
ISSN No. 2454 - 1427 

CDE 
January 2023 

Distributional heterogeneity in climate change impacts 
and adaptation: Evidence from Indian agriculture 

Surender Kumar 
Email: skumar@econdse.org 
 Department of Economics, 
 Delhi School of Economics 

Madhu Khanna 
Email:khanna1@illinois.edu

Department of Agricultural and Consumer Economics,
University of Illinois

Working Paper No. 332 

Centre for Development Economics 
 Delhi School of Economics 

 Delhi- 110007

http://cdedse.org/pdf/work330.pdf
http://cdedse.org/pdf/work332.pdf


 1 

Distributional heterogeneity in climate change impacts and 
adaptation: Evidence from Indian agriculture 

 
 

Surender Kumar 
Department of Economics, Delhi School of Economics 

University of Delhi, Delhi 110007 
 

& 
 

Madhu Khanna 
Department of Agricultural and Consumer Economics 

University of Illinois, Urbana-Champaign 
1301, W. Gregory Drive, Urbana, IL 61801 

 
 
Abstract: This study estimates the distributional heterogeneity in the effects of 
climate change on yields of three major cereal crops: rice, maize, and wheat in 
India using district-level information for the period 1966-2015. We distinguish 
between the effects of changes in growing season weather from those due to 
changes in long-term climate trends and the heterogeneity in these effects across 
the distribution of crop yields by estimating naïve and climate penalty inclusive 
models using fixed-effect quantile panel models.  We observe an absence of 
adaptation against rising temperatures for rice and wheat. However, we find a 
statistically significant presence of adaptation for wheat and maize for changes in 
precipitation, though the magnitude is small. Moreover, we find that the effects 
are asymmetric, and are larger at the lower tail of productivity distribution and 
smaller at the upper tail of the distribution. A 1 C increase in temperature lowers 
rice and wheat productivity by 23% and 9%, respectively at the first quantile, but 
the damage is only 6% and 5% at the ninth quantile. Heterogeneity in impacts and 
adaptation estimates over the yield distribution curve and across crops suggests 
the importance of customizing strategies for adaptation to changing weather and 
climate conditions across regions, crops, and current productivity levels. 
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1. Introduction 
 
Changes in the climate and the growing frequency of extreme weather events are 
leading farmers to take adaptive measures to limit damage to their crops. 
However, the effects of long-term climate changes are not uniform across regions, 
productivity zones, and crops.  The deleterious effects depend on climate, level of 
development, and adaptive capacity of farmers (Field, 2014; Mendelsohn and 
Dinar, 2006; Tol et al., 2004; Rosenzweig and Parry, 1994).  
 
A large number of statistical studies have investigated the responsiveness of crop 
yields to weather changes (e.g., Deschênes and Greenstone, 2007; Schlenker and 
Roberts, 2009; Yu et al., 2010; Chen et al, 2016; Miao et al., 2016; Zhang et al., 2017; 
Malikov et al., 2020; among others). These studies use panel data fixed effect 
models to identify the effects of year-to-year changes in weather variables on 
economic outcomes and do not consider the potential for climate-specific 
adaptation for mitigating its impacts. Some recent studies have tried to measure 
the adaptation potential using reduced form panel data models or long difference 
models (e.g., Burke and Emerick, 2016; Hendricks, 2018; Scott and Lindsey, 2018; 
Cui et al., 2020; Mérel and Gammans, 2021). A common concern with these studies 
is that they may be overstating the climate damage. Panel fixed-effect models rely 
on weather fluctuations rather than climatic variations and are unable to account 
for long-run adaptation to climate change. The long difference approach can 
address this concern to some extent (Yu et al., 2021).  Moreover, some of these 
studies use non-linear panel data models for estimating the climate-economy 
relationship raising the question of whether these studies are identifying effects 
through cross-sectional variations in weather or temporal changes in climate 
because cross-sectional weather variation enters into model identification. The 
estimates obtained using panel data models are a weighted average of short-run 
and long-run response functions to climate and weather depending on the ratio of 
the within time-series variation to cross-sectional variation in weather variables. 
A higher degree of cross-sectional variation relative to within dimension in 
weather variables is supposed to represent a long-run response. 
 
We estimate short-run and long-run climate change impacts for Indian agriculture 
using Cui et al. (2020) and Mérel and Gammans (2021) behavioral models. These 
studies assume a behavioral framework whereby economic agents maximize 
expected outcomes using a long-run choice of inputs. The agents choose inputs 
considering climate rather than the weather; for example, the construction of 
irrigation channels is worth creating in an arid climate rather than as a response 
to a one-year drought (Schlenker, 2017). These studies identify adaptation 
through the exploitation of variation in the interaction of weather and climate 
variables and by considering the deviation between observed weather and its 
long-term average that represents normalized climate. They estimate the impact 
of weather variables with and without a climate penalty term when the weather 
and climate variables are used in a quadratic specification. However, Cui et al. 
(2020) and Mérel and Gammans (2021), like earlier studies, also measure the 
average relationship between crop yields and climatic factors and ignore potential 
heterogeneity in the effects.  
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Unlike these studies, we use the panel fixed effect quantile regression approach 
for estimating the response function to account for heterogeneity in the potential 
distribution of yields. The quantile regression approach allows the coefficients of 
weather variables to systematically vary by the distribution of crop yield. By using 
quantile regression, we control for the effect of interactions in location-specific 
time-invariant variables and the weather variables. Our approach is, therefore, 
different from Cui et al. (2020) because they allow only the coefficients of weather 
variables to vary by location whereas we allow all the coefficients of the estimated 
function to vary over the distribution of yield function. Moreover, we use the 
rolling average of climate variables instead of their stationary values, which has 
the advantage of exploiting both cross-sectional and temporal variation in climate 
variables in estimating the effect of climate on crop yields.   
 
