(A) there is a unique function f : v(O) → < such that u = f ◦ v;
moreover, f is increasing and twice differentiable, and

(B) Df > 0 and av − au = DvD2f(v)/Df(v).

We now have our equivalence result.

Theorem 4.5 If O is a Hilbert outcome space, then �G=�C=�A=�π on
U .

5 Duality of processes and lotteries

This section displays two dualities between processes and lotteries. For an
outcome space that is an RKH path-space, these results serve to identify
the risks embodied in lotteries on the outcomes with those embodied in pro-
cesses with that path-space. These results provide substantive motivation
for extending the theory of AP coefficients beyond Euclidean spaces.

Fix a time domain T ⊂ <. A vector subspace of <T is called a
path-space. A random process is a collection Y = (Ω,F , P ;T, y), where
(Ω,F , P ) is a probability space, T is the time-domain and y : T ×Ω→ < is
such that y(t, .) is measurable for every t ∈ T , i.e., each y(t, .) is a random
variable. Each ω ∈ Ω yields the sample path ŷ(ω)(.) = y(., ω) ∈ <T .

Definition 5.1 Consider a Hilbert outcome space O ⊂ <T . If a process
Y = (Ω,F , P ;T, y) is such that ŷ(Ω) ⊂ O, ŷ : Ω → O is measurable and
P ◦ ŷ−1 ∈ ∆(O)0, then Y is said to be representable with respect to O.

This connects processes to the model in Section 3 as the sample paths
of a representable process become admissible outcomes and the distribution
generated by it on the sample paths becomes an admissible lottery.
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The possibility of representing a process by a lottery on its path-space is
important because these representations are decision-theoretically equiv-
alent: given O, an admissible utility u : O → < and a representable process
Y = (Ω,F , P ;T, y) with ŷ(Ω) ⊂ O, the change-of-variable formula implies∫

Ω
P (dω)u ◦ ŷ(ω) =

∫
O
P ◦ ŷ−1(dy)u(y) (4)

The measurability of ŷ, which is required for defining P ◦ ŷ−1, is not
inherent in the definition of a process and must be verified for each process.

Given a process Y = (Ω,F , P ;T, y), let mY(.) =
∫

Ω P (dω) y(., ω). If
mY ∈ <T , then mY is called the mean function of Y.

Theorem 5.2 Consider an RKH outcome space O ⊂ <T .
(A) If process Y = (Ω,F , P ;T, y) is such that ŷ(Ω) ⊂ O and ŷ is measur-

able, then mP◦ŷ−1 ∈ O if and only if mY ∈ O. In either case, mP◦ŷ−1 = mY .
(B) For every P ∈ ∆(O), the process E(P ) = (O,B(O), P ;T, e) is such

that ê(O) = O, ê is measurable and P ◦ ê−1 = P , where e : T × O → < is
the evaluation functional given by e(t, x) = x(t).

Part (A) is useful for verifying whether a process Y is representable as
it is often easier to verify mY ∈ O than to verify mP◦ŷ−1 ∈ O. Part (B)
implies that the “coordinate processes” generated by lotteries in ∆(O)0 are
representable.

Consider an RKH outcome space O ⊂ <T . Let P(O) be the set of
processes that are representable with respect to O. We say that processes
Y1 = (Ω1,F1, P1;T, y1) and Y2 = (Ω2,F2, P2;T, y2) in P(O) are equivalent,
denoted by Y1 ∼ Y2, if P1◦ŷ−1

1 = P2◦ŷ−1
2 . Therefore, all processes belonging

to an equivalence class in the quotient space P(O)/∼ generate the same
distribution in ∆(O)0. Consequently, we have the function Ψ : P(O)/∼ →
∆(O)0, given by Ψ([Y]) = P ◦ ŷ−1, where [Y] ∈ P(O)/∼ is the equivalence
class containing Y = (Ω,F , P ;T, y) ∈ P(O). Ψ is injective by the definition
of ∼ and surjective by (B). So, our first duality result is that Ψ is a bijection
between P(O)/∼ and ∆(O)0.

Next, we set the stage for a sharper duality result. Given an RKH path-
space (X, 〈., .〉) with X ⊂ <T , the evaluation e(t, .) : X → < is a continuous
linear functional for every t ∈ T . Also, e(t, x) = 0 for every t ∈ T if and
only if x = 0. Therefore, we may set X∗ = {e(t, .) | t ∈ T}.

So, consider an RKH setting ((X, 〈., .〉), X∗,≥) with X ⊂ <T and X∗ =
{e(t, .) | t ∈ T}. Let ∆(X)2 be the set of lotteries µ ∈ ∆(X) such that∫
X µ(dx) ‖x‖2 < ∞. Let P(X)2 be the set of processes Y = (Ω,F , P ;T, y)

such that ŷ(Ω) ⊂ X, ŷ is measurable and P ◦ ŷ−1 ∈ ∆(X)2.
A process Y = (Ω,F , P ;T, y) is called a second-order process if∫

Ω P (dω) y(t, ω)2 <∞ for every t ∈ T .
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Theorem 5.3 Given an RKH setting ((X, 〈., .〉), X∗,≥),
(A) P(X)2 ⊂ P(X) and every Y ∈ P(X)2 is a second-order process, and
(B) E(P ) = (X,B(X), P ;T, e) ∈ P(X)2 and P ◦ ê−1 = P for every

P ∈ ∆(X)2.

Part (A) means that P(X)2 consists of second-order processes that are
representable with respect to X by lotteries in ∆(X)2. Part (B) means that
every lottery in ∆(X)2 is the distribution of some process in P(X)2.

6 Estimating the GAP coefficient

Given an RKH setting ((X, 〈., .〉), X∗,≥) with X ⊂ <T and T ⊂ <, consider
the RKH outcome space O = X.5

Consider a utility u ∈ U and an observer who does not know u. There-
fore, the observer cannot compute the GAP function au : X → X ex ante. If
outcome x ∈ X occurs, then the observer’s data-set D = {(tj , yj) ∈ T ×< |
j = 1, . . . , n} is interpreted to be a subset of the graph of the realized GAP
coefficient au(x) : T → <, i.e., yj = au(x)(tj) for j = 1, . . . , n. Since only one
outcome occurs, there cannot be empirical data regarding au(y) for y 6= x.

The observer’s problem is to use data D to estimate au(x) by some
b ∈ X. The choice of b may be guided by two considerations.

On the one hand, high in-sample goodness-of-fit is desirable for explain-
ing D. Goodness-of-fit is modeled by a loss function Γ : (T×<)n×<n → <+,
where Γ(D; b(t1), . . . , b(tn)) is the loss entailed by estimate b ∈ X, e.g.,
Γ(D; b(t1), . . . , b(tn)) =

∑n
j=1(yj − b(tj))2.

On the other hand, it is desirable that out-of-sample predictions b(t)
depend on t in a regular fashion, i.e., small variations in t should not cause
large variations in the prediction b(t). In order to model regularity, let
(X, 〈., .〉) be the RKH space (A, 〈., .〉A) as per Theorem A.2. So, ‖b‖2X =
|b(0)|2 +

∑k
i=0 ‖Di+1b‖2L2 where k ∈ N ∪ {0}. If we set k = 0, then ‖b‖2X =

|b(0)|2 + ‖Db‖2L2 . For any intercept b(0), ‖Db‖2L2 ≈ 0 amounts to b being
almost a constant function. Being a constant function is the strongest notion
of the regularity of b. Less stringent forms of regularity, modeled by larger
values of k, have analogous interpretations. Using ‖b‖2X as a measure of the
irregularity of b, the loss caused by this irregularity is modeled by Λ(‖b‖2X),
where Λ : <+ → < is increasing.

