
CDE 

Centre for Development Economics 

WORKING PAPER SERIES 

Preservation of the Commolls by 

Pooling Resources, Modelled as a 


Repeated Game 


Wictzc Lise 

Delhi School of Economics 

Working Pnper No: 27 

Centre for Development Economics 

Delhi School of Economics 


Delhi 110 007 INDIA 




is no commons dilemma in a single period in the sense of Wade, but the dilemma shows up 

in the long run. They argue that the commons problem should be rather modelled as it 

hawk/dove game, where "dove" is preserving the common and "hawk" is exploiting the 

common. Playing "hawk" too many times will bring the common over the brink of disaster. 

Runge (1981, 1984 and 1986) pleads that the commons problem, as contrary to the common 

belief, is rather akin to the assurance game, where the one prefers to do what the other does, 

while mutual pooling has the highest preference. This leads to a self-enforceable solution and 

it gives a better explanation for the finding that the tragedy of the commons has 110t yet 

emerged on a bigger scale. 

Hence, strong arguments to support the modelling of the commons game as the prisoners' 

dilemma (Hardin (1982), Hardin and Baden (1977), Taylor (1987», an assurance game and 

a hawk-dove game or, what is the same, a chickens game (Taylor, 1987) can be found in the 

literature. These three games constitute collective dilemmas (Bardhan (1993) and Bates 

(1988». This debate has not yet brought an answer of the same tenor. It may be that this 

chapter has been based mainly on the case of the prisoners' dilemma, but it can as well be 

applied to the hawk/dove game, while the assurance game does not need such an approach, 

because the solution is self enforcing. Bardhan (1993) goes even further to argue that the· 

commons problem· can change from one dilemma to an other or even can be resolved as time 

goes on. He gives an informal discussion on this transition process. This chapter gives a first 

attempt to a formal approach of such a transition process. 

For the analyses of this paper I assume that there can exist Common Pool Resources (epRs). 

CPRs can be either open access or common property of the community. In the latter case, 

these resources are owned by the (village) community or leased by the government to the 

village community. The community members have the right to appropriate, while non

community members have the duty to refrain from appropriation (see for example Bromley 

and Cernea (1989». CPRs can be extended by pooling labour and private property resources. 

These poolers will finally divide the marketable yield of the common pool among themselves, 

but intermediary yields like fodder, fuelwood and fruits can be consumed during the process. 

This share in the yield is an important incentive which will move the people towards 
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participation. Purticipation of the people means that they colllribute to the development effort, 

share in the benefits and are involved in decision making as well as in evaluation (see for 

instance Lise (1995, fOlthcoming». 

This pooling process is fonnalized in section 2 as a noncooperative two-person three-strategy 

repeated normal-form game. The payoffs are taken as functions ofthe amount and quality of 

resources. The aggregate of these two factors will be referred to as the level of resources. 

Section 3 focuses on all possible payoff orderings in two strategy games, in order to derive 

minimum required discount factors under which cooperation is an equilibrium outcome. The 

game is repeated an infinite number of times. The payoffs are fixed to sum up all relevant 

cases under different payoff orderings. The prisoners' dilemma, hawk/dove or chicken game, 

assurance game, Pareto game, coordination or battle of the sexes game, and the reverse battle 

of the sexes game are six possibilities out of which the first two will get major attention, 

because they have non-trivial discount factors. The effect of different trigger strategies is 

demonstrated for the case of the hawk/dove game. 

In section 4 the case of finite punishments in the infinitely repeated prisoners' dilemma is 

analyzed. A relation between the permissible, discount factor and the number of periods of 

punishment is derived. It will be proved that the critical discount factor is strictly decreasing 

in the number of punishments for a deviation from poo1ing. 

In section 5 comparative statics is used to find the behaviour of the function of the minimum 

required discount factor to guarantee cooperation as the equilibrium outcome when the 

resource level goes from zero to infinity. Conditions are derived under which cooperation is 

most likely to occur for the minimal required discount factor as a function of resources in the 

prisoners' dilemma case. It is argued that this function can de divided in five different phases. 

As the level of resource increases (phase 2), the gross incentive to pool will. increase from 

zero (phase 1) to a maximum which possibly can be one (phase 3) and after that decrease 

(phase 4) again to zero (phase 5). Two examples illustrate a situation where some phases will 

be attained depending on the specification of the payoff functions. 
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The possibilities of obtaining cooperation in the repeated prisoners' dilemma is discussed in 

section 6. This is possible when there is a change in (he punishment structure for defection, 

when the termination time is unknown, and under incomplete information: each others' private 

information do not necessarily coincide. 

The pooling game as formalized in section 1 is analyzed in section 7. The prisoners' di lemma 

has been imbedded in this finitely repeated game. Under the assumption of a simple trigger 

strategy, two critical discount factors have been derived for this case. It is concluded that, in 

a comparison with section 4, there were no qualitative changes in the results. 

In the final section it is discussed how the present analysis of the simple two-person three

strategy repeated game can be extended . 

2 Formalizing the pooling game 

In many places of rural India degraded waste lands can be found. It either belongs to the 

Government or it is privately owned. The private lands remain fallow, because the owners 

have no financial resources or are not motivated to undertake necessary investments to restore 

the biomass such that the land can be used for production again. These private fallow lands 

can be utilized when a number of owners pool land, water, labour and other resources to 

create a common pool2. This pooling process is possible at the village level once an institution 

has been established, either spontaneously from inside the village or from outside. Once a 

common pool has been created, they can start a process of collectively planting trees protected 

by social fencing. This is possible, since several tree species can even grow when the soil 

quality is poor. The most important factor is that the trees are properly cared for and 

protected. That calls for social fencing and collectivisation of labour. Once the quality of 

resources in the pool starts improving, other products like grass and vegetables can also be 

grown. The land poolers remain the owner of their voluntarily pooled land. They can decide 

whether they want to add their private land to the common pool, or they do not want to pool 

2A number of cases can be found in Lise (1995, forthcoming). There I make a comparison 
between four kinds of cases in rural India. That approach was supported by discrete time 
modelling and simulation results were derived. 
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at. all, only once a year. The pooling game is formalized as u symmet.ric'! 2-person 3-strategy 

noncooperative repeated game r '" (S, 0, R, P) in the following manner, 

Let us consider a cDmmunity and focus on 2 landowners only: 2 persons, who own a parcel 

of degraded waste land, i E I :::: (I, 21. 

a) 	 The possible actions of all players are identical: they have to decide whether they 

want to pool their land, to withdraw their land some time after pooling, or not to pool. 