Quantile regressions provide a complete description of the association between 
the distribution of crop yields and their determinants, unlike the conventional 
regressions that examine the relationship via conditional-mean models. These 
models examine the relationship using conditional quantiles of the yield 
distribution. For the estimation of the climate–yield relationship, we use the 
recently developed fixed effect quantile panel regression approach by Machado 
and Santos Silva (2019). We apply this approach to examining the effects of 
climate change on crop yields in India and the heterogeneity in these effects across 
the yield distribution for a crop. Indian agriculture is a suitable case for applying 
quantile panel regression models since climate and weather conditions and crop 
yields are not uniform across the county. More than half of the net sown area is 
not irrigated. There is a huge variation in farm household monthly income and the 
size of the landholdings and thus in the potential for adaptation. 1  This paper 
intends to estimate distributional heterogeneity in climate change impacts and 
adaptation in Indian agriculture using district-level information on crop yields and 
weather and climate variables for the period 1966-2015. We estimate the effect of 
weather and climate variables on the yields of three crops, namely rice, maize, and 
wheat. Two of the crops (rice and maize) are grown during the Kharif season 
(May-June through October-November) and wheat is a Rabi crop (November to 
April).2 These three crops are major food grains in India and the adverse effects of 
climate change on their yields can have significant implications for food security 
in the country.  
 
The study is first on many counts. It provides the first estimates of the long-run 
and short-run impacts of climate change on crop yields and thus identifies 
adaptations for Indian agriculture using a framework where long-run effects 
envelop the short-run impacts. Earlier work on adaptation in Indian agriculture is 
mainly confined to the impact of changes in rainfall patterns in the country (e.g., 

                                                        
1 Households in the states of Punjab and Haryana earn about four times relative to the household 
in the states of Jharkhand and Uttar Pradesh. Only 13 percent of households own more than two 
hectares of land and about 30 percent of land holdings are of the size of less than 0.4 hectares of 
land. https://www.newindianexpress.com/nation/2020/dec/28/farmers-income-rose-only-by-
rs-2505-between-2012-13-and-2016-17-data-2242031.html as accessed on June 23, 2021 
2 In India, the period of May to December is defined as the Kharif season and the Rabi season takes 
place during the period of November to April. Exact sown and harvest months vary from state to 
state.  

https://www.newindianexpress.com/nation/2020/dec/28/farmers-income-rose-only-by-rs-2505-between-2012-13-and-2016-17-data-2242031.html
https://www.newindianexpress.com/nation/2020/dec/28/farmers-income-rose-only-by-rs-2505-between-2012-13-and-2016-17-data-2242031.html
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Fishman 2018 and Taraz, 2017). In a recent study, Taraz (2018) observes that 
damages due to high temperature are lower in heat-prone districts in comparison 
to low-temperature zones using standard panel data regression models. Our study 
is also first in the sense that it measures heterogeneity in the estimates using 
quantile regressions over the distribution of crop yield curve. Earlier studies using 
quantile regressions are either limited to a cross-sectional framework (e.g., 
Barnwal and Kotani, 2013) or panel data studies, identifying distributional 
heterogeneity in the impacts of climate change on crop yields, are not 
distinguishing between long-run and short-run impacts, i.e., we are measuring 
adaptation in climate-crop yield relationship. Lastly, except a few studies (e.g., 
Lobell, 2007; Schlenker and Roberts, 2006), most of the studies measure the 
impact of growing season average temperature and cumulative precipitation on 
crop yields, we measure the impact of growing season Tmax and cumulative 
precipitation. In the water stress areas, it is the Tmax that is expected to impact crop 
yields.   
 
From the fixed effect quantile models, we find that increasing Tmax and reducing 
precipitations not only reduce crop yields but also increase dispersions of the 
observed yields. The study finds that the impacts are asymmetric over the crop 
productivity distribution curve. We find that the impacts are higher at the lower 
tail of the distribution but are higher at the upper tail of the distribution. It is   
observed that the adaptation measures are taken at the lower tail of the yield 
distribution curve. We also observe that the impacts of climate change and 
adaptation are not uniform across crops. There is adaptation to increase in Tmax 
for rice and maize but not in the case of wheat; the difference in the long-term and 
short-term impact of increase in Tmax on wheat yield is not statistically significant. 
Increasing precipitation enhances rice productivity and adversely affects maize 
and wheat productivity. We do not find adaptation to changing patterns of 
precipitation. 
 
The paper is organized as follows: Section 2 describes the estimation strategy 
followed in the study. Data and empirical results are presented and discussed in 
Sections 3 and 4, respectively. The paper closes in Section 5 with some concluding 
remarks. 
 
 
2. Empirical Strategy 
 
Economic agents choose long-run inputs to maximize long-run expected 
outcomes, i.e., the choice of long-run inputs is conditional on climate rather than 
the weather. For example, farmers are observed to make an investment in 
irrigation channels to combat heat stress in an arid climate region but not in 
response to occasional droughts (Lobell & Gourdji, 2012; Auffhammer and 
Schlenker, 2014; Tack et al., 2017; Taraz, 2017). Farmers are expected to make 
inter-and intra-crop changes in response to changing climate rather than changes 
in weather conditions. Exposure to climatic conditions works as a determinant of 
long-run outcomes subject to short-run weather conditions. The difference in the 
long-run and short-run outcomes depends on the distance between climate and 
weather conditions, which is termed as climate penalty (Cui et al. (2020); Mérel 
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and Gammans (2021)). They identify adaptation as a difference between long-run 
and short-run outcomes.3 These papers build upon the existing non-linear panel 
regression models and show that the response of weather variables to yield is a 
weighted average of the long-run and short-run responses; weights depend on the 
nature of variation in weather variables.4 Short-run responses are supposed to 
depend on this difference. Conditional on weather, the locations that have weather 
realizations similar to long run climate conditions, are expected to fare better than 
locations where the realized weather conditions are far different than long run 
climate conditions, ceteris paribus. Therefore, the climate-yield relationship is 
assumed as: 
 
𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽1𝑥𝑖𝑡 + 𝛽2𝑥𝑖𝑡

2 + 𝛽3(𝑥𝑖𝑡 − 𝜇𝑖𝑡)2 + 𝑓𝑖(𝑡) + 𝜀𝑖𝑡   (1) 
 
where 𝑦𝑖𝑡 is the logarithm of crop yield, 𝑥𝑖𝑡 is the weather variables (seasonal Tmax 
and seasonal cumulative precipitation)  and 𝜇𝑖𝑡 is the climate variable at location 
i and time t; 𝜇𝑖𝑡 is the 20-year moving average of 𝑥𝑖𝑡 . and 𝑓𝑖(𝑡) captures secular 
changes at location i including secular changes in climatic conditions and is a 
polynomial function. The presence of a smooth trend variable ensures that the 
identification of 𝛽3  is not confounded from trend in climate variable and the 
interaction of weather with climate trend. Modeling location-specific secular 
trends in the form of 𝑓𝑖(𝑡) also captures technological changes that are unrelated 
to climate. It is expected that 𝛽3 ≤ 0. Moreover, we are using quantile regressions 
for estimation; therefore, our approach will be immune to the effect of interactions 
of variables such as soil-weather, which are potential concerns in studies that 
consider stationary climate during the period of observations (Mérel and 
Gammans, 2021). 
 
Modeling the climate-economy relationship and identifying adaptation implied by 
equation (1) is consistent with the basic theory of production.  Some actions of the 
economic agent are variable in the long run but fixed in the short-run and the 
outcome (e.g., yield) values are optimized. As the long-run average cost curve is 
the envelope of short-run average cost curves, the long-run climate change 
response function envelopes the collection of short-run response functions. 
Mendelsohn et al, (1994) define the long-run response function as an envelope of 
short-run possibilities to motivate the Ricardian framework to climate change 
impact assessment.  
 
In response to change in climate, all factor inputs can be varied in the long run, 
and consequently, the penalty term can vanish from equation (1). The expected 
long-run response function at location i is: 
 
𝑦𝑖

𝐿𝑅(𝑥) = 𝛼𝑖 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2       (2) 

 

                                                        
3 Burke and Emrick (2016) identify adaptation as the difference in outcomes obtained using panel 
data and long difference estimates.  
4 Mérel and Gammans (2021) also measure climate in a year as a moving average of weather 
conditions in the preceding 20 years. The climate penalty term is defined as the square of the 
difference between contemporaneous weather realization and normal climate. The normal climate 
is defined as the moving average of weather variables computed over the preceding 20 years 
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and short-run response to weather and climate at location i would be: 
 
𝑦𝑖

𝑆𝑅(𝑥) = 𝛼𝑖 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝛽3(𝑥𝑖 − 𝜇𝑖)

2     (3) 
 
Equation (3) reveals that the short-run response depends on both realized 
weather and expected climate. Note that climate affects farmers committed 
actions such as inter- and intra-cropping changes or other adaptation measures, 
and observed outcomes are affected through these behavior channels conditional 
on realized weather. That is, in the short run all the factors of production are not 
variable but in the long run all the factors are variable, therefore, the short run 
outcomes depend on both realized weather and climate and the choice of long run 
inputs respond only to climate. Thus, 𝛽3 is expected to be negative in the situation 
when weather realization differs from the expected climate and if 𝛽3 is equal to 
zero, it indicates absence of climate adaptation. Also note that at the point where 
𝑥𝑖 = 𝜇𝑖 , the short-run response function would be tangent to the long-run 
response function. It implies that the response function represented by equation 
(1) is a parsimonious function that allows for non-monotonicity and non-linearity 
in both short-run and long-run response functions and yields a long-run response 
function that envelopes short-run response functions. In the literature, there are 
some studies (e.g., Deschenes and Kolstad, 2011; Dell et al., 2014; Moore and 
Lobell, 2015) that use the quadratic response function in weather variables to 
assess climate change damages, but in these studies, short-run response functions 
intersect the long-run response function rather than being tangent to it. Moreover, 
the interpretation of the more commonly used quadratic response function only 
in weather variables (without climate penalty term) is far from trivial (Mérel and 
Gammans, 2021). 
 
We use quantile regressions for estimating the climate-economy relationship. A 
similar approach has been applied by a few other studies (e.g., Barnwal and 
Kotani, 2013; Van Passel et al., 2016; DePaula, 2018; Malikov et al., 2020). Barnwal 
and Kotani use quantile regression to disentangle the heterogeneous impacts of 
weather conditions across different quantiles on rice yield in the state of Andhra 
Pradesh for the period 1971-2004 for 13 districts.5 DePaula applies quintile and 
interquartile regressions to understand the impact of climatic factors on land 
values using Brazilian Census data for about a half-million commercial farms. Van 
Passel et al. use quantile regression and the Ricardian framework to uncover the 
impacts of climate variables on Western European countries. These studies use 
cross-sectional quantile regressions that outperform OLS regressions; however, 
these studies may be suffering from omitted variable bias in the estimates. 
Malikov et al. (2020) use a fixed effect panel model with time-varying coefficients 
to measure the effects of climate on crop yields for US agriculture. The limitation 
of using fixed effect panel data approach to control for unobserved time-invariant 
cross-district heterogeneity or unobservable confounders such as soil quality is 
that these unobservables may be correlated with weather variables. Unlike these 
studies, we use the fixed effect quantile panel regression approach to identify 
adaptation to climatic changes in agricultural crop yields. Like Machado and 

                                                        
5 Barnwal and Kotani (2013), though, have panel data but use a cross-sectional (pooled) quantile 
regression approach to identify the climate effect on rice yield. 
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Santos Silva, we use moments for indirect estimation of quantile parameters and 
this approach is more suitable for non-linear specifications. 
 