These criteria raise the issue of how they are to be employed. The
observer may use them sequentially. One way is to create a set of es-
timates b ∈ X, say X ′ ⊂ X, with acceptably low goodness-of-fit loss
Γ(D; b(t1), . . . , b(tn)), possibly with 0 loss if X is rich enough, and then
use the regularity loss Λ(‖b‖2X) to choose from X ′. Alternatively, the ob-
server may restrict attention to a class of estimates X ′ ⊂ X with acceptable

5The discussion of this section can be generalized to situations with T ⊂ <m.
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regularity and minimize the goodness-of-fit loss Γ(D; b(t1), . . . , b(tn)) with
respect to b ∈ X ′.6

The third way is to use the criteria simultaneously and arrive at an en-
dogenous optimal trade-off. Suppose the observer chooses b ∈ X to minimize

Γ(D; b(t1), . . . , b(tn)) + Λ(‖b‖2X) (5)

Remarkably, even if X is infinite dimensional, problem (5) is reduced to a
finite dimensional problem by the kernel representation theorem (Kimeldorf
and Wahba [10]), which exploits the RKH space structure of (X, 〈., .〉).

Theorem 6.1 Consider an RKH space (X, 〈., .〉) with X ⊂ <T . Given D =
{(tj , yj) ∈ T ×< | j = 1, . . . , n}, let Xn be the subspace of X spanned by the
reproducing kernels {ktj ∈ X | j = 1, . . . , n}. For every a ∈ X, there exists
b ∈ Xn such that Γ(D; b(t1), . . . , b(tn)) + Λ(‖b‖2X) ≤ Γ(D; a(t1), . . . , a(tn)) +
Λ(‖a‖2X).

The proof shows that, for every a ∈ X, there exists b ∈ Xn such
that a and b have the same goodness-of-fit, i.e., Γ(D; b(t1), . . . , b(tn)) =
Γ(D; a(t1), . . . , a(tn)), but b is more regular than a, i.e., ‖b‖2X ≤ ‖a‖2X .

Thus, the search for b ∈ X that minimizes (5) may be restricted to
Xn. As every b ∈ Xn is a linear combination of the kernels {kt1 , . . . , ktn},
minimizing (5) amounts to choosing β1, . . . , βn ∈ < to minimize

Γ

D;
n∑
j=1

βjktj (t1), . . . ,
n∑
j=1

βjktj (tn)

+ Λ

∥∥∥∥∥
n∑
j=1

βjktj

∥∥∥∥∥
2

X

 (6)

In (6), the only unknowns are the choice variables β1, . . . , βn ∈ <. Given
the optimal choice β∗1 , . . . , β

∗
n, the best estimate of au(x) is

∑n
j=1 β

∗
j ktj .

7 Portfolio choice

Consider the problem of investing wealth w ∈ < in a (risky) stock and a
(risk-free) bond. It is well-known that, if the returns on these assets are real
numbers, then a more risk averse investor will invest a smaller portion of w
in the stock. We generalize this result to assets whose returns belong to a
Hilbert path-space.7

Let X ⊂ <T be a Hilbert path-space with time-domain T . Let X∗ = Xd.
For simplicity of exposition, let the outcome space be O = X.

Each monetary unit invested in the bond (resp. stock) yields the fixed
(resp. random) dividend path β ∈ O (resp. β + y ∈ O), where y is a sample

6Linear regression theory uses the latter approach by looking for a best fit in the class
of affine estimates.

7The result holds for any Hilbert space, but our narrative emphasizes path-spaces as
their elements are interpretable as sample paths of processes.
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path of a process with distribution µ ∈ ∆(O)0. The investor is said to hold
portfolio α if α ∈ < is invested in the stock and w − α is invested in the
bond. Portfolio α’s random dividend path is wβ + αy.

Let E be an open subset of < such that <+ ⊂ E. Given a utility u ∈ U ,
define û : E × O → < by û(α, y) = u(wβ + αy) − u(wβ). The expected
utility from portfolio α is

∫
O µ(dy)u(wβ + αy) =

∫
O µ(dy) û(α, y) + u(wβ).

We now define the class of utilities used in our result.

Definition 7.1 Let U∗ be the set of utilities u ∈ U satisfying
(a)

∫
O µ(dy) û(α, y) ∈ < for every α ∈ E,

(b) there is a function g : O → < such that
∫
O µ(dy) g(y) ∈ < and

|D1û(α, .)| < g(.) for every α ∈ E, and
(c) for every (α, y) ∈ E × O such that α > 0, D1û(α, y) > 0 implies

û(α, y) > 0 and D1û(α, y) < 0 implies û(α, y) < 0.

Conditions (a) and (b) are used to ensure that D
∫
O µ(dy) û(., y) =∫

O µ(dy)D1û(., y) for u ∈ U∗ (Lang [12], Chapter VIII, Lemma 2.2).
Condition (c), which may be called directional monotonicity, has eco-

nomic content. Consider α > 0 and y ∈ O \ {0}. If the portfolio changes
from 0 to α, then the perturbation of the dividend path in the direction y
is αy. The resulting variation in utility is û(α, y). Since u is increasing,
condition (c) holds trivially if y > 0 or y < 0: if y > 0 (resp. y < 0), then
û(α, y) > 0 (resp. û(α, y) < 0) and D1û(α, y) > 0 (resp. D1û(α, y) < 0).
However, suppose neither y > 0 nor y < 0.8 Condition (c) determines the
sign of û(α, y) in such cases: if the investor prefers to invest more (resp. less)
than α in the stock, then û(α, y) must be positive (resp. negative), i.e., port-
folio α is superior (resp. inferior) to portfolio 0.

Given u ∈ U∗, the investor’s problem is to choose a portfolio αu that
maximizes

∫
O µ(dy) û(., y) over <+. The restriction α ≥ 0 means that the

investor cannot short sell the stock, but may buy any amount of it by selling
the bond. Given our assumptions, there exists λ ∈ < such that∫

O
µ(dy)D1û(αu, y) + λ = 0 λ, αu ≥ 0 λαu = 0 (7)

Theorem 7.2 Consider w, X, X∗, O, β and µ as specified above and u, v ∈
U∗. If

(a) 〈Dv(wβ),mµ〉 > 0, and
(b) u and v are ordinally congruent and au > av on O,

then αu, αv > 0. Furthermore, if
(c) µ({y ∈ O | D1v̂(αv, y) 6= 0}) > 0,

then αu < αv.

8The incompleteness of ≥ on X allows this possibility. It cannot occur if X = <.
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The hypotheses of this result are generalizations of the conditions under-
lying its scalar version. In the scalar setting, assumption (a) is equivalent
to the condition mµ > 0; otherwise, a risk averse investor will not invest in
the stock. Assumption (b), via Theorem 4.5, implies that u is strictly more
risk averse than v.

Assumption (c) is a non-degeneracy condition. It is well-specified be-
cause the continuity of Dv and the scalar product imply the continuity
of D1v̂(αv, .) = 〈Dv(wβ + αv.), .〉, and so, {y ∈ O | D1v̂(αv, y) 6= 0} is
open, and therefore Borel measurable. Given the directional monotonic-
ity of v, {y ∈ O | D1v̂(αv, y) 6= 0} ⊂ {y ∈ O | v̂(αv, y) 6= 0} = {y ∈
O | v(wβ + αvy) 6= v(wβ)}. So, the utilities from portfolios αv and 0 are
different for a non-negligible set of dividend paths.