S* = {pool, withdraw, not! = {Sl, S2, s31 == Si for all i E I. Then the joint strategy 

space is given by S = Li~12Si S·. S*. Let Sil be the action of player i at time t, then 

Sl = (SII' S2')' the vector of actions at time t chosen by all players. 

b) 	 This game is repeated T times, where T is a natural number which can be infinite. The 

importunce of the future of the players is expressed with the following discount factor4 

o :: (0 1, ( 2), which is different for both players in general. 

c) 	 It is assumed that a players' payoff does not only depend on the strategies, but also 

on the level of natural resources R. At time t, R = R, is a real non-negative number, 

~ E [0,00). Notice here that R, crucially depends on all past actions and therefore 

summarizes an infinite history in a single numerary. 

d) For all Sl E S and for all RI E [0,00), Pi,(s" R,) denotes the payoff of player i at time 

t when all players selected their action according to 81, where the resource level is Rl• 

Hence, ~ changes endogenously, dependent on the past choices of the players and has 

as such an indirect effect on the payoffs. Under discounting the net present value of 

players its payoff will have the following structure: Pi =L,~oTOiIPi'(S,,~). P = ni~12Pi 

is the aggregate payoff set. 

3When the payoff structure is symmetric, both players are assumed to be perfectly equal 
and both players will face exactly the same dilemma. 

40 = 1/(1 +r), where r is the discount rate, r E [0,(0), which is logically equivalent to (, 
E (0,1]. 
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It is not always an easy task to find a suitable equilibrium concept for this 2-person game 

where the payoffs functions can change endogenously. I will use the concept of subgame 

perfect: equilibrium throughout this paper, 'an equilibrium b of r is said to be a subgame 

perfect equilibrium if, for every subgame rx of r, the restriction bx of b to r constitutes a 

:Nash equilibrium of rx' (Van Damme, 1991, 108). The main emphasis will be on the C~lse of 

the prisoners' dilemma, but various other cases will pass in review. 

An assessment of two person dilemmas 3 

Let us consider the preferences of a peasant at the village level. As mentioned in the setting 

of the last section he can decide every year whether he will pool either labour and/or land, 

or not pool anything. Once he has made a decision, he will not be able to change his strategy 

for one year, but the option of pooling (continue pooling) or not pooling (stop pooling) 

remains at the beginning of each year. Therefore, the problem can be mOOeHed in the 

framework of a repeated game. The following assumption' restricts the pooling to the most 

simple to strategy case . 

Assumption 3.1: 	 Pooled land or labour is not withdrawn during the yearly cycle of the 

cultivation process. 

The requirement of such an assumption can be justified, since only after the creation of a 

pool, a collective cultivation process can be started. 

In this paper only two peasants are considered. When both of them extend the common by 

pooling private (waste) land and/or labour, a situation of cooperation and peoples' 

participation is created. When one peasant pools, while the other does not, the single pooler 

has to do all the work for the common, while the other can focus his attention on other work, 

while he is still able to use the common. Hence, he can free-ride. Finally, when both do not 

pool at all, they will leave their waste land and the common barren and it has a marginal 

utility for whatever is left as grazing land. Then the free-rider problem is most severe. 

YJ'his assumption will be dropped in section 6, in order to analyze the general pooling 
game as formulated in the last section. 
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Consider the following representation of the pooling game, which is a symmetric bimatrix 

game. 

Game P: 

2 Pool Not 

1 

Pool b(R,), a(R.) 

Not a(R,), b(R,) y(R,), y(R,) 

Here x(R,) denotes the payoff to player 1 (or 2), when both decide to pool, at resource level 

R" at time t. a(R.), b(R,) and y(R,) can be described analogously. 

Assumption 3.2: The payoffs in game P are taken to depend on the resource level R/'. 

Hence, as time goes on the value of RI can change, which has its indirect effect on the payoff 

functions. This can even cause a change in payoff structure in the long run. I argue that this 

very interesting transition process can be described by this simple game. The phase-approach 

in the next section is illustrative to this in ihe sense that different phases in the rise and fall 

of a pooling process reflect different dilemmas. In this context it will be very useful to have 

an exhaustive overview of all cases which can appear when different payoff orderings are 

considered. For this purpose let us concentrate, for the time being, on fixed payoff structures: 

Notation: 

Attach the following economic interpretation to three differences in game P. These will be 

used to describe the trade':"off between pooling and not pooling. 

Definition 3 .1: a - x == the net threat to deviate frommutual pooling. 

&rhis assumption will not become effective before the section on the comparative statics. 
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x ~ Y ." the net incentive to pool. 

a ~ y == the net threat of deviation by the other, when one decides not 

to pool. 

Prime (') is used for the derivative with respect to R.. 

x' = dx/dR; y' = dy/dR; a' := da/dR; b' = db/dR. 

x' is the rate of change in the (pool,pool)-payoff with respect to the level of resources. 

The payoffs are incredsing functions in the level of the resources in the 

common pool. 

Hence, it follows from assumption 3.3 that ai, b', x', y' > O. But this does not mean that the 

productivity of the pool will increase. The response of the pool to a change in the level of 

resources is the focus of comparative statics in the next section. 

Assumption 3.4: 	 x > y: the net incentive to pool is positive. 

A direct implication of assumption 3.4 is that the net threat of deviation by the other, when 

one decides not to pool, is strictly larger than the net threat to deviate from mutual pooling, 

or the net incentive to pool. It also restricts us to consider only those cases where mutual 

pooling is always more beneficial than mutual not pooling. This is in accordance with the 

argument in the beginning of this section. Namely, in the situation of Inot pooling', the land 

is neglected and hence it gets degraded. This assumption guarantees the presence of a strictly 

positive net incentive to pool. It rules out a second class of dilemmas, where the reverse of 

assumption 3.4 is true. Therefore, only 12 (4!/2) possibilities are left for ordering a, b, x, y. 

These can be dividedinto six distinct cases. For the first two cases, it is possible to derive 

non-trivial minimum required discount factors <I> = <I>(R1) E (0,1). <I> is very important and has 

the following characteristic. 

Definition 3.4: 	 Pooling is individually most beneficial, if and only if min (l) I' l) 21 > 

<1>. 
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L?' x > y > b <':'. prisoners' dilemwn. 

This is the most intriguing case. The prisoners' dilemma game has the characteristic that the 

most attractive outcome (pool,pool) is not self-enforceable but self-destabilizing, due to an 

individual dominating strategy of not pooling. Hence (not,not) is the Nash equilibrium, which 

is Parieto dominated by (pool,pool). Even when the game is repeated,(not;not)~isstm a 

subgame perfect equilibrium. The backward induction principle prescribes to play (not,not) 

in every period as an equilibrium strategy when the termination time is common knowledge 

(see Luce and Raiffa, 1957). One way out of this dilemma is by repeating the game an 

infinite number of times. (Pool,pool) can resuft as an equilibrium outcome when the following 

trigger strategy a I is followed by all players. 

a=I 	 tool as long as no defection took place; 


lNot otherwise. 


Continuing to work, for the time being, with fixed R it is possible to obtain mutual pooling t , 

as an equilibrium outcome, when the importance of future payoffs is large enough. A lower 

bound or minimal required discount factor function can be derived by interpreting the 

consequences of a I' Moreover, always pooling should yield a strictly higher payoff than 

pooling in the first ('t-l) periods until defection takes place at time 't, directly followed by 

not pooling after time 't as prescribed by the trigger strategy. Whenever inequality 1 is 

satisfied, mutual pooling will be an equilibrium outcome. 