The quantile regression approach explicitly allows distributional heterogeneity in 
the effects of climatic variables on crop yields in low-, average- and highly-
productive areas. It gives a complete account of the relationship between the 
distribution of the dependent variable and its determinants, whereas the 
traditional regression models focus on the first moment. Moreover, the quantile 
regression is robust to error distributions even in the presence of outliers in the 
data and reveals a useful property of equivalence. It avoids biases in predictions 
of the outcome variable. This framework also controls for locational time-
invariant unobservable confounders via fixed effects, thereby providing with-in 
estimates of the response function. Given the non-linearity in the quantile 
operator, the direct estimation of fixed effect quantile regressions using a routine 
estimator is cumbersome (e.g., see Koenker, 2004; Galvao & Kato, 2018). Machado 
and Santos Silva (2019) propose indirect estimation of the parameters via 
moments, which is easy to implement and is more suitable for non-linear 
specifications. 
 
Equation (1), using Koenker and Bassett (1982) location-scale quantile regression 
model with fixed effect, is rewritten as:  
 
𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽0 + 𝛽1𝑥𝑖𝑡 + 𝛽2𝑥𝑖𝑡

2 + 𝛽3(𝑥𝑖𝑡 − 𝜇𝑖𝑡)2 + 𝑓𝑖(𝑡) + 𝜀𝑖𝑡    

 

where 

 

𝜀𝑖𝑡 = [𝛾0 + 𝛾1𝑥𝑖𝑡 + 𝛾2𝑥𝑖𝑡
2 + 𝛾3(𝑥𝑖𝑡 − 𝜇𝑖𝑡)2]𝑢𝑖𝑡     (5) 

 

Following Machado and Santos Silva (2019), it is assumed that (i) 𝑢𝑖𝑡 is i.i.d. across 

locations with some cdf 𝐹𝑢; (ii) 𝔼[𝑢𝑖𝑡] = 0 and 𝔼[|𝑢𝑖𝑡|] = 1; and (iii) 𝑃𝑟[𝛾0 + 𝛾1𝑥𝑖𝑡 +
𝛾2𝑥𝑖𝑡

2 + 𝛾3(𝑥𝑖𝑡 − 𝜇𝑖𝑡)2 > 0] = 1. In such a model the distributions of the coefficients 

are assumed to differ only in their location and scale, but the unobserved heterogeneity 

comes from the random variation of the parameters. The 𝜏𝑡ℎ conditional quantile of the 

crop yield is: 

 

ℚ𝜏(𝑦𝑖𝑡|𝑥𝑖𝑡) = 𝛼𝑖 + [𝛽0 + 𝛾0𝑞𝜏] + [𝛽1 + 𝛾1𝑞𝜏]𝑥𝑖𝑡 + [𝛽2 + 𝛾2𝑞𝜏]𝑥𝑖𝑡
2 + [𝛽3 +

𝛾3𝑞𝜏](𝑥𝑖𝑡 − 𝜇𝑖𝑡)2         (6) 

 

where 𝜏 ∈ (0,1); both intercept and slope coefficients vary with the quantile of crop 

yield and 𝑞𝜏 is an unknown 𝜏𝑡ℎ quantile of 𝑢𝑖𝑡. Due to the presence of fixed effects in 

the model we use the location-scale model to estimate the conditional quantile function 

of interest represented by equation (6). Though equation (6) can be estimated in a single 

step via non-linear moments, we follow Machado and Santos Silva and opt for a 

multistep procedure to obtain the parameter estimates, as it is easier to implement.6  

 

                                                        
6 For details on the estimation of the fixed-effect quantile panel model via moments, please refer 
to Machado and Santos Silva (2019). 
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Our study differs in the measurement of annual weather effects. Most of the earlier 
studies have used a growing season or annual average temperature changes or 
growing degree days (GDD)7 to measure the impact of weather variables on crop 
yields. However, changes in daily minimum and maximum temperatures may have 
more significant effects on crops’ growth and phenology than average 
temperature (Hatfield et al., 2011). The growth of crops is likely to be affected by 
the range between minimum and maximum temperature. Temperatures above or 
below or above a threshold at critical times of plant development adversely affect 
crop yields.8 Moreover, it should be noted that the minimum air temperature is 
governed by mesoscale variables such as atmospheric water vapor contents, 
whereas the maximum temperature is determined by local conditions, especially 
soil water content and evaporative heat loss as soil water evaporates (Alfaro et al., 
2006). This implies that changes in minimum temperatures are more suitable in 
irrigated areas whereas in water stress areas it is the changes in maximum 
temperatures that affect the crop yields; hence we estimate the impact of 
maximum temperature (Tmax) on crop yields.9 We use the growing season Tmax 
which is the average of growth season’s monthly Tmax. Growing season cumulative 
precipitation is the sum of precipitation in the crop specific season’s months.  
 
Higher Tmax increases vapor water demand leading to water stress quickly; 
therefore, the effect of Tmax on crop yields is a combined effect of warm air 
temperature and the increasing atmospheric demand. 10  A country-level study, 
including India, finds that higher daytime temperature is more harmful than night 
temperatures for crop yields (Lobell, 2007). Guntukula and Goyari (2020) find 
that Tmax adversely affects rice, cotton, and groundnut yields in Telangana state. 
An experimental study finds that there is a positive association between sterility 
of rice and average Tmax during the 20 days before and after the flowering period 
in China (Tao et al., 2006). Similarly, Schlenker and Roberts (2006) using 
minimum and maximum temperature data observe that US maize yield reduces 
non-linearly with a temperature above 25.8 C. Following these studies, we 
consider Tmax rather than average temperature as a determinant of crop yields. 
 