8 Duality of utility and GAP functions

In this section, we study the duality between utility functions and Arrow-
Pratt functions. In order to guide and motivate the theory for the vector
outcomes setting, we first consider the familiar duality in the setting X = <.

8.1 The real outcomes case

Let O = X = <. We define two sets of admissible utilities.

Definition 8.1 Û1 is the set of twice differentiable functions u : O → <
with Du > 0 and D2u ≤ 0.
U1 ⊂ Û1 consists of functions u such that lim|x|↑∞ |u(x)| = ∞ and

|Du(.)| ∈ (α, β) for some β > α > 0.

The AP coefficient of u ∈ Û1 at x ∈ O is

χu(x) = −D lnDu(x) ≥ 0

The resulting mapping χu : O → <+ is called the AP function generated
by u. Next, we define a set of functions whose members will be rationalized
as AP functions generated by members of Û1.

Definition 8.2 R̂1 is the set of functions a : O → <+ such that a = Df
for a differentiable function f : O → <.
R1 ⊂ R̂1 consists of functions a such that f is bounded.

It is easy to check that, if u ∈ Û1 (resp. u ∈ U1), then χu ∈ R̂1 (resp.
χu ∈ R1). Since χ is invariant on [u], we have the mappings χ : Û1/≡ → R̂1

and χ ◦ ι : U1/≡ → R1, where ι : U1 → Û1 is the inclusion mapping given
by ι(u) = u.

Very elementary arguments yield two dualities.

Theorem 8.3 χ : Û1/≡ → R̂1 and χ ◦ ι : U1/≡ → R1 are bijections.
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8.2 The vector outcomes case

We now consider the duality problem with O = X = <n. Given u ∈ U ,
let Γu : O → <n be the GAP function. For a duality result, Theorem 8.3
suggests the program of defining a set Un ⊂ U of admissible utilities and a
set Rn of admissible GAP functions a : O → <n such that Γ is a bijection
between these sets. Surjectivity of Γ means that, for every a ∈ Rn, the
system of n partial differential equations (henceforth, PDEs) Γu = a has a
solution u ∈ Un. Injectivity of Γ requires that the system Γu = a cannot
have multiple solutions in Un for a given a ∈ Rn. This program is unim-
plementable as we are unaware of results that guarantee the existence and
uniqueness of solutions for such systems.

However, observe that Γu(.) = −D ln ‖Du(.)‖. Using this representation
of a GAP function, a plausible modified strategy for deriving a duality is to
specify a set F of functions f : O → < such that:

1. Rn = {Df : O → <n | f ∈ F}, i.e., the admissible GAP functions are
the gradients of functions in F .

2. For every f ∈ F , there is a unique admissible utility u ∈ Un such that

‖Du(.)‖ = e−f(.) (8)

3. For every u ∈ Un, there is some f ∈ F such that (8) holds.9

We observe a number of implications of these properties.
First, if u, v ∈ Un are equivalent, denoted by u ≡ v, then Γu = Γv. So,

we may specify the domain of Γ as the equivalence classes in the quotient
set Un/≡.

Given u ∈ Un, property (3) implies the existence of f ∈ F such that
Γu = Df and property (1) implies Df ∈ Rn. So, Γ : Un/≡ → Rn.

Given a ∈ Rn, property (1) implies the existence of f ∈ F such that
a = Df , and property (2) implies the existence of u ∈ Un such that Γu =
Df = a, i.e., Γ is surjective.

Suppose u, v ∈ Un and Γu = Γv. Property (3) implies the existence of
f, g ∈ F such that Df = Γu = Γv = Dg. Using the mean value theorem,
f = g − c for some c ∈ <. Therefore, ‖Du(.)‖ = e−f(.) = ece−g(.) =
‖Decv(.)‖. By property (2), u = ecv. So, u ≡ v and Γ is injective.

Property (2) requires, for every f ∈ F , the unique solvability of the
eikonal PDE (8) in the set Un. Unfortunately, it is well-known that (8) is

9This strategy reduces the system of n PDEs to a single eikonal PDE (8). Such
Hamilton-Jacobi PDEs characterize value functions in control theory (Cannarsa and Sines-
trari [4]) and are widely studied in physics, especially in the area of geometric optics
(Luneburg [14]). To the best of our knowledge, this is their first sighting in economics.
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not generally solvable in the classical sense of it being satisfied at all points
by a twice differentiable function.

So, the notion of solving (8) has to be relaxed and the sets Un, Rn and F
have to accommodate this change. A number of weaker notions of solving (8)
are available, but given our particular problem, the notion of a generalized
solution, i.e., one that satisfies (8) at almost all points, is adequate and
closest to the classical notion of a solution. An immediate consequence is
that properties (1)-(3) cannot be required to hold everywhere and the best
we can hope for is that they hold almost everywhere.

Furthermore, it is essential that F and Un satisfy the properties required
for the unique solvability of (8) in terms of generalized solutions. The first
change in this respect is that Un must admit not just concave functions but
also the more general semiconcave functions. Theorem 8.6 shows that a
preference underlying a semiconcave utility is “arbitrarily close on compact
sets” to a risk averse preference. The second change is that we cannot insist
on increasing utilities as (8) simply cannot fix the sign of Du: if u solves
(8), then so does −u.

We now implement these changes. First, we modify the definition of a
GAP function. Given a utility u : O → <, let Ou be the set of outcomes
x ∈ O where u is twice differentiable and ‖Du(x)‖ > 0. Let

Γu(x) =

{
−D ln ‖Du(x)‖, x ∈ Ou
0, x ∈ O \Ou

(9)

Γu(x) is the GAP coefficient of u at x ∈ Ou. We call Γu : O → <n the
generalized GAP function generated by u.

As preparation for the definition of F , we say that g ∈ C2,α for g : O → <
if its partial derivatives up to second order are α-Hölder continuous for some
α ∈ (0, 1).10

Definition 8.4 F is the set of functions f : O → < with e−f ∈ C2,α and
|f(.)| < k for some k ∈ <.

As preparation for the definition of Un, we define semiconcave functions
and note their properties. A function u : O → < is said to be semiconcave
(with linear modulus) if there exists C ≥ 0 such that the function x 7→
u(x)−C‖x‖2/2 is concave on O; u is called semiconvex if −u is semiconcave.
Clearly, if u is concave, then it is semiconcave. Also, if u is semiconcave, then
every v ∈ [u] is semiconcave, which makes it meaningful to say “preference
[u] is semiconcave” if u is semiconcave. We note two regularity properties
of semiconcave functions.

Remark 8.5 Consider a semiconcave utility u : O → <.

10Hölder continuity is a ubiquitous and essential notion of regularity in the study of
PDEs; see Ziemer [22] for the definition.
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(A) A generalization of Alexandrov’s theorem (Cannarsa and Sines-
trari [4], Theorem 2.3.1) implies that u is twice differentiable a.e. Thus,
if ‖Du(.)‖ > 0 a.e., then the first case of (9) determines Γu a.e.

(B) u is locally Lipschitzian (Cannarsa and Sinestrari [4], Theorem
2.1.7).