Rewriting inequality 1 yields the following function on the minimal required discount factor 

for the case of the prisoners' dilemma. 

0> a -x =</J 	 (2)
a -	 y p 
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Hence, condition 2 is a sufficient and necessary condition for mutual pooling to be a subgame 

perfect Nash equilibrium". The behavior of this function will get major attention in the 

remaining sections, since it is very important to derive exact conditions under which p()oling 

is beneficial. This is also important in connectiqn with the chance of survival of the local 

management institution. 

The next few sections are mainly based on the prisoners' dilemma, where it will be analyzed 

in depth. The remaining five cases are only mentioned to get an exhaustive overview of 

possible cases. These can be analyzed with similar techniques as applied to the prisoners' 

dilemma case. Dualities with other cases will be mentioned when applicable. 

Case 2. a > x > b > y - hawk/dove or chicken game. 

This game has two pure Nash equilibria, (pool,not), (not,pooI). Let us define another trigger 

strategy, O 2, under which mutual pooling can emerge as an equilibrium strategy in this case. 

0=2 Pool as long as the other did not defect first; 
{Not otherwise. 

This trigger strategy differs from 01. because it is more beneficial for the defector to return 

to pooling, when the other sticks to the not pooling strategy, because the payoff increases 

from y to b. When both players follow this behavior, then a function of the minimal required 

discount factor can be derived in similar manners as the last case on the prisoners' dilemmaS. 

S> a-x A.. (3)
a - b '1-'11 

At this point it must be remarked that <Ph of case 2. is based on the assumption that this 

trigger strategy is strictly carried out. Only then it will be beneficial for the defector to poo] 

7This is a well-known result. See for example proposition 1 in Stahl (1991). 

sit has been derived from inequality 1 with a small alteration, where b should be 
substituted for y. 
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again. However, the fanner argument can be criticized, because the defector can observe in 

the consecutive period that the defectee improved her payoff in such a manner that the 

defectee even overtook the payoff she got under mutual pooling. This can tempt the defector 

to select not pooling to-minimize the payoff to the defectee to punish the defectee for 

implementing the trigger strategy. This argument can be supported by the following two-step 

trigger strategy, 02-slcp' 

for the defectee; 

for the defector. 

°2-Slep= 

Where o3 = tool as long as the other never defected; 

1Not otherwise. 

Here 0 3 is the strategy of the defector to punish the defectee for implementing the trigger 

strategy 0 f' 

Under the two-step trigger strategy the defector and the defectee will have a dif~erent discount 

factor, due to the role assignment of defector and defectee, which are essentially different. 

Assume that player i defects first9, then he wiJI be assigned the role of defector and player 

j CFi) will get the role of defectee. This will yield the payoff scheme as depicted in table 3.1. 

Period Sil Pi(Sl) Sjl Pj(sl) 

{ ... , 't'-1I Pool x Pool x 

't' Not a Pool b 

't'+1 Pool b Not a 

{ 't'+2, ... ' Not Y Not Y 

Table 3.1. The strategy choice of defector i and defectee j. 


The net present value of the payoffs are expressed in equations 4 and 5. 


p. = X~T-l + ao T + bo Pl + y~"" Of (4) 
1 Lt.:O L"..2 

9Neglect the first defection when it is mutual. In that case no role assignment is possible, 
but more importantly, since both are to blame, there is no need for punishment. 
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(5) 

As soon as XEI~O"'OI is bigger than equation 4 or 5, cooperation will again be an equilibrium 

outcome. this yields the following discount factor functions. 

0; > -(a-b) + .j(a-b)2;. 4(b-y) (a-X) "" n. (6) 

~ 2 (b-y) 'YdetectoI 


(a-b) + .j(a-b)2 - 4(a-y) (x-b) ;;; n. (7) 

OJ > 2 (a-y) 'Ydetectee 


With some algebra, it can be derived that {<I>dcfcclol' <PdefCCICC I < <Ph always holds. Hence, the 

two-step trigger strategy does always lead to a more severe punishment for both the defector 

and the defectee. 

There is still a basic problem which bothers the two-step trigger strategy. It requires both 

players to be individually irrational, because one of them can always improve on his/her 

payoff by deviating from the two-step trigger strategy unilaterally. Deviation yields a payoff 

of b instead of y, which is strictly bigger in the case of the hawk/dove game. Consider 

discount factor <l>h' derived from trigger strategy 02' as the crucial one. 

Case 3. x > a > y > b - an assurance game. 

Here it is more beneficial to either mutually pool or mutually defect, which are both Nash 

equilibria. This game has no individual dominating strategies (as in the case of the prisoners' 

dilemma), because x > a, while b < y. Strategy (pool,pool) Parieto dominates (not,not) and 

is self-enforcing, because once the players have agreed upon (pool,pool), they can never do 

better. Trigger strategy 0 I is sufficient to arrive upon mutual pooling as an equilibrium 

outcome. In other words, it never pays to defect. Hence, <Pa = O. 
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Cas,} 4, x > max. Il\, YI and b > y ~,. Pareto game! 

The mutual pooling outcome is the only Nash equilibrium, because it is an individual 

dominating strategy which also Pareto dominates (not,not). Therefore (pool,pool) is always. 

more beneficial in the case of the Pareto game. Hence, <P,'llr "" O. 

Case 5. x > y > max {a, b} 10 - coordination or battle of the sexes game. 

The same reasoning as followed by the assurance game applies here. In fact, it is exactly the 

same situation in a game theoretic sense. It is always more profitable for both to pool and the 

cooperative outcome is self-enforcing. Hence, <Pc = o. 

Case 6. min Ia, b I > x > y <=> reverse battle of the sexes game. 

Strategy combinations (not,pool) and (pool,not) are two pure strategy Nash equilibria. The 

implementation of trigger strategy a I is useless in this case, since the defector will start 

pooling again as soon as uhe is punished". But why should the defectee want to punish the 
~ 

defector for defection? Notice that it is more beneficial for the defectee to be defected. 

Moreover, there exists no discount factor by which the cooperative outcome can be enforced. 

Hence, <Pr = 1. 

lontis payoff ordering was taken ·by Ru.nge (1984) as the one belonging to an assurance 
game. 
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All cases are summarized in table 2.2. 

Case 

1 (111) 


2 (1) 


3 (1) 


4 (5) 


5 (2) 


6 (2) 


N am(:,~ of game 

Prisoners' 
dilemma 

Hawk/dove or 
chicken 

Assurance 

Pareto 

Coordination 

Reverse Battle of 
the sexes 

Payoff 
ordering 

a>x>y>b 

a>x>b>y 

x>a;>y>b 

x > max fa,y I ; 
b>y 

x>y>max Ia,b I 

min {a,b I>x>y 

Critical discount 
factor 

a - x '" <p
a y fI 

a - x 
<p"a - b 

o == <Pa 

o = 4>par 


o == <Pc 


1 == <Pr 

Table 3.2: The value of the critical discount factor function in all possible casesl2
• 

4 Number of punishments versus permissible discount factor 

It has been a hot issue in economic theory for a long time why there is always so much 

discrepancy between finite and infinite horizon prob1ems. Intuitive1y, it should be true that 

the finite case will converge to the infinite case. The main difficulty with this statement is 

that it is sometimes very hard to get an explicit expression for the finite case, while it is 

possible to get one for the infinite case. This is also true for the repeated prisoners' dilemma, 

where, again, it is impossible to find an explicit expression for the critical discount factor of 

a function of the number of punishments. 

llThe number in the brackets represents the number of the possibilities .of ordering the 
payoffs a, b, x, y in each case. 