 

3. Data 
 
The objective of the study is to identify adaptation realized in Indian agriculture. 
We measure adaptation as a difference between the long-run and short-run 

                                                        
7  GDD is the sum of the difference between the observed average temperature and the base 
temperature, if observed is greater than the base, on a daily basis. Generally observed average is 
the mean of daily observed Tmin and Tmax temperatures. This is different from our approach which 
relies only on Tmax. 
8 During the pollination stage of the initial grain, exposure to extremely high temperatures reduce 
yield potentials (Hatfiled and Prueger, 2015). For example, rice pollen viability and production 
reduce as the daytime maximum temperature exceeds 33 C (Kim et al., 1996). Similarly, maize 
yield reduces as the exposure to daytime temperature exceeds 30 C; higher maximum temperature 
damages cell division and amyloplast replication in maize kernels (Commuri and Jones, 2001). 
9 Since we are considering only the impacts of growing season maximum temperature on crop 
yields, please read temperature and maximum temperature interchangeably throughout the 
paper. 
10 For details on the relationship of these parameters, please see Hatfield et al. (2011) 
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response of crop yields to climatic changes. We need information on crop yields 
and climatic variables along with some control variables for attaining the 
objective.  
 
We consider agricultural crop yields as key outcome variables, which are 
measured as output per hectare. We focus on three key cereals crops namely, rice, 
maize, and wheat that constitute a large proportion of food-grain production and 
are the basis of food security in the country. Note that the ICRISAT-TCI dataset 
does not provide information on the weather variables for the apportioned 
districts.11 Therefore, we use data for the unapportioned districts for apportioned 
districts, assuming that the weather in the base districts and the geographic areas 
of these districts after carving out new districts is the same. The dataset provides 
information of monthly average Tmax and average minimum temperature (Tmin) 
and total monthly precipitation for each of the districts from which we construct 
growing season average Tmax and total precipitation figures for the three crops 
under consideration for all the districts for which information is available. The 
required information is obtained from the ICRISAT-TCI, which provides district-
level data on Indian agriculture and allied sectors for the period 1966-2015.12 The 
data is available for 313 districts across 20 states. 13  We estimate two naïve 
models; from 1966 to 2015 for which the complete data is available and for the 
period for which we have the climate penalty term data, i.e., 1986-2015 (since we 
consider a moving average of last twenty years of the weather variables as 
indicators of climate) (Models R1, R2, M1, M2, W1, and W2). The third estimated 
model is inclusive of the climate penalty term for the period of 1986-2015 (Models 
R2P, M2P, and W2P). 
 
Though India is a tropical country, the climate in the country is very diverse. The 
southern peninsula region is warmer than the northern part of the country. Most 
of the rainfall takes place in the monsoon season (June to September). Some the 
states such as Rajasthan observe very small rainfall. Most of the crops are grown 
during the two seasons: Kharif and Rabi. Kharif season generally runs from May-
June to November-December. Rice and maize among others are the main Kharif 
crops. Rabi season commonly runs from November to April and wheat is a major 
rabi crop. There is some variation of crops sowing and harvesting seasons among 
the states given the diversity in the climate. The government of India (2019) 
provides a state-wise crop calendar of major crops that we follow for creating 
weather variables of interest for the growing season for each of the states for the 
three crops. We consider two Kharif crops (rice and maize) and one Rabi crop 
(wheat) for estimating the climate effect. For rice and maize, we have information 
for 293 and 286 districts respectively. There is information on 275 districts for the 
wheat crop. The descriptive statistics of the variables used in the study are given 
in Table 1. The table reveals distributional heterogeneity not only in crop yields 

                                                        
11 The ICRISAT-TCI database is divided into two datasets: apportioned and unapportioned; we use 
the first dataset. The advantage of this dataset is that it provides a consistent and comparable time 
series for the districts that are constant over time 
12 http://data.icrisat.org/dld/ as accessed in April 2021 
13  Andhra Pradesh, Gujarat, Haryana, Karnataka, Madhya Pradesh, Maharashtra, Punjab, 
Rajasthan, Tamil Nadu, Uttar Pradesh, Bihar, West Bengal, Odisha, Assam, Himachal Pradesh, 
Kerala, Chhattisgarh, Jharkhand, Uttarakhand, and Telangana 

http://data.icrisat.org/dld/
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but also in weather and climate variables. There is an increase in growing season 
quinquennial average of Tmax for rice and maize of the magnitude of 0.16 and 0.15 
C during 2011-2015 over 1966-1970, but, there is a decline of about 0.7 C in 
Tmax for the wheat growing season during the same period. It is also observed 
that the quinquennial (5-year) average of Tmax has changed only 0.07, 0.06, 
and -0.03 C for rice, maize and wheat during 2011-2015 over 1986-1990. 
Average growing season cumulative precipitation has increased by 167 and 179 
mm for the crops of rice and maize but there is a decline in the growing season 
precipitation for wheat by 120 mm in 2011-2015 over 1966-1970. Figure A1 
presents the trend in average crop yields across districts during the study period. 
 
Changes in weather and yield in the 2011-15 period over 1966-1970 reveal that 
Tmax change is higher at the lower tail of its distribution for rice and maize but the 
increase in Tmax is higher at the upper tail of its distribution for wheat. 
Precipitation increase is higher at the lower tail of its distribution for rice and 
maize during this period but there is a decline in precipitation is higher at the 
upper tail of its distribution for wheat. Change in crop yields is not uniform over 
the distribution. 
 
 
4. Empirical Results  
 
We estimate the extent of climate change adaptation in Indian agriculture by 
estimating a quadratic equation in weather variables with and without climate 
penalty terms using fixed-effect panel quantile regression models. For the sake of 
comparison, we also estimate the effects using conventional fixed effect panel 
models (Table A1). District-specific unobserved heterogeneity is controlled for via 
fixed effects, which engrosses time-invariant confounding variation. We control 
for time effect with state-specific quadratic time trends. We report standard 
errors clustered at the state level.   
 