A semiconcave function can be non-concave as long as the non-concavity
can be compensated by the concavity of x 7→ −C‖x‖2/2 for some C > 0.
For instance, consider the functions

u(x) =

{
x, x < 0
x2/2, x ≥ 0

and u(x)− x2/2 =

{
x− x2/2, x < 0
0, x ≥ 0

Although u is not concave, x 7→ u(x)−x2/2 is concave. So, u is semiconcave.
We say that preferences [u] and [v] are arbitrarily close on compact sets,

denoted by [u] ≈ [v], if for every compact set O′ ⊂ O and every ε > 0, there
exists u′ ∈ [u] and v′ ∈ [v] such that sup{|u′(x)− v′(x)| | x ∈ O′} < ε. The
next result provides an economic interpretation of semiconcave preferences.

Theorem 8.6 If [u] is a semiconcave preference, then there is a risk averse
preference [v] such that [v] ≈ [u].

The set of admissible utilities satisfying the generalized property (3) is
as follows.

Definition 8.7 Un is the set of semiconcave functions u : O → < satisfying
lim‖x‖→∞ u(x) =∞ and ‖Du(.)‖ = e−f(.) a.e. for some f ∈ F .

If u ∈ Un, then ‖Du(.)‖ > 0 a.e. and Remark 8.5(A) implies that u is
twice differentiable a.e. Thus, O \ Ou is negligible and the first case in (9)
generates Γu a.e.

The set of admissible GAP functions satisfying the generalized property
(1) is as follows.

Definition 8.8 Rn is the set of functions a : O → <n satisfying a = Df
a.e. for some f ∈ F . We say that a, b ∈ Rn are equivalent, denoted by
a ' b, if a = b a.e.

Finally, given f ∈ F , a generalized solution (Kruz̆kov [11]) of (8) is
a semiconcave function u : O → < such that ‖Du(.)‖ = e−f(.) a.e. and
lim‖x‖→∞ u(x) = ∞. Consequently, given f ∈ F , a generalized solution
of (8) is some u ∈ Un. Note the existence and uniqueness properties of
generalized solutions.

Lemma 8.9 Consider f ∈ F .
(A) If u : O → < and v : O → < are generalized solutions of (8), then

u = v.
(B) (8) has a generalized solution u : O → <.
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We now have our duality result.

Theorem 8.10 Γ maps Un/≡ to Rn such that, for every a ∈ Rn, there is
a unique [u] ∈ Un/≡ with Γ[u] ' a.

Using the results of Kruz̆kov [11], an analogous result can be derived if
O has a boundary ∂O 6= ∅. Although we do not present this result here, we
should mention that the main complication introduced by a boundary is that
the uniqueness result analogous to Lemma 8.9 requires the supplementary
restriction that u should match some prescribed boundary data h : ∂O → <
on ∂O. Consequently, the duality is not between Un and Rn, but between
Un andRn×H, whereH is an appropriate set of boundary data h : ∂O → <.

9 Conclusions

We have defined a vector-valued GAP coefficient generated by a risk averse,
increasing and twice differentiable utility defined on an outcome space con-
tained in a Hilbert space. It specializes to the AP coefficient in the real
outcomes setting. It also meets our desiderata for a satisfactory generaliza-
tion of the AP coefficient to vector outcomes. Specifically, it is preference-
determined, the GAP function compares risk aversion in the same way as
all the decision-theoretically compelling criteria for doing so, and finally,
Hilbert outcome spaces allow the representation of a rich class of random
processes as admissible risks in the form of lotteries on the outcomes.

We also provide a systematic method for estimating the GAP coefficient
from data when outcomes belong to a reproducing kernel Hilbert space.

We use the GAP function to model the effect of risk aversion on the
optimal allocation of wealth between a stock and a bond whose returns are
generated by processes with sample paths in a Hilbert path-space. Gener-
alizing the result obtained in the real returns setting, we show that greater
risk aversion lowers the investment in the stock.

Finally, we derive a duality between utility functions and GAP functions
on Euclidean spaces, which generalizes the familiar duality between utility
functions and AP functions on the real line.

A Appendix: Examples of RKH spaces

We present three examples of RKH path-spaces. Their respective time do-
mains are finite, denumerable and uncountable. The third setting is of
particular interest as it is used for estimating GAP coefficients in Section 6.
We also characterize second-order processes with these path-spaces.

First, if T = {1, . . . , n}, then <T with the scalar product 〈x, y〉 =∑
t∈T xtyt is a Hilbert space. As the Euclidean topology generated by 〈., .〉
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coincides with the product topology and e(t, .) is a projection mapping, it
is continuous. Thus, (<T , 〈., .〉) is an RKH space.

Second, set T = N and let l2 be the set of sequences x ∈ <T such that∑
t∈T x

2
t <∞. Define the scalar product of x, y ∈ l2 by 〈x, y〉l2 =

∑
t∈T xtyt.

Theorem A.1 (l2, 〈., .〉l2) is an RKH space.

Proof. It is well-known that (l2, 〈., .〉l2) is a Hilbert space. Consider t ∈ T ,
x ∈ l2 and ε > 0. If y ∈ l2 and ‖x − y‖l2 < ε, then |xt − yt|2 ≤

∑
s∈T (xs −

ys)
2 = ‖x− y‖2l2 < ε2. Therefore, |e(t, x)− e(t, y)| = |xt − yt| < ε and e(t, .)

is continuous.

Third, fix the measure space (T,B(T ),Leb) with T = [0, 1] and Lebesgue
measure Leb. Measurable functions x, y ∈ <T are said to be equivalent if
x = y Leb a.e. Let L2 be the resulting collection of equivalence classes of
measurable functions x ∈ <T such that

∫
T dt |x(t)|2 < ∞. (L2, 〈., .〉L2) is a

Hilbert space given the scalar product 〈x, y〉L2 :=
∫
T dt x(t)y(t) (Yosida [21],

Section I.9, Proposition 2).
Let H0 = L2. For k ∈ N , let Hk be the collection of x ∈ L2 with dis-

tributional derivatives Dix ∈ L2 for i = 1, . . . , k. (Hk, 〈., .〉Hk) is a Sobolev
space (see Ziemer [22]) that is also a Hilbert space given the scalar prod-
uct 〈x, y〉Hk :=

∑k
i=0〈Dix,Diy〉L2 with D0x := x (Yosida [21], Section I.9,

Proposition 5). Clearly, ‖x‖2
Hk =

∑k
i=0 ‖Dix‖2L2 ≥ ‖Djx‖2L2 for j = 0, . . . , k.

As L2 andHk consist of equivalence classes of functions, their evaluations
e(t, .) are not well-defined. Therefore, L2 and Hk are not RKH spaces.

Let A be the vector subspace of <T consisting of absolutely continuous
x ∈ <T with distributional derivative Dx ∈ Hk. Let 〈x, y〉A := x(0)y(0) +
〈Dx,Dy〉Hk for x, y ∈ A. Let ‖x‖2A := 〈x, x〉A = |x(0)|2 +‖Dx‖2

Hk for x ∈ A.

Theorem A.2 (A, 〈., .〉A) is an RKH space.

Proof. Let x ∈ A and t ∈ T . As Dx ∈ Hk ⊂ L2 and 1[0,t] ∈ L2, we have

|〈Dx, 1[0,t]〉L2 | ≤ ‖Dx‖L2‖1[0,t]‖L2 = t1/2‖Dx‖L2 ≤ ‖Dx‖L2 ≤ ‖Dx‖Hk . As∫
[0,t] dsDx(s) = 〈Dx, 1[0,t]〉L2 , we have |x(0) +

∫
[0,t] dsDx(s)| ≤ |x(0)| +

|〈Dx, 1[0,t]〉L2 | ≤ |x(0)|+ ‖Dx‖Hk . It follows that

|e(t, x)| = |x(t)| =
∣∣∣∣∣x(0) +

∫
[0,t]

dsDx(s)

∣∣∣∣∣ ≤ |x(0)|+ ‖Dx‖Hk (10)

If ‖x‖A = 0, then |x(0)| = 0 = ‖Dx‖Hk , and (10) implies x = 0. As the
other properties of scalar products and norms are easily verified, 〈., .〉A is a
scalar product and ‖.‖A is a norm.