12Por case 2 to 6 it holds that whenever x > y (the reverse of assumption 4) the critical 
discount factor will always be one. This is not true for the reverse prisoners' 
dilemma (b > y > x > a), because whenever 0 < (x-a)/(y-a) cooperation is feasible. This 
reasoning is due to Stahl (1991, 368). 
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In this section we will focus on the infinitely repeated prisoners' dilemma with a trigger 

strategy of finite period punishmentsl:l. It is shown that, under finite punishments, a 

sufficiently large discount factor can be found, under which cooperation will become an 

equilibrium outcome. A sufficient condition for the existence of such an equilibrium is easy 

to derive, but the analytical construction of an exact critical discount factor with more than 

two punishments is tough. The focus in this section will be on those caseswhereit~can be 

derived. 

The objective is to find an expr~ion for the minimal required discount factor for which 

cooperation is the equilibrium outcome, when the number of punishments varies. The same 

approach as in section 3 can be followed to arrive at such an expression. Define n as the 

number of punishments Further, assuming that one player defects in period 1:, we have to 

solve inequality 8 which is the finite version of inequality 2. 

This will yield an implicit relation between 0 and n+ 1. Substitute the inequality sign for the 

equality sign and call the solution of the resulting equation <\>". 

6 > a x + x - 6n+1 (9)
a-y a-y 

Condition 9 can be rewritten as an (n+l)-degree polynomial. 

6 n 1fn(6) = + - (1+cf>d 6 + cf>1 < 0; 
(10)

Where cf>1 = a-x 
x-y 

Definition 4.1: <\>" is the solution of fn( 0) = o. 

l3The possibility of fmite period punishments was already recognized and worked out 
theoretically by Green and Porter (1984), 
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ELoof: It follows directly from condition 9 when n goes to infinity, since 0 E? (0,1). Q.E.D. 

In general an (n+ 1)lh-degree polynmnial will have n roots which can be either real, 

complex and/or multiple by the fundamental theorem of algebra. To solve equation IIfn( 0). 
"" Oil is a pure mathematical problem. The general solution of a (n+ lrh-degree polynomial 

has not been found in mathematical theory so far. But here we will be dealing with a 

special case of this general problem. For n ~ 2, there exists a solution, from which we can 

derive the main idea for the general solution. 

Case n=1 

In this case cooperation is a possibility. f2(0) has two roots: 0 1=1 or OZ=<PI' AlI values 

between <PI and 1 satisfy fl(o)<O. 

xa - < 8 < 1 (11) 
x-y 

Hence, if a particular discount factor, 0, happens to be in that region, then cooperation can 

indeed be an equilibrium outcome. This is a very remarkable solution, since we have arrived 

at a case where cooperation can be enforced with the threat of only one punishment, provided 

that the discount factor satisfies condition 11 and the termination time is unknown. This is 

a very interesting result and the requirement of a quite irrational trigger strategy of infinite 

punishments (Fudenberg and Maskin (1986, pg.545) already cal1ed such a player crazy), can 

be substituted by one single punishment, but the critical discount factor has risen to <Pn which 

is strictly larger than <p=14. This means that the gross incentive to pool has reduced and the 

likelihood of cooperation has decreased. 

14This is easily checked by comparing conditions 11 and 2. It suffices to show that <P~ < 

a-x < .1-X -= X-'y < a-y ..,. X < a 
a-y x-y 

This is true for every payoff-ordering of the prisoners' dilemma. 
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In the last case we have found 0"" 1 to be the root of the equation fll( 0 )=0. It is easy to verify 

that this is true for all n. Therefore, condition 10 can be rewritten as follows. 

Case n=2 

In this case f2(0 )=0 has three different real roots. Cooperation is, again, a possibility. The 

negative root is not considered here, since only values of 0 E (0,1) are of interest. 

¢ = -.1: + 1-.1: + a-x - 21 + ~ 41 + ¢ 1 < 6 < 1 (13) 
2 2 ~ 4 x-y 

Case n~3 

It is not possible to get an explicit expression for the roots of fll ( 0 )=0. But the following can 

be said about these roots. 

When n is odd, fn(o)=O has two real roots: 0=1, <Pn E (0,1) and (n-2)/2 pairs of 

complex conjugate roots. 

When n is even, f,,(o)=O has three real roots: 0=1, <Pn E (0,1), the third root is 

negative and (n-3)/2 pairs of complex conjugate roots .. 

There is a strict ordering on the positive roots of fll( 0): 

Theorem 4.1: Let <Pn be the real root of 

where <p", and <p, are defined as before. Then the following equivalence relation 

holds 

(0) 

(0-1) 
(12 I) 

(14) 

Proof: See appendix A 1. 
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The intuitive idea behind theorem 4.1 is that whenever the number of punishments increases, 

the likelihood of getting mutual pooling as the equilibrium outcome should increase as well, 

because the punishment is becoming more severe. This idea has been formalized in theorem 

4.1 along with its proof. 

Corollary: 	 If <p1<1 and o><p" then (pool, pool) is an equilibrium outcome for any number 

of punishments. 

Proof: 	 If <p,<I, then for all n: <Pn < <PI' by theorem 4.1. This is a sufficient condition 

to have (poo], pool) as an equilibrium outcome. Q.E.D. 

The condition of the corollary <PI ""(a-x)/(x-y)< 1 is logically equivalent to a-x < x-y which 

means in words that the net threat to deviate from mutual pooling should be smaller than 

the net incentive to pool. 

5 Comparative statics on the critical discount factor 

With the conditions on the discount factor, as summarized in table 3.2, we reach at the most 

striking issue which is to analyze the behaviour of <p(R). This section will rely solely on the 

case of the prisoners' dilemma's, Assume the following shape for <p(R}: 

a( R } x( Rt }t (15)
a( R(} - y( R() 

The crucial question is how <P(R) will vary over time. It is an empirical question and it can 

differ from case to case. For the present analysis let us concentrate on the values of the level 

of resources only, to derive the possible effects on <p(R) when R varies from zero to infinity. 

The theoretical possibilities of the critical discount factor of cases 1 t06 can be used when 

we consider the behaviour of 4>(R) in practice. In theory something more can be said about 

lSThe same analysis can be done for the haWk/dove or chicken game by assuming <p(R) 

= <Ph' 
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the behaviour of <t>(R). As R changes, the net threat to deviate from mutual pooling and the 

net incentive to pool will also change. These changes can be specified by considering the first 

and second order conditions of <l>(R). 

c//( R) ~ 0 .". a I - X I -;, a I - yl (16)
> a-X> a-y 

a"-x"< all y"
----"'--- (17)

a-x> a y 

In definitions 3.1 to 3.3 is given an economic interpretation to the differences between the 

payoffs. The fraction (a'-x')/(a-x) can be interpreted as the rate of change of the net threat to 

deviate from mutual pooling. 