Table A1 presents the regression results obtained using conventional fixed-effect 
models and Tables A3 through A11 display the estimates acquired from the fixed 
effect quantile regression for quantiles 0.1 through 0.9 for rice, maize, and wheat. 
Table A2 presents the location-scale parameters of the quantile regressions. We 
find that temperature and precipitation parameters in their linear and quadratic 
terms have effects on agricultural yields with opposite signs on the location and 
scale. These results suggest that increasing temperatures and declining 
precipitations reduce crop yields, but also increase dispersions of the observed 
yields. The location effects suggest that marginal effects of temperature increase 
damage more at the lower tail of the unconditional distribution of crop yields. The 
scale effects suggest the opposite, i.e., reducing the overall dispersion of the 
temperature would increase the lower quantile yields but reduces the upper ones. 
 
Effects on Average Crop Yields 
 
Estimates of fixed effect panel models presented in Table A1 reveal the presence 
of adaptation to rising temperature for maize yields, which is statistically 
significant. The short-run effect of an increase in Tmax by 1 C reduces maize yields 
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by about 9% and by 1% in the long term. The naïve models (Models M1 and M2) 
estimate that the long-term decline in maize yield is about 10% and 6% for the 
periods of 1986-2015 and 1966-2015 respectively at the overall mean level of Tmax 
across districts over the sample period. This implies that the penalty-inclusive 
models identify the presence of adaptation. We find insignificant adaptation to the 
rising Tmax by rice and wheat as the coefficient of climate penalty term is not 
statistically different from zero. Concerning precipitation, the results reveal that 
the adaptation is statistically significant for maize and wheat, but the difference in 
long-term and short-term impacts is very small in magnitude. We also find that 
the yields of rice and precipitation are positively associated, but wheat yields and 
precipitation are inversely related. A 100-mm increase in precipitation enhances 
rice yields by 2.4%, however, it reduces the wheat yields by 3% at the overall mean 
level of the precipitation. Moreover, it is observed that the naïve models 
overestimate the negative effects of weather change and underestimate the 
positive effects. However, these average effects of climate change on agriculture 
inhibit our understanding of potential differential impacts on the lower and upper 
tails of the distribution of agricultural yields.  
 
Distributional Heterogeneity in the Effects of Climate Change on Crop Yields 
 
We estimate the naïve and climate penalty inclusive models using fixed-effect 
quantile panel models to get an understanding of potential distributional 
heterogeneity in the effects of climate change on agricultural yields and compare 
the estimated results with the conventional results obtained using fixed-effect 
panel models. Figures 1 to 3 display the effects of temperature and precipitation 
changes on the crop yield of rice, maize, and wheat respectively for all the three 
models and compare them with the results obtained from fixed effect panel 
models. 
 
Figure 1 (upper left panel) shows the effect of an increase in Tmax by 1 C at the 
overall mean level for rice yields for quantile 0.1 to quantile 0.9 for the naïve 
models estimated for the periods 1966-2015 and 1986-2015. We find that the 
effects are not uniform across the quantiles. The negative effects of Tmax increase 
are higher at the lower tail of the distribution and lower at the upper tail of the 
distribution. For example, a 1 C increase in Tmax at the mean level of the sample 
reduces rice productivity by 23% at the first quantile and the reduction in yield is 
only 6% at the 9th quantile for the estimates obtained using the sample for the 
whole period of 50 years. We observe a similar trend in the effects of Tmax rise on 
rice yields across quantile for the sample 1986-2015. However, it should be noted 
that the magnitude of the effects is lower, suggesting that some adaptation is 
taking place to rise Tmax in rice production. Moreover, at the median level, the 
magnitude of the effects is almost equal whether it is estimated using conventional 
fixed-effect models or fixed-effect quantile regression models. Similarly, the right 
panel of Figure 1 (upper right panel) reports the effects of change in precipitation, 
which are heterogeneous across the quantiles. Low productive regions or the 
observations at the lower tail of the distribution of the yield curve benefit more 
from the increase in precipitations relative to the observations at the upper tail of 
the distribution. It should be noted that for the 9th quantile the benefits of the 
increase in precipitation are almost equal for both datasets, i.e., at 100-mm 
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increase in precipitation leads to about a 2% increase in rice productivity. This 
observation is consistent with the fact that highly productive regions have better 
irrigation facilities. The regions are less dependent on monsoons.  
 
Figure 1 (lower left panel) display the estimates obtained for climate response 
function inclusive of penalty term. We observe that at the lower tail of the 
distribution, there is a significant difference between the long-term and short-
term impacts of Tmax changes on rice yield (Table A5), but at the upper tail of 
productivity distribution the impacts are lower and the long-term and short-term 
impact curves coincide in each other. Alternatively, it can be said that at the lower 
tails of the productivity curve the impacts of Tmax increase by 1 C at the overall 
sample mean (31 C) on rice yields are higher and some adaptation occurs but at 
the upper tail of productivity distribution the impacts are lower and there is no 
significant adaptation measures are taken by the farmers. Moreover, we find that 
increase in precipitation enhances rice productivity; a 100-mm increase in rainfall 
gains rice productivity by 3.5% at the lowest tail of the productivity curve, but the 
increase in productivity for the top 10% producers is only about 1% (Figure 1, 
lower right panel). It is also observed that there is no difference in the long-term 
and short-term impacts of precipitation changes on rice productivity in India. 
 