Suppose ‖x‖A < ε. It follows that |x(0)| < ε, ‖Dx‖Hk < ε, and (10)
implies |e(t, x)| < 2ε. Therefore, e(t, .) : A → < is continuous. Thus, if
(A, 〈., .〉A) is complete, then it is an RKH space.
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To verify completeness, consider a Cauchy sequence (xn) in (A, 〈., .〉A).
We show the existence of x ∈ A such that limn ‖xn − x‖A = 0.

As (xn) is a Cauchy sequence, for every ε > 0, there exists N ∈ N such
that m,n > N implies ‖Dxm −Dxn‖Hk ≤ ‖xm − xn‖A < ε. Thus, (Dxn)
is a Cauchy sequence in (Hk, 〈., .〉Hk). As (Hk, 〈., .〉Hk) is complete, there
exists g ∈ Hk such that limn ‖Dxn − g‖Hk = 0.

Consider t ∈ T and ε > 0. As (xn) is a Cauchy sequence, there exists
N ∈ N such that m,n > N implies ‖xm − xn‖A < ε. Using (10), |xm(t) −
xn(t)| = |e(t, xm − xn)| < 2ε. Thus, (xn(t)) is a Cauchy sequence in <. As
< is complete, we can define x ∈ <T pointwise by x(.) = limn xn(.).

We verify that x ∈ A. Applying Jensen’s inequality, ‖Dxn − g‖2Hk ≥
‖Dxn − g‖2L2 =

∫
T ds |Dxn(s) − g(s)|2 ≥ [

∫
T ds |Dxn(s)− g(s)|]2, and for

every t ∈ T ,
∫

[0,t] ds |Dxn(s) − g(s)| ≥ |
∫

[0,t] ds [Dxn(s) − g(s)]|. There-

fore, ‖Dxn − g‖Hk ≥
∫
T ds |Dxn(s) − g(s)| ≥

∫
[0,t] ds |Dxn(s) − g(s)| ≥

|
∫

[0,t] ds [Dxn(s) − g(s)]| ≥ 0 for every t ∈ T . As limn ‖Dxn − g‖Hk = 0,

we have limn
∫
[0,t] dsDxn(s) =

∫
[0,t] ds g(s) for every t ∈ T . It follows that

x(t) = limn xn(t) = limn[xn(0) +
∫

[0,t] dsDxn(s)] = x(0) +
∫

[0,t] ds g(s) for

every t ∈ T . Therefore, x is absolutely continuous, Dx = g ∈ Hk and x ∈ A.
Moreover, limn ‖xn−x‖2A = limn[xn(0)−x(0)]2 + limn ‖Dxn−Dx‖2Hk =

limn ‖Dxn − g‖2Hk = 0, as required.

We now characterize second-order processes that have (<T , 〈., .〉) and
(l2, 〈., .〉l2) as path-spaces. The characterizations involve the covariance
kernel function KY ∈ <T×T of a process Y = (Ω,F , P ;T, y), defined by
KY(s, t) =

∫
Ω P (dω) (y(s, ω)−mY(s))(y(t, ω)−mY(t)).

Theorem A.3 If Y ∈ P(l2, 〈., .〉l2), then Y ∈ P(l2, 〈., .〉l2)2 if and only if
trKY < ∞. An analogous characterization holds for the Euclidean path-
space (<T , 〈., .〉).

Proof. By Theorem 5.2, mY ∈ l2. Therefore,
∫

Ω P (dω) y(t, ω)2 = mY(t)2 +
KY(t, t) for t ∈ N . Applying the monotone convergence theorem (Dun-
ford and Schwartz [6], Corollary III.6.17), we have

∫
l2 P ◦ ŷ−1(dx) ‖x‖2l2 =∫

Ω P (dω) ‖ŷ(ω)‖2l2 =
∫
Ω P (dω)

∑
t∈N y(t, ω)2 =

∑
t∈N

∫
Ω P (dω) y(t, ω)2 =

‖mY‖2l2 + trKY . The result follows as ‖mY‖l2 <∞.

In the same spirit, we characterize a second-order process with the RKH
path-space (A, 〈., .〉A) with k = 0, i.e., 〈x, y〉A := x(0)y(0) + 〈Dx,Dy〉L2 .

Theorem A.4 If Z = (Ω,F , P ;T, z) is a process such that ẑ(Ω) ⊂ L2, z is
measurable, ẑ is measurable and mZ ∈ L2, then

(A) Y = (Ω,F , P ;T, y) is a process with y(t, ω) =
∫

[0,t] ds z(s, ω) for
(t, ω) ∈ T × Ω, ŷ(Ω) ⊂ A and ŷ is measurable.

(B) Moreover, Y ∈ P(A, 〈., .〉A)2 if and only if
∫
T dtKZ(t, t) <∞.
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Proof. (A) For ω ∈ Ω, as z(., ω) = ẑ(ω)(.) ∈ L2, it is measurable.
As |y(t, ω)| = |

∫
[0,t] ds z(s, ω)| = 〈ẑ(ω), 1[0,t]〉L2 ≤ ‖ẑ(ω)‖L2‖1[0,t]‖L2 =

t1/2‖ẑ(ω)‖L2 < ∞ for (t, ω) ∈ T × Ω, y : T × Ω → < is well-defined. Since
z = z+ − z−, where z+(.) = z(.) ∨ 0 ≥ 0 and z−(.) = −(z(.) ∧ 0) ≥ 0 are
measurable functions, Tonelli’s theorem (Dunford and Schwartz [6], Theo-
rem III.11.14) implies that y(t, .) =

∫
[0,t] ds z

+(s, .)−
∫

[0,t] ds z
−(s, .) is mea-

surable for every t ∈ T . So, Y is well-defined.
For every ω ∈ Ω, ŷ(ω) is absolutely continuous and its distributional

derivative is ẑ(ω) ∈ L2 = H0. So, ŷ(Ω) ⊂ A.
The linear mapping F : L2 → A, defined by F (g)(t) =

∫
[0,t] ds g(s), is

continuous at 0 ∈ L2 as ‖F (g)‖A = ‖g‖L2 for g ∈ L2. So, F is continuous
and therefore measurable. As ẑ is measurable, so is ŷ(.) = F ◦ ẑ(.).

(B) As z is measurable, Tonelli’s theorem (Dunford and Schwartz [6],
Theorem III.11.14) implies that

∫
A P ◦ ŷ−1(dx) ‖x‖2A =

∫
Ω P (dω) ‖ŷ(ω)‖2A =∫

Ω P (dω) ‖ẑ(ω)‖2L2 =
∫

Ω P (dω)
∫
T dt z(t, ω)2 =

∫
T dt

∫
Ω P (dω) z(t, ω)2. As∫

Ω P (dω) z(t, ω)2 =
∫
Ω P (dω) [z(t, ω)−mZ(t)+mZ(t)]2 = KZ(t, t)+mZ(t)2,

we have
∫
A P ◦ ŷ−1(dx) ‖x‖2A =

∫
T dt [KZ(t, t) + mZ(t)2] =

∫
T dtKZ(t, t) +

‖mZ‖2L2 . The result follows as ‖mZ‖L2 <∞.