In words condition 16 reads as follows. The value of the critical discount factor <t>(R) is 

increasing (decreasing) when the rate of change of the net threat to deviate from mutual 

pooling is larger (smaller) than the rate of change of the net incentive to pool. From this the 

optimality result in lemma 5.1 can be derived. 

Definition 5.1: 1 - <t>(R) = the gross incentive to pool. 

Lemma 5.1: <t>"(R) > 0; 1 <t>(R) is maximized if and only if (a'-x')/(a-x) = (a'-y')/(a-y). 

In words: Provided that the second order condition is met (<t>//(R»O), the gross incentive to 

pool will be highest when the rate of change of the net threat to deviate from mutual pooling 

is equal to the rate of change of the net threat of deviation by the other, when one decides 

not to pool. 

Proof: The threat rate to deviate from mutual pooling is by definition 3.1 equal to a-x. Its 

rate of change can be written as (a'-x')/(a-x). The incentive to pool is by definition 3.2 

equal to a-yo Its rate of change can be written as (a'-y')/(a-y). Whenever these two are 
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equal then q>'(R,)"'"O by condition 16 and q)II(R'»O by assumption. This is a necessary 

and sufficient condition for a minimum of <l>(R) in R*. Q.E.D. 

The simultaneous effects of changes in x, y, a as R changes can be analyzed as well with 

condition 16. 

Theorem 5.1: x' > max {a', y'} ,- (j)'(R) < O. 

In words: the statement that the payoff of mutual pooling x is growing faster in R than the 

threat payoffs a and y is a sufficient condition to have a strictly increasing gross incentive to 

pool. 

Proof: 	It suffices to interpret condition 16. Both numerators are positive, but the left 

denominator is negative, while the right is still positive. This implies that <I>'(R) < O. 

Q.E.D. 

It is possible to verify the indirect effects of a one by one increase in x, y, a on <I>(R), by . 

taking first and second order derivativesl6 with respect to x, y I a. These effects are of 

interest, because as R changes the payoff functions x, y, a will change as well. 

(lP=2<O' (]2<p=0 
ax a-y , ux 2 

linear decreasing in x 

ap=~>O' (]2q, == 2( a-x) >0 
oy (11-y)2 ' oy2 (,1-Y) 3 

convex increasing in y 

ap=~>O' -2( x-y) <0 
oa (a-y) 2 I oa 2 (a-y) 3 

concave increasing in a 

Table 5.1: The indirect effects on <l> by increases in x,y,a. 

16Further elaboration on higher order derivatives is not useful here, because it will never 
give a definite answer on the simultaneous effects of x, y, a on the behaviour of <l>(R), which 
is essentially a function of R. . 
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From table 5.1, it can be seen that (p(x,y,a) is increasing in both y, a, but decreasing in x. The 

increase in y is convex hyperbolic, the increase in a is concave hyperbolic, while the decrease 

in x is simply linear. To arrive at an economic interpretation of changes in x,y,a on <\>, 

consider the general fonn of the nIh order derivatives. 

( a-y) 11 all4>.Let 	 , where i E (x, y, a);
III 	 ai II 

r: I: ::: {-01 n::: 1 ; 
.. A otherwise 
~; = 4>00 =: :=; E(O, 1) 	 (1.9)then 

( _1 ) IF 1 4>00 (1) 11+ I x '.y ( 1, 1) 4>1 JI-Y 

This gives a complete qualitative expression for first and higher order changes in <\>(x,y,a) 

with respect to x,y,a. Changes with respect to x sort out the highest effect on <\>. 

Lemma 5.2: la<l>lax 1> max ( la<l>lay I, la<\>laa I} 

Proof: 	 It follows directly by comparing the differences in table 5.1 and by using the payoff-

ordering of the prisoners' dilemma. Q.E.D. 

Lemma 5.2 provides us a strong result. Increases in x do not only lower the critical 

discount factor, but the critical discount factor is also most sensitive to changes in x. This 

means that efforts to increase the payoff under pooling have the highest impact on the 

critical discount factor. 

Changes with respect to y can be qualified as the trade-off between the net threat to 

deviate from mutual pooling and the net threat of deviation by the other, when one decides 

to pool. Changes with respect to a are qualified by the fraction of the critical discount 

factor under finite punishments over the critical discount factor under a single punishment. 
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This is the trade-off between the net incentive to pool and the net threat of deviation by the 

other, when one decides not to pool. 

The behaviour of the critical discount factor ¢(R) as a function of the level of natural 

resources R can be broadly divided into five different phases, when R varies from a value of 

total degradation (RzO) to a value of maximal productivity (R-oo). 

Phase 1. 

Whenever the resources are too degraded it is very unlikely that any pooling will be realized. 

If the level of natural resources decreases even further, the net incentive to pool will be zero. 

This means that whenever the level of resources falls below a certain value (y), it will not 

pay to pool mutually for any discount factor whatsoever. Formally, it can be written as 

follows. 

3y>0 VE"5,y lim R'E(X-Y) '"" 0 = lim D.E!!.-X '" ¢(R)::::1 (18)
+ ''+ a-y 

Therefore, whenever the level of resources are in the region [O,y], the critical discount factor 

¢(R) = 1. 

Phase 2. 

As the resource level increases, the incentive to pool will also increase. This is 10gicalJy 

equivalent to ¢'(R) < O. This increase will continue up to a certain level of resources, say R*. 

Either the first order derivative of the critical discount factor or the critical discount factor 

itself will become zero. In both cases the players will be entering phase 3. This minimum of 

the critical discount factor does not have to be unique. Whenever it is unique, phase 3 will 

consist of a single point, otherwise ¢'eR) = 0 or ¢(l~.) :::: 0 can hold for a particular region R 

E [R., R*]. 
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In phase 3 the gross incentive to pool has reached its maximum. It will stay at its maximum 

until it leaves phase 3. When ¢/(R) "" 0 for R E [R*, R'], ¢(R) (R > R) can enter either phase 

2 (¢'(R) < 0) or phase 4 (¢/(R) > 0). When ¢(R) :;:: 0 for R E [R*. R*], ¢(R) (R > R*) can 

only enter phase 417. 

Phase 4. 

As the resource level increases further, the gross incentive to pool will decrease and the 

temptation to withdraw the pooled resources will grow. This is logically equivalent to <p'(R) 

> O. It is possible as long as <p(R) < 1. In this phase, there are again two possibilities for the 

critical discount factor. Either the first order derivative will become zero or the critical 

discount factor will become one. The former means a maximum after which phase 2 wilJ be 

entered again. In the latter case phase 5 will be entered. 

Phase 5. 

After a certain level of resources, say R', <p(R) E [R',-) will become equal to one and remain 

so after that. Hence, at this level of resources it is not beneficial to pool any more and both 

peasants will prefer to stop pooling. 