Figures 2 (and Appendix Tables A6 to A8) demonstrate the effects of changes in 
temperature and precipitations on the distribution of maize productivity.  The 
pattern of Tmax change impacts on maize yield is similar to the pattern observed 
for the effects on rice productivity. At the lower tail of productivity distribution, 
the impacts are higher but at the upper tail of the distribution the impacts are 
lower and of low magnitude for the naïve models. Contrary to rice yields, we find 
higher impacts at the lower tail of the productivity curve for the estimates 
obtained using the sample of 1986-2015 in comparison to the estimates obtained 
for the sample 1966-2015, but the impacts obtained from both the sample 
coincide at the higher tail of productivity distribution and are not statistically 
significant (Appendix Table A6 and Table A7). For example, for the first quantile, 
the marginal effect of a 1 C increase in Tmax on maize productivity is about 16% for 
the sample period 1986-2015 and the impacts are about half of it for the sample 
period 1966-2015. The marginal impacts of precipitation changes on maize yields 
are negligible in magnitude for both sets of samples; the impacts are statistically 
significant for the first three quantiles for the 1966-2015 sample but they are not 
significant for any of the quantiles for the sample of 1986-2015.  
 
Figure 2 (lower panel) shows the marginal effects of Tmax and precipitation 
changes for the short-term and long-term for the sample period of 1986-2015 on 
maize yield. Appendix Table A8 reveals that only the coefficients of climate penalty 
term for temperature are statistically significant for the quantiles 0.3 onwards and 
these impacts are higher at the lower tail of the productivity curve in comparison 
at the higher tail of the curve. These results suggest that rising Tmax only affects 
short-run maize productivity and maize yields are insensitive to precipitation 
changes in India. 
 
Wheat is a rabi crop and its calendar runs from November-December to April-May, 
whereas the crops of rice and maize are grown during the monsoon season. It 
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should be noted that most of the rainfall takes place during the monsoon season. 
The marginal impacts of weather changes on wheat yield are shown in Figure 3. 
Figure 3 (upper panel) shows that the effects for the conventional fixed-effect 
models, though homogenous over the productivity curve, are much lower for the 
sample of 1986-2015 in comparison to the sample of 1966-2015. The quantile 
regression results reflect that the effects are of the same magnitude across sample 
periods but are heterogeneously distributed across quantiles. The negative effects 
are larger at the lower quantiles; at the 0.1 quantile, a 1 C increase in Tmax lowers 
wheat productivity by 9% but the decline in the yield is about 5% at the 0.9 
quantile. The marginal effects of precipitation increase for wheat yield are 
negative, and they are more negative at the lower tail of the productivity 
distribution. Moreover, the magnitude of the precipitation effect is larger for the 
sample period of 1966-2015 relative to the sample period of 1986-2015. We fail 
to observe any significant difference between long-term and short-term impacts 
of Tmax and rainfall on wheat productivity, though the negative marginal impacts 
are higher at the lower tail of the productivity curve; at the higher tail of 
productivity, the marginal effects are negligible, and statistically insignificant 
(Figure 3, lower panel). These results reveal an absence of any adaptation to 
changes in Tmax and rainfall in wheat production in India. 
  
The previous discussion reveals that at the overall mean of weather variables, the 
impact of these variables on crop yields is heterogeneous. The magnitude of 
productivity damages due to Tmax increases varies both across crops and quantiles 
of productivity curves. At the lower tail of the productivity curve, adaptation to 
Tmax increase is relatively higher and the impacts, both short term, and long term 
are substantial. Adaptation to precipitation changes is almost absent for all three 
crops. 
 
In figures 1 through 3, it is observed that, at the median quantile level, the 
estimates of marginal impacts obtained from conventional fixed effect panel 
models and fixed effect panel quantile models almost coincide. Therefore, figures 
5 to 10 provide a graphical representation of long-run and short-run response 
functions estimated for the naïve and climate penalty inclusive regressions for 
both the weather variables at the median quantile and compare them with the 
estimates obtained from the fixed effect panel regressions.14 
 
Figure 4 (left panel) and Appendix Figure A2 show the marginal effects of Tmax on 
rice yield estimated from quantile regressions and fixed effect regressions, 
respectively. The pattern of short- and long-term impacts depicted in the figures 
is similar. The estimates obtained from the inclusive model show that the short-
term marginal impact of Tmax rise is higher than the long-term impacts (6% versus 
4%) but the difference is not statistically significant at the Tmax level of about 33 
C; the level of Tmax around which most of the districts are located. It should also be 
noted that the marginal impacts of Tmax rise are not uniform across its levels, i.e., 
the marginal yield response to Tmax increase is asymmetric, especially in the short 
run. The long- and short-run response functions are tangent at a Tmax level of about 

                                                        
14 Appendix figures A1 to A6 provide a graphical representation of yield response functions for 
both the weather variables and three crops. 
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22 C. Long-run marginal impact function estimated using the naïve model 
intersects the long-run and short-run response functions at 28 C and 31 C levels 
of Tmax respectively. Figure 4 (right panel) (and Figure A2) depicts the response 
function of rice yield concerning changes in precipitation. We find that the long-
run impact of change in precipitation at different precipitation levels is almost 
constant, but the short-run impacts of precipitation rise follow a ‘U’ shaped 
pattern, an increase in precipitation beyond 1500-mm level increases rice 
productivity significantly. In most of the districts, the precipitation level lies 
between 500-mm to 1000-mm and marginal changes in precipitation at this level 
do not much affect median rice productivity either in the short- or long run. 
 
Figure 5 displays the response functions of maize productivity concerning Tmax 
and precipitation. Maize is generally produced in hot regions in the monsoon 
season. Most of the sample observations observe an average of Tmax 32 to 35 C. At 
this level, a one-degree increase in Tmax reduces median maize yield by about 10% 
in the short run but the long-run impact of Tmax increase on the maize productivity 
is negligible, suggesting a significant adaptation to Tmax increase takes place in 
Indian agriculture. This observation is consistent with the fact that maize is a heat-
tolerant and less water-consuming crop. This is grown mostly in drought-prone 
areas. In the short run, the marginal impacts of an increase in precipitation on 
median maize productivity are negative but are asymmetric. An increase in 
precipitations at the initial levels reduces the magnitude of negative effects. 
However, beyond the level of about 2700-mm level, a further increase in 
precipitation augments the negative effects on crop productivity. 
 