B Appendix: Proofs

Proof of Lemma 4.1 Let x ∈ O and b ∈ B, where B is a Hilbert basis of
(X, 〈., .〉). As O is open in X, there exists s > 0 such that x+ sb ∈ O. Since
O is convex, x+ tsb = (1− t)x+ t(x+ sb) ∈ O for every t ∈ (0, 1). As b > 0,
we have sb > 0, and as u is increasing, u(x+ sb) > u(x). As u is risk averse,
it is concave. Since B is orthonormal, ‖b‖ = 1. So, for every t ∈ (0, 1),
t[u(x + sb) − u(x)] ≤ u(x + tsb) − u(x) = t〈Du(x), sb〉 + tsr(tsb), where
lim‖τ‖↓0 r(τ) = 0. Dividing by t and letting t ↓ 0, we have 〈Du(x), sb〉 ≥
u(x + sb) − u(x) > 0. As s > 0, we have 〈Du(x), b〉 > 0. As this holds for
every b ∈ B, we have Du(x) > 0.

Proof of Theorem 4.3 We start with
Observation 1: If y, z ∈ O, f, g ∈ U , f(z) < f(y) and g(z) ≥ g(y), then
there exists x ∈ O such that f(x) < f(y) and g(x) > g(y).
Proof. Let b ∈ B. As B is a Hilbert base, b > 0. As O is open, there exists
N ∈ N such that z + b/n ∈ O for every n > N . Otherwise, there is an
increasing sequence (kn) ⊂ N such that limn kn =∞ and z + b/kn ∈ X \O
for every n. This implies z = limn(z + b/kn) ∈ X \ O as X \ O is closed in
X, which is a contradiction.

There exists n0 > N such that f(z + b/n0) < f(y); otherwise, f(z +
b/n) ≥ f(y) for every n > N , and by the continuity of f , this means f(z) =
limn f(z + b/n) ≥ f(y), a contradiction. As g is increasing, g(z + b/n0) >
g(z) ≥ g(y). Set x = z + b/n0. •
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(A) Suppose u �C v. Then, there exists an increasing function f :
v(O)→ < such that u = f ◦ v. So, for x, y ∈ O, u(x)−u(y) = f ◦ v(x)− f ◦
v(y) ≥ 0 if and only if v(x) ≥ v(y).

Now we prove the result for �A. Suppose u and v are not ordinally
congruent. Then, there exist y, z ∈ O such that, either u(z) ≥ u(y) and
v(z) < v(y), or u(z) < u(y) and v(z) ≥ v(y). We show that ¬u �A v.

In the first case, as δz ∈ A(y, u)\A(y, v), we have ¬u �A v. In the second
case, Observation 1 implies the existence of x ∈ O such that u(x) < u(y)
and v(x) > v(y). So, δy ∈ A(x, u) \A(x, v). Therefore, ¬u �A v.

(B) We start with
Observation 2: If x, y ∈ O and u, v ∈ U are such that u(x) > u(y) and v(x) <
v(y), then there exist r1, r2 ∈ X such that r1 > 0, r2 > 0, x+ r2, y+ r1 ∈ O,
u(y + r1) = u(x) and v(x+ r2) = v(y).
Proof. Consider x, y ∈ O and u, v ∈ U such that u(x) > u(y) and v(x) <
v(y). Then, there exists r ∈ X+ := {z ∈ X | z ≥ 0} such that y + r ∈ O
and y + r ≥ x. As u is increasing and u(x) > u(y), we have r > 0 and
u(y + r) ≥ u(x) > u(y). As y ∈ O, we have O ∩ [y + X+] 6= ∅. As
O and y + X+ are convex, so is O ∩ [y + X+]. Thus, O ∩ [y + X+] is
connected. As u is continuous, u(O ∩ [y + X+]) ⊂ < is an interval. As
u(y), u(y+r) ∈ u(O∩ [y+X+]), we have u(x) ∈ u(O∩ [y+X+]). Thus, there
exists r1 ∈ X+ such that y + r1 ∈ O and u(y + r1) = u(x); as u(y) < u(x),
we have r1 > 0. By an analogous argument, there exists r2 ∈ X such that
r2 > 0, x+ r2 ∈ O and v(x+ r2) = v(y). •

Suppose u, v ∈ U are not ordinally congruent. Then, there exist y, z ∈ O
such that, either u(z) ≥ u(y) and v(z) < v(y), or u(z) < u(y) and v(z) ≥
v(y). We show that ¬u �π v.

Consider the first case. Using Observation 1, there exists x ∈ O such that
u(x) > u(y) and v(x) < v(y). Using Observation 2, there exist r1, r2 ∈ X
such that r1 > 0, r2 > 0, x+r2, y+r1 ∈ O, u(y+r1) = u(x) and v(x+r2) =
v(y). As u is increasing, u(x+r2) > u(x) > u(y). Let µ = tδy +(1− t)δx+r2 ,
where t ∈ (0, 1) satisfies tu(y) + (1 − t)u(x + r2) = u(x). Then, mµ =
ty + (1 − t)(x + r2) ∈ O as y, x + r2 ∈ O and O is convex. So, µ ∈ ∆(O)0.
By construction, U(µ, u) = tu(y) + (1 − t)u(x + r2) = u(x) = u(y + r1).
Thus, mµ − y − r1 ∈ π(µ, u). As U(µ, v) = tv(y) + (1− t)v(x+ r2) = v(y),
mµ − y ∈ π(µ, v). As mµ − y > mµ − y − r1, we have ¬u �π v.

The arguments for the second case copy the arguments for the first case
with appropriate changes.

Proof of Lemma 4.4 (A) As u and v are ordinally congruent, u is constant
over v−1({r}) for every r ∈ v(O). Therefore, we define f : v(O) → < by
f(.) = u ◦ v−1({.}). Then, f ◦ v(.) = u ◦ v−1({v(.)}) = u(.).

If g : v(O) → < is such that u = g ◦ v, then g(.) = g ◦ v ◦ v−1({.}) =
u ◦ v−1({.}) = f ◦ v ◦ v−1({.}) = f(.) on v(O). Thus, f is unique.

Consider r, s ∈ v(O) such that r > s. Then, there exist x, y ∈ O such
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that v(x) = r > s = v(y). As u and v are ordinally congruent, we have
f(r) = f ◦ v(x) = u(x) > u(y) = f ◦ v(y) = f(s). So, f is increasing.

It remains to show that f is twice differentiable. Fix x ∈ O and b ∈ B.
As O is open, there exists t > 0 such that x − tb, x + tb ∈ O. As t > 0

and b > 0, we have e := tb > 0. Let E = {y ∈ O | x− e < y < x+ e}. As O
is convex, x− e+ re = (1− r/2)(x− e) + (x+ e)r/2 ∈ O for every r ∈ (0, 2).
As E is convex, it is connected. As v is continuous, v(E) is connected.

Define w : (0, 2) → < by w(r) = v(x − e + re). As e > 0 and v is
increasing, w is increasing. As v is twice differentiable, so is w. So, Dw > 0
and it is easily verified that w((0, 2)) = v(E) = (v(x− e), v(x+ e)).