Two examples are considered, within the prisoners' dilemma situation to derive some 

graphical examples of <p(R). 

Example 5.1 

Consider fixed threat rates. Then a' y' = 0 which simplifies conditions 16 and 17 

considerably. 

17When the virtual function ¢(R) will "hit the R-bar from below". 
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Hence, the choice of x alone dictates the behaviour of <p(R). The effects of changes in x are 

depicted in the first row of table 5.1, where y and a are constant. Consider for example a 

parabola x "" x(R) = -a1R
2 + a2R + a3 (al>O). The individual benefits, due to cooperation, 

increase until a maximum is reached. At this point, the critical discount factor function attains 

its lowest value. In other words, it is individually most beneficial to pool resources. After the 

maximum, the net gain from pooling decreases until the whole gain from pooling vanishes 

in R/. The graph of <p(R) has the following shape. 

S=·~·"2- <p'(R)=O 
.' ,. .. 

,,;, 

R. 

Figure 5.1: <p(R); a, y fixed; x is a parabola. 

Hence this is an example where <p(R) goes through all phases. 

The level of resources can go up and down over time, due to various reasons. It depends on 

the strategies of the users, but also on natural conditions which define the status quo of the 

resources, or to what extent the property rights of the community are recognized: Do the 

owners refrain from overuse? As long as the level of resources is fluctuating in the region 

between y and R', there will be a strictly positive gross incentive to pool and the pooling 

game is apparent. 
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Consider the case where the payoff of mutual defection is zero: y := O. This case still belongs 

to the class of prisoners' dilemma problems (see Stahl, 1991, 370). This can be realized by 

subtracting all payoffs in game P by y. The critical discount factor function can be written 

as follows. 

a">x" 
a < x 

x -l-c/>(R) ~ x 
a a 

The first and second order derivatives simplify to the following conditions. 

a'> x' 
a < x 

This means that the rate of change in threat payoff for deviating from pooling and the rate 

of change in the payoff for pooling determine the changes in <\>(R). In this case the condition 

has been simplified, but the interpretation is easier than for the general case under conditions 

16 and 17. 

Consider in this second example linear approximations for a and x. Take a = a(R) := aIR + 

and x := x(R) = azR + bz. It is easy to verify that <\>(R) has no optimum in this case, b l 

because <\>'(R) (=a1bz-azbl ) is always a constant. The linear approximation of the critical 

discount factor function has the following shape ls. 

'8This function has in general a vertical asymptote at R* = -bda( and a 
asymptote at 0* = - (acaz)/ah but for the present analysis only the part which falls m the 
regions R E (0,00) and 0 E (0,1] will be considered. 
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<p(R) will have the following graph, which is part of a hyperbolic. 

<p(R) 
...................................................:::...::: ... ...:-:::;";T.•~:'l'i:"l ...~ • ..ff': ..
•••::7.::7. •.. .. ... •••':'!":...~.. ...,............,.,.':'I"A'A~__ 0 * 


y ....R 

Figure 5.2:' <p(R); y =0; a and x are linear functions in R. 

Here two cases can occur, since the value of <p/(R) (=constant) can be either positive or 

negative. If positive, the likelihood of pooling to occur will be ever decreasing in Rand 

approach 0* in the limit. If <p/(R) is negative, the likelihood will be ever increasing in Rand 

will also approach 0* in the limit. Hence, in this example <p(R) can attain only two or three 

phases at a time, once the functions x and a are derived by, for example, an estimation. 

6 Cooperation in a repeated prisoners' dilemma 

If the prisoners' dilemma is repeated a finite number of times with R kept fixed and the 

tenninal time is common knowledge, then the following result is well known from the 

literature19
• The equilibrium of subgame perfection is equivalent to the backward induction 

principle which prescribes to play (not,not) throughout the game. This is not the intuitively 

expected outcome. 

Hardin (1971) shows that cooperation can occur by using the concept of a majority rule, 

which he calls a Condorcet choice. He shows that there can always be formed a weak or 

19See, for example, Luce and Raiffa (1957). 
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strong majority which prefers cooperation as an outcome, Hence, some cooperation can be 

realized. 

The discrepancy between the subgame perfect equilibrium of the finitely repeated prisoners' 

dilemma and the collective optimal outcome has been given a lot of attention by several 

authors20. This discrepancy can be overcome by relaxing some of the basic assumptions of 

the repeated prisoners' dilemma game. These ways out can be broadly divided into three 

classes. 

First, a change in the punishment structure under infinite repetitions can yield cooperation as 

an equilibrium outcome of the finitely repeated prisoners dilemma. Hirschleifer and Rasmusen 

(1989) analyze an n-person prisoners' dilemma with ostracism. The punishment of a one 

period exclusion from the community can be severe enough to have cooperation as a long 

term equilibrium outcome. Matsushima (1990) finds an equilibrium in a random matching 

game when players continue with cooperating partners and opt for a new partner through a 

random matching procedure as soon as the present partner defects. Frohlich (1992) uses a 

notion of fairness "you cut and I choose'i to generate cooperation as an equilibrium outcome. 

The players make a choice first. Their roles will be randomized, such that they cannot be sure 

what they will get. 

Second, cooperation can occur when the number of repetitions are unknown. It has been 

formalized in Basu (1987) where he uses the concept of common knowledge. When the exact 

termination time does not have the property of common knowledge, cooperation is a possible 

equilibrium outcome. It has also been demonstrated experimentally by Axelrod (1990). He 

invited scientists from different disciplines to design a strategy for playing a finitely repeated 

prisoners' dilemma where the termination time is unknown. A tit-for-tat-strategy did very 

well: start with cooperation and do what the other did in the previous period. It also won the 

tournament over all strategies submitted. The requirement of unknown termination time has 

been criticized by L. Samuelson (1987). He derived a cooperative solution for the prisoners' 

2~or an overview see Seabright (1993, pg. 119) and Van Damme (1991, pg. 170). 
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dilemma where the termination tinIe is not considered to be common knowledge, but private 

information. This argument has an overlap with the next class of incomplete information. 

Third, Kreps et al'admit a "small amount" of the right kind of incomplete informS}tjon' to 

derive that the number of defections is bounded from above (1982, pg. 246). Cooperation can 

also occur when a players' reputation is taken into account. Kreps and Wilson (1982) analyze 

reputation, but they do not use the prisoners' dilemma; they base their analysis on the Chain 

Store Paradox. That game consists of one monopolist and one potential entrant in each period. 
, 

The likelihood of an entrant to enter depends on the reputation of the monopolist to fight (at 

high cost) or to acquiesce. The concept of bounded rationality, where a player does not 

always opt for the expected most optimal outcome, can also lead to cooperation: by 'mistake' 

both can start cooperating, but pure rational players will never leave the equilibrium of 

(not,not). Fudenberg and Maskin (1986) analyze a situation where player i will be sane with 

probability (I-e) and playa 2-person game where mixed strategies are allowed. He will be 

crazy with probability e and play (pool,pool) until the opponent defects, after which he will 

play (not,not). They proved this result which is known as a special case of the Folk theorem. 