It follows that w has the increasing function inverse h : v(E)→ (0, 2). By
the inverse function theorem, h is differentiable. So, Dh(y) = 1/Dw◦h(y) =
ψ ◦Dw ◦ h(y) for y ∈ v(E), where ψ(z) := 1/z for z > 0. As Dw > 0 and
ψ, Dw and h are differentiable, h is twice differentiable.

If r ∈ v(E), then h(r) ∈ (0, 2). So, x−e+h(r)e ∈ O. Define φ : v(E)→ <
by φ(r) = u(x− e+ h(r)e). As u and h are twice differentiable, so is φ.

Consider y ∈ E. Then, v(y) ∈ v(E) and φ◦v(y) = u(x−e+h◦v(y)e). As
w((0, 2)) = v(E), there exists k ∈ (0, 2) such that v(y) = w(k) = v(x− e+
ke). Consequently, φ◦v(y) = u(x−e+h◦w(k)e) = u(x−e+ke) = u(y), as
u and v are ordinally congruent and v(y) = v(x− e+ke). Thus, f coincides
with φ on v(E). As φ is twice differentiable, so is f .

(B) By the chain rule, Du(.) = Df(v(.)) ◦Dv(.) on O, i.e., 〈Du(x), y〉 =
Df(v(x))〈Dv(x), y〉 = 〈Df(v(x))Dv(x), y〉 for all x ∈ O and y ∈ X. Thus,

Du = Df(v)Dv (11)

So, Lemma 4.1 implies Df > 0. By an analogous argument,

D[Df(v)] = D[Df ◦ v] = D2f(v)Dv (12)

Using the product rule to differentiate (11), and using (12), we have

D2u(x)y = 〈D[Df(v(x))], y〉Dv(x) +Df(v(x))D2v(x)y

= 〈D2f(v(x))Dv(x), y〉Dv(x) +Df(v(x))D2v(x)y

= D2f(v(x))〈Dv(x), y〉Dv(x) +Df(v(x))D2v(x)y

for all x ∈ O and y ∈ X. By Lemma 4.1, ‖Du(x)‖ > 0 and ‖Dv(x)‖ > 0.
Set y = Du(x), divide by ‖Du(x)‖2 and use (11) to get the result.

Proof of Theorem 4.5 Since �C=�A=�π (Shah [19], Theorem 4.5), it
suffices to show that �G=�C .11 Consider u, v ∈ U .

Suppose u �C v. Then, there exists an increasing concave function
f : v(O)→ < such that u = f ◦ v. As f is increasing, u and v are ordinally

11The cited result holds for significantly more general settings than Hilbert settings and
for much larger sets of admissible utilities.

22



congruent. By Lemma 4.4, Dv > 0, f is twice differentiable and Df > 0.
As f is concave, D2f ≤ 0. Lemma 4.4 implies av ≤ au on O. So, u �G v.

Suppose u �G v. Then, u and v are ordinally congruent and av ≤ au
on O. By Lemma 4.4, Du > 0, Dv > 0 and there is an increasing and
twice differentiable function f : v(O)→ < such that u = f ◦ v and Df > 0.
Lemma 4.4 implies that D2f ≤ 0. Thus, f is concave. So, u �C v.

Proof of Theorem 5.2 (A) Suppose ŷ(Ω) ⊂ O and ŷ is measurable. For
every t ∈ T , as e(t, .) is continuous, it is measurable. The result follows as
mY(.) =

∫
Ω P (dω) y(., ω) =

∫
Ω P (dω) e(., ŷ(ω)) =

∫
O P ◦ ŷ−1(dx) e(., x) =

e(.,mP◦ŷ−1) = mP◦ŷ−1(.).
(B) For every t ∈ T , as e(t, .) is continuous, it is measurable. Therefore,

E(P ) is a process. The other claims follow as ê(x)(.) = e(., x) = x(.).

Proof of Theorem 5.3 (A) We first show that ∆(X)2 ⊂ ∆(X)0. Let
µ ∈ ∆(X)2. As

∫
X µ(dx) ‖x‖ ≤

∫
X µ(dx) (‖x‖2 + 1X(x)) < ∞, application

of the Jensen and Cauchy-Schwarz inequalities yields |
∫
X µ(dx) 〈h, x〉| ≤∫

X µ(dx) |〈h, x〉| ≤ ‖h‖
∫
X µ(dx) ‖x‖ < ∞ for every h ∈ X. It follows

that
∫
X µ(dx) 〈., x〉 is a continuous real-valued linear functional on X. The

Riesz representation theorem (Dunford and Schwarz [6], Theorem IV.4.5)
implies that there is a unique mµ ∈ X such that e(t,mµ) = 〈kt,mµ〉 =∫
X µ(dx) 〈kt, x〉 =

∫
X µ(dx) e(t, x) for every t ∈ T , where kt ∈ X is the

reproducing kernel for t. Thus, µ ∈ ∆(X)0.
Next, we show that P(X)2 ⊂ P(X). Let Y = (Ω,F , P ;T, y) ∈ P(X)2.

Then, ŷ(Ω) ⊂ X, ŷ is measurable and P ◦ ŷ−1 ∈ ∆(X)2 ⊂ ∆(X)0. Conse-
quently, Y ∈ P(X).

Finally, as (X, 〈., .〉) is an RKH space, |e(t, h)| = |〈kt, h〉| ≤ ‖kt‖‖h‖ for
all t ∈ T and h ∈ X. It follows that |y(t, ω)| = |e(t, ŷ(ω)| ≤ ‖kt‖‖ŷ(ω)‖, and
therefore, y(t, ω)2 ≤ ‖kt‖2‖ŷ(ω)‖2 for all t ∈ T and ω ∈ Ω. Consequently,∫

Ω P (dω) y(t, ω)2 ≤ ‖kt‖2
∫

Ω P (dω) ‖ŷ(ω)‖2 = ‖kt‖2
∫
X P ◦ ŷ−1(dx) ‖x‖2 <

∞ for every t ∈ T . Thus, Y is a second-order process.
(B) is routinely verified as ê is the identity mapping on X.

Proof of Theorem 6.1 Let a ∈ X. As X = Xn ⊕X⊥n , where X⊥n is the
orthogonal complement of Xn, a has a unique representation a = b + b⊥,
where b ∈ Xn and b⊥ ∈ X⊥n . As X is an RKH space and ktj ∈ Xn,
a(tj) = 〈a, ktj 〉X = 〈b+ b⊥, ktj 〉X = 〈b, ktj 〉X = b(tj) for j = 1, . . . , n. Thus,
Γ(D; b(t1), . . . , b(tn)) = Γ(D; a(t1), . . . , a(tn)). Also, ‖a‖2X = 〈b + b⊥, b +
b⊥〉X = 〈b, b〉X + 〈b⊥, b⊥〉X ≥ ‖b‖2X . Consequently, Λ(‖a‖2X) ≥ Λ(‖b‖2X).

Proof of Theorem 7.2 Suppose assumptions (a) and (b) are satisfied.
Lemmas 4.1 and 4.4 imply that Du(wβ) > 0, Dv(wβ) > 0, and there is a
unique function f : v(O) → < such that u = f ◦ v. Moreover, Df > 0 and
f is twice differentiable.

As Dv(wβ) ∈ X, we have 〈Dv(wβ), .〉 ∈ X∗. If αv = 0, then equation
(7) implies 〈Dv(wβ),mµ〉 =

∫
O µ(dy) 〈Dv(wβ), y〉 =

∫
O µ(dy)D1v̂(0, y) ≤ 0,
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which contradicts assumption (a). So, αv > 0.
Using equations (7) and (11), if αu = 0, then 0 ≥

∫
O µ(dy)D1û(0, y) =∫

O µ(dy) 〈Du(wβ), y〉 = 〈Du(wβ),mµ〉 = Df ◦ v(wβ)〈Dv(wβ),mµ〉. As
Df > 0, we have 〈Dv(wβ),mµ〉 ≤ 0, which contradicts assumption (a). So,
αu > 0.

So, equation (7) implies
∫
O µ(dy)D1û(αu, y) = 0 =

∫
O µ(dy)D1v̂(αv, y).

As au > av, Lemma 4.4 implies D2f < 0.
Now suppose assumption (c) is also satisfied.
Consider y ∈ O such that D1v̂(αv, y) > 0. By the directional mono-

tonicity of v, v(wβ + αvy) − v(wβ) = v̂(αv, y) > 0. As D2f < 0, we have
Df ◦ v(wβ + αvy) < Df ◦ v(wβ), and therefore,

Df ◦ v(wβ + αvy)D1v̂(αv, y) < Df ◦ v(wβ)D1v̂(αv, y) (13)

Consider y ∈ O such that D1v̂(αv, y) < 0. By the directional mono-
tonicity of v, v(wβ + αvy) − v(wβ) = v̂(αv, y) < 0. As D2f < 0, we have
Df ◦ v(wβ + αvy) > Df ◦ v(wβ). Therefore, inequality (13) holds.

So, inequality (13) holds for every y ∈ O such that D1v̂(αv, y) 6= 0.
Since û(α, y) = u(wβ + αy) − u(wβ) = f ◦ v(wβ + αy) − u(wβ) =

f(v̂(α, y) + v(wβ))− u(wβ), we have

D1û(α, y) = Df ◦ v(wβ + αy)D1v̂(α, y) (14)

Equation (14), inequality (13) and assumption (c) imply that∫
O
µ(dy)D1û(αv, y) =

∫
O
µ(dy)Df ◦ v(wβ + αvy)D1v̂(αv, y)

< Df ◦ v(wβ)

∫
O
µ(dy)D1v̂(αv, y)

= 0

Consider y ∈ X. As u is concave, û(., y) is concave. If αu ≥ αv, then
D1û(αu, y) ≤ D1û(αv, y). It follows that

0 =

∫
O
µ(dy)D1û(αu, y) ≤

∫
O
µ(dy)D1û(αv, y) < 0

This contradiction implies αu < αv.

Proof of Theorem 8.3 We show the first result. The second one is a
routine verification.

Consider a ∈ R̂1. Then, there exists a differentiable function f : O → <
with Df = a ≥ 0. Define u : O → < by u(x) =

∫ x
0 dy e

−f(y). It follows that u
is twice differentiable. Furthermore, Du = e−f > 0 and D2u = −aDu ≤ 0.
Thus, u ∈ Û1. As χ[u] = −D lnDu = Df = a, χ is surjective.

Suppose u, v ∈ Û1 are such that χu = χv. Then, D lnDu = D lnDv,
which implies lnDu = ln bDv for some b > 0. Thus, Du = bDv. It follows
that u = bv + c for some c ∈ <. Thus, u ∈ [v] and χ is injective.
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Proof of Theorem 8.6 Suppose [u] is a semiconcave preference. Then,
u is semiconcave. So, there exists C ≥ 0 such that v(.) := u(.) − C‖.‖2/2
is concave and [v] is risk averse. If C = 0, then [u] itself is risk averse and
[u] ≈ [u].

Suppose C > 0. Consider a compact set O′ ⊂ O and ε > 0. If O′ = ∅,
then sup{|u(x) − v(x)| | x ∈ O′} = sup ∅ = −∞ < ε. Suppose O′ 6= ∅. As
‖.‖ is continuous, sup{‖x‖2/2 | x ∈ O′} ∈ [0,∞). Consequently, there exists
b > 0 such that sup{|bu(x)−bv(x)| | x ∈ O′} = bC sup{‖x‖2/2 | x ∈ O′} < ε.
So, [v] ≈ [u].

Proof of Lemma 8.9 (A) Consider u and v ex hypothesi. Then, −u and
−v are semiconvex and satisfy the conditions lim‖x‖→∞−u(x) = −∞ =

lim‖x‖→∞−v(x) and ‖ −Du(.)‖ = e−f(.) = ‖ −Dv(.)‖ a.e. Since conditions
C1-C6 of Kruz̆kov [11] hold, Theorem 2.1 in Kruz̆kov [11] implies that u = v.

(B) As conditions R1-R6 of Kruz̆kov [11] are satisfied, Theorem 5.1 in
Kruz̆kov [11] implies the existence of a semiconvex function v : O → < such
that ‖Dv(.)‖ = e−f(.) a.e. and lim‖x‖→∞ v(x) = −∞. Then, u = −v is a
generalized solution of (8).

Proof of Theorem 8.10 Consider [u] ∈ Un/≡. Since u ∈ Un, ‖Du(.)‖ =
e−f(.) a.e. for some f ∈ F . It follows that Γu = Df a.e. Therefore, Γu ∈ Rn.
Since Γ is invariant on [u], Γ maps Un/≡ to Rn.

Consider a ∈ Rn. Then, a ' Df for some f ∈ F . Given f , Lemma 8.9
implies that (8) has a generalized solution u ∈ Un. So, Γu ' Df . As ' is
transitive, Γu ' a. Since Γ is invariant on [u], Γ[u] ' a.

Consider a ∈ Rn and [u], [v] ∈ Un/≡ such that Γ[u] ' a and Γ[v] ' a. As
' is transitive, Γ[u] ' Γ[v]. So, Γu ' Γv. As u, v ∈ Un, there exist f, g ∈ F
such that ‖Du(.)‖ = e−f(.) a.e. and ‖Dv(.)‖ = e−g(.) a.e. It follows that
Df ' Γu and Γv ' Dg. As Γu ' Γv, transitivity of ' implies Df ' Dg.

So, Leb(E) = 0 for E = {x ∈ O | D(f−g)(x) 6= 0}. Consider x ∈ O. Let
B1/n(x) = {y ∈ O | ‖x− y‖ < 1/n} for n ∈ N . As Leb(B1/n(x)) > 0, there
exists xn ∈ B1/n(x) such that D(f − g)(xn) = 0; otherwise, B1/n(x) ⊂ E
and Leb(E) ≥ Leb(B1/n(x)) > 0, a contradiction. As f, g ∈ C2,α, D(f − g)
is continuous. By construction, limn xn = x. Therefore, D(f − g)(x) =
D(f − g)(limn xn) = limnD(f − g)(xn) = 0. So, D(f − g) = 0 on O.

Fix y ∈ O. Let (f − g)(y) = c and h(.) = (f − g)(.) − c on O. Then,
h(y) = 0 and Dh = D(f −g) = 0 on O. Consider x ∈ O. By the mean value
theorem, there exists t ∈ (0, 1) such that h(x)−h(y) = 〈Dh(tx+(1−t)y), x−
y〉. Therefore, |h(x)| = |h(x)− h(y)| ≤ ‖Dh(tx+ (1− t)y)‖‖x− y‖ = 0. It
follows that (f − g)(.) = h(.) + c = c on O.

So, ‖Decu(.)‖ = ec‖Du(.)‖ = ec−f(.) = e−g(.) a.e. Therefore, given g,
ecu and v are generalized solutions of (8). By Lemma 8.9, ecu = v, i.e.,
[v] = [u].
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