The Folk theorem states that any point above the minimax point can be attained when the 

discount factor is sufficiently large. 

Finally, these complications can also be avoided by considering other games. This has for 

example been done in section 7, where the prisoners' dilemma is imbedded in a game of three 

strategies. 

7 Implications of adding one more strategy 

The analysis so far relied mainly on the infinitely repeated prisoners' dilemma. To generalize 

the results, the prisoners' dilemma will be imbedded in a larger game by extending the 

strategy set. Let us allow for withdrawal of the pooled land during the process. Hence, the 

fOlmerlyassumed impossibility of withdrawal in assumption 3.1 is no longer valid. Two new 

assumptions are in order now. 
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Each player decides to pool or not to pool at the beginning of each 

period. 

Assumgtion 7.2: Withdrawal from the pool' can take place within the period in such a 

way that it can not be observed until the beginning of the next period. 

The extension of the prisoners' dilemma game with the withdrawal strategy can be represented 

by game r. 

Game r: 

1 

2 Pool Not Withdraw 
(after 

Pooling) 

Pool x(Rt),x(Rt) b(R1),a(R.) c(~),d(RI) 

Not a(R.),b(R.) y(R.),y(R.) c(R.),e(R.) 

Withdraw 
(after 

pooling) 
d(Rt),c(Rt) e(~),c(R,) c(~),c(R,) 

If we keep player 2's strategy choice fixed, then the payoff under withdrawal for player 1 will 

be a value between pooling and not pooling, since he pools until withdrawal and after 

withdrawal he will not pool until the next period. Since the payoff matrix is symmetric, the 

same will hold for player 2. This yields the next payoff ordering. 

a>d>x>y>e>b 

Furthermore, if one player decides to withdraw, the other cannot guarantee a higher payoff 

than c, since the collective effort has yielded nothing. Let us assume the following. 

Definition 7.1: y - c = the net increase in punishment payoff. 
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A§SY1DPtion 7.3: y > C. 

Hence, the net increase itl punishment payoff is positive. This means that it is better for both 

not to pool at all, than to have pooling initially. A withdrawal of the pooled land or labour 

takes place during the process. 

Assume that both players played (pool,pool) initially. As soon as one player decides to play 

either not pooling or withdraw at t=t', the other will select withdraw until f and not pooling 

until the game terminates at time T in the endgame. T is assumed to be common knowledge 

of both players. This can be summarized in the following behavioral strategy ow: 

i. Pool as long as both pooled in the previous periods; t E {O, 1, ..., t'l. 

H. Withdraw as soon as one defection took place at least once in the previous periods; 

t E {t'+ 1, ...,fl. 

iii. Do not pool in the endgame, t E {t'+l, ... , TI. 

This constitutes a trigger strategy, since it guarantees the defector significantly less, provided 

that both players give enough importance to future payoffs. Hence, their discount factor 

should not be lower than the following critical discount factor l
. 

21This can be derived by applying theorem 1 by Friedman (1985, pg. 395-6) which states 
that the trigger strategy Ow is subgame perfect. Hence, it is not beneficial to deviate. This is 
based on the following inequality. 

Here defection takes place at t' and the endgame will start after f and the game terminates 
at time T. 
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Condition 20 is somewhat confusing, since assumption 3.4 is violated now, since y ~ x. One 

would expect (pool,pool) not to occur, just. like case 6 in section 3 of the reverse battle of the 

sexes game. But even as the payoff of both pooling is lower than both not pooling, the threat 

of s~lifting to (withdraw, withdraw) can still make the cooperative outcome more beneficiaL 

The effects of <Pfs(x,a,c) are exactly same as denoted in table 5.1, when y is substituted by c. 

TIle effects of <P11 are similar, but the derivatives differ, as denoted in table 7.1. <Po(x,y ,a,e) 

is increasing in a,c, but decreasing in x,y . .The role of y in <Poo is again replaced by c in <l>n 

which is the most severe threat payoff. Further, y is an intermediary value and represents a 

new effect on <P11' 

&f>n _ -(y-c) <0' ax (a-x+y-c)2 ' 

(fltPn -2(y-c) <0- 
ox 2 ( a-x+y-c) J 

convex decreasing in x 

&f>n_ -(a-x) <0' 
oy (a-x+y-c) 2 ' 

(fltPn 2( a-x) >0- 
oy2 (a-x+y-c) ~ 

concave decreasing in y 

i'#>n y-c 0- > . 
aa--{a-x+y-c) , 

(fltPn _ ·-2(y-~·) 0 -- < 
oa 2 (a-x+y-c) 3 

concave increasing in a 

&Pn a-x >0' 
oc (a-x+y-c) 2 ' 

a2tPn =: 2{ a-x) >0 
oc 2 (a-x+y-c)~ 

convex increasing in c 

Table 7.1: The direct effect of one by one increases in x, y, a, c on <Po. 

Comparative statics can also be applied on <Pfs and <Po to derive the simultaneous effects of 

direct changes in R and indirect changes in x,y,a,c. A comparison with the results of section 

5 are condensed in table 7.2. 

31 




> 
t .., Ip, fs, fl} 

l/>jl( R)<0 $;'(R) It <I'~{ ~ =0 I 

$,) 
Il1 •.yl II '1"··yl 

/l<oX a-y a-x a-y 

$rs ill_Xl I /I /I-- ;;::: ;;::: 
a-x < a-C p--x < a-c 

CPo 
>~ y"-c /I>-

a-x -< y-c o-x -< y-(.' 

Table 7.2: The first and second order conditions on $j(R). 

8 Summary, conclusions and extensions 

The main objective of this chapter was to obtain more insight in the possible situations a 

peasant at the village level can face when he has to decide whether to pool, to withdraw or 

not to pooL 

An assessment of six different two-person dilemmas has been made to find the conditions 

under which pooling can be an equilibrium outcome. The hawk/dove game leads to a more 

intricate analysis than is required for the prisoners' dilemma. Two different trigger strategies 

have been formulated and compared with each other for the hawk/dove game. A two-step 

trigger strategy, where the defector punishes the defectee for implementing the trigger strategy 

to minimize the payoff of the defectee, was seen to lead to a smaller critical discount factor 

than under the ordinary trigger strategy, where one pools as long as the other did not defect 

first. 

The critical discount factor is a decreasing function in the number of punishments and it 

converges to the critical discount factor of the infinitely repeated prisoners' dilemma when the 

number of punishments goes to infinity. Mutual pooling can be an equilibrium outcome under 

the threat of a single punishment. This holds when the net incentive to pool is strictly larger 
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than the net threat to deviate from mutual pooling. When this condition is not satisfied, more 

punishments are required to make mutual pooling a possible equilibrium outcome. 

The simultaneous changes in the payoff functions wh~n the level of resources change 


endogenously has been analyzed with comparative statics. A sufficient and necessary 


condition for a maximum gross incentive to pool is that the rate of change of the net threat 


to deviate from mutual pooling and the net threat of deviation by the other, when one decides 


not to pool are equal. The condition that the payoff under mutual pooling is growing faster 


than other (threat) payoffs is sufficient to have a strictly increasing incentive to pool. Hence, 


. this is the situation where more and more people would be willing to join the pooling process. 


Concerning the functional behaviour of the critical discount factor function it is useful to 


distinguish between five distinct phases when the level of resources goes from zero to infinity. 


This has been illustrated with two examples. This can form a basis for a dynamic behaviour 


of the effect of changes in the level of resources over time. 

When the termination time is common knowledge, cooperation can also appear as an 

equilibrium outcome. In that case a three-strategy space has been considered. Trigger 

strategies have been formulated under which the defector is punished sufficiently. Imbedding 

the prisoners' dilem~a, was not seen to lead to a change in the quantitative results under the 

original prisoners' dilemma. 

With the help of the present analysis, it is an easy task to describe a transition process. 

Consider for example a prisoners' dilemma and an assurance game. In this case only the 

ordering of band y differ (as can be seen from table 3.2). Assume that bl > t. An 

interpretation can be given to this situation. Here player i already had pooled land, while 

player j did not yet pool, hence, the level of resources is increasing. If b' > y' holds long 

enough, a transition will take place from the prisoners' dilemma to an assurance game. In 

similar manners, other transition processes can be analyzed as well. 

The incorporation of institutional change into the model is complicated. There are certain 

difficulties which have to be resolved, before the effects of institutional change and its effect 

on the society can be understood completely. One difficulty is how to measure the efficiency 
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of a particular institution. Provided that such a measure exists, the effects of endogenous 

changes in the efficiency of institutions can be modelled by substituting it for the level of 

resources in the model of this chapter. Hence, there is a need to look for a measure of 

efficiency based on 'property rights, transaction costs, norms, etc. 

The intention of this chapter was to keep the problem simple. The analysis so far concentrated 

mainly on the case of two persons and two strategies. An extension to three strategies in the 

finitely repeated prisoners' dilemma also got attention. The number of repetitions played a 

major role in this context. The endogenous effects of resource changes on the payoff function 

was the special feature. Extending the game to higher dimensions is not an easy task and it 

may lead to essentially different results. 

The concept of two persons can be continued even when 2n-person random matching games 

are considered. There the players change their partners over time (Kandori (1992) and 

Matsushima (1990». This can reduce the bias of the partners and, hence, mutual pooling 

emerging as an equilibrium under a lower discount factor can be a possibility. 

In this chapter an assumption of symmetry has been made, which restricted the analysis to 

equal peasants. This, of course, is not the case in rural India, which is known for its extreme 

duality between the 'castes' and the 'outcasts'. Heckathorn (1993) based his analysis on an 

escape from the n-persons prisoners' dilemma by introducing a compliance control level. Zero 

compliance means that the peasants rely on voluntary action only. Positive compliance also 

enhances group heterogeneity. Heckathorn demonstrates that cooperation is less likely in 

heterogenous groups. 

Snidal (1985) came up with an important comparison between the prisoners' dilemma and the 

coordination game (which he applied to international cooperation). These two cases were in 

almost every aspect opposites. The comparison between these two polar cases also included 

relaxing the assumptions of the most simple one-shot bimatrix game. 

The effect of a continuous strategy space does not alter the strategic structure of the 

prisoners' dilemma, but the coordination game becomes a bargaining game with a 

continuum of equilibria; it is not easy to decide which equilibrium is most efficienL 
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The effect of multiple players in the prisoners' dilemma yields the standard 

representation of the problem of collective action. For the coordination game it can 

facilitate coalition formation when there is also allowed for heterogeneity in the group 

as a whole. 

In n-person games the notion of penalizing becomes a difficulty. Which punishment scheme 

is most appropriate? What kind of punishment scheme can be agreed upon within a 

community? Can such punishment scheme form a basis for another equilibrium analysis? An 

interesting result is found by Abreu (1988). He introduced simple penal codes in infinitely 

repeated games to derive that the collusive outcome can be an equilibrium outcome. With 

optimal penal codes it can be possible to derive lower discount factors than the one derived 

in this paper, because, penal codes can enhance an even more severe punishment scheme. 

In this chapter I assumed that the peasants could not interact with each other concerning their 

intentions. Such an assumption does not always hold in reality. The very fact that farmers can 

discuss their intentions can be made a crucial incentive to generate cooperation. Hence, an 

important extension can be by undertaking a cooperative game approach. Okada (1991) 

already used such an approach. He demonstrated that the classical n-person prisoners' dilemma 

can be eliminated in four stages. 

Members decide if they want to participate; 

Members bargain for an enforcement agency; 

Members, bargain for a proper punishment mechanism to eliminate the temptation to 

deviate, to be applied on all group members; 

Members come to an agreement or they do not. 

In this game k members (k ~ n) participate and n-k members do not. Okada's four stage game 

has not yet been analyzed in a repeated framework. However, such an approach comes close 

to the problem studied in our context and can provide important clues for extensions on my 

present approach. 
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Appendix At I)roof of theorem 4.1 

In order to derive a proof of theorem 4.1. it suffices to prove both the left and tlIe right 


implication. 


-) (by contradiCtion). 


(14) 

Suppose there exists a Ii such that <Pii+l :::::. <Pii • Since <PII is a root of fn( <», we know that: 
n<Pit + <Pii .1 + ... + <Pii - <PI :: O. From this follows that 

n n<Pii+1 + <P ii+1 .1+ ... + <PMl - <PI :::::. 0, as supposed, and since <Pn > O. Multiply this with <PO+I and 

subtract it by fi\+I(<pi\+I)/(<>-1) (=0). This leads to: 

<P0+1"+ 1 + <Pfi+11I + ... + <P0+1 2 - <PI<P8+' :::::. 0 

-'" n+ 1 _ '" n - _ '" 2 - '" + '" = 0'Vii+1 'V0+1 ... 'Vo+1 'Vil+1 'VI • 

-(<P,+1)<Pii+1 + <PI :::::. 0 or <P iI+1 ~ <P1/(1+<P I ) == <p_. 

This contradicts the assumption that for all n: <Pn E (<p..,<PJ Q.E.D. 

<=) To prove that for all n: (<pn+. < <Pn) '= <PII E (<PM,<PI]' 


Hence, it suffices to prove that a strict ordering on <Pn is only possible when it is an element 


of the interval (<P..,<p.]. 


There are two cases: i. For all n: <Pn ~ <P.; 


ii. There is no ii such that: <Pii ~ <P... 

Case i: We know that for all n: <Pn+1 < <Pn, hence for all n: <PI > <Pn. Q.E.D. 

Case ii: (by contradiction) 

Suppose there is a finite ii such that: 4>" ~ 4>M' Then the strict ordering to be derived can no 

longer be true, since if it was, then for all n>ii: 4>11 < 4>ii ~ <p~. This means that the sequence 

{<Pn} will never attain <P .. as n goes to infinity. This contradicts the result of lemma If.1. 

Q. E" D.. 
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