The impacts of changes in weather variables on median wheat productivity are 
depicted in Figure 6. Wheat is grown throughout the country even in hilly cold 
regions such as the states of Himachal Pradesh and Uttarakhand. From Figure 6 
(left panel) it is evident that the ideal range for Tmax lies somewhere 10 to 12 C and 
beyond that level, a further increase in Tmax negatively affects wheat productivity 
in the country. Most of the wheat-growing regions observe a Tmax in the range of 
27 – 32 C, the marginal impact of Tmax rise on median wheat productivity is 
statistically significant and reduces median wheat yields by about 3%. We also 
observe that there is no significant difference in the short- and long-run impacts 
of Tmax rise on wheat productivity suggesting the absence of any adaptation 
measures taken in wheat production against Tmax rise. It should also be noted that 
most wheat-growing regions observe rainfall below 100-mm during the growing 
season (Figure 6, right panel). The short-run and long-run response functions of 
median wheat yield concerning precipitation follow a similar pattern and there is 
no significant difference in the magnitude of the response functions. A further 
increase in precipitation by 100-mm negatively affects the median wheat 
productivity in the growing regions by 2.5%. Here, it should be noted that the long-
run response function obtained from the naïve model reveals that there is no 
significant marginal effect of change in precipitation on median wheat 
productivity. 
 
To summarize, we find the effects of weather and climate changes are asymmetric: 
the effects are small at the upper tail of yields distribution while these variables 
have larger impacts at the lower tail of the distribution if the impacts are negative. 
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The opposite is true if the impacts are positive. Largely, farmers take some 
adaptation measures at the lower tail of the yield distribution to counter the 
negative effects of Tmax increase, however, we find insignificant adaptation at the 
upper tail of the distribution. At the upper tail of the distribution, the impacts of 
Tmax increase are relatively small. Moreover, it should be noted that the presence 
of adaptation to changing temperatures in Indian agriculture is not uniform across 
crops. We observe there is an adaptation to Tmax increase for the crops of rice and 
maize but the difference in the long-term and short-term impacts of Tmax rise on 
wheat yield are not statistically significant. Increasing precipitations enhance rice 
productivity and adversely affect maize and wheat productivities and generally, 
adaptation is absent to changing patterns of precipitation, suggesting that weather 
and climate effects can vary substantially across crops.   
 
 
5. Conclusions 
 
This study estimates adaptation to changing weather and climate in Indian 
agriculture using district-level information for the period 1966-2015 for the three 
major cereal crops: rice, maize, and wheat. The identification strategy is based on 
the idea that the heat-prone districts fare better to higher temperatures relative 
to the districts that are located in colder regions. Most of the existing studies 
estimate quadratic equations in weather variables and focus on measuring the 
average relationship between crop yields and climatic factors. These studies 
ignore potential heterogeneity in the effects. We estimate the naïve and climate 
penalty inclusive models using fixed-effect quantile panel models to get an 
understanding of potential distributional heterogeneity in the effects of climate 
change on agricultural yields and compare the estimated results with the results 
obtained using fixed-effect panel models.   
 
The difference in the estimates of quadratic equation with and without penalty 
term depends not only on the magnitude of the coefficient of climate penalty term 
but also on the cross-sectional variation relative to with-in variation in weather 
variables. The naïve models estimate the long-term effects of climate change and 
are nested within the penalty inclusive models, the coefficient of the penalty term 
is indicative of the magnitude of the adaptation. 
 
The boundary of minimum and maximum temperature defines the growth of 
crops; temperatures beyond certain thresholds from below or above can 
adversely affect crop yields. Changes in minimum temperatures are more suitable 
in irrigated areas whereas in water stress regions it is the changes in maximum 
temperatures that affect the crop yields; hence the study considers estimating the 
impact of Tmax on crop yields. 
 
Conventional fixed-effect models inhibit our understanding of potential 
differential impacts on lower and upper tails of the distribution of agricultural 
yields. Quantile regression models identify the effects on the probability 
distribution of crop yields. This is important as the effects are complex and vary 
depending on the timing of occurrence, duration, and spatial distribution. 
Moreover, the fixed effect quantile regression models capture unobserved effects 
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of variables that may be associated with the weather variables. The results of 
quantile regressions suggest that increasing Tmax and declining precipitation 
reduce crop yields, but also increase the dispersions on observed yields. It is found 
that the naïve models overestimate the negative effects of weather change. 
 
The estimated results reveal that the effects of weather and climate changes are 
asymmetric; the effects are larger at the lower tail of productivity distribution and 
are smaller at the upper tail of the distribution. It is also observed that significant 
adaptation measures are taken at the lower tail of the yield distribution curve to 
counter the negative effects of the Tmax increase. Moreover, it should be noted that 
the presence of adaptation to changing Tmax in Indian agriculture is not uniform 
across crops. We observe there is adaptation to the increase in Tmax for rice and 
maize. Increasing precipitations enhances rice productivity but adversely affects 
maize and wheat productivity. Heterogeneity in impacts and adaptation estimates 
over the yields distribution curves and across crops suggests that farm 
management decisions can help farmers to adapt to changing weather and climate 
conditions.  
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Table 1: Descriptive Statistics 1966-2015 
Variable Mean Min 1st Qu Median 3rd Qu Max S.D. Obs 

1966-2015 
Rice Yield (kg) 

 
1571.08 

 
9.12 

 
900.69 

 
1382.11 

 
2128.19 

 
5653.83 

 
883.51 

 
13763 

Rice Tmax (C) 31.65 7.90 30.80 32.36 33.49 39.32 3.52 14836 

Rice Prec (mm) 1003.81 0.85 625.26 889.17 1188.35 5914.72 635.74  14836 
Maize Yield (kg) 1541.44 3.35 888.05 1253.26 1904.76 11120.22 1064.78 13022 
Maize Tmax (C) 31.71 7.90 30.85 32.40 33.77 40.46 3.72 14836 
Maize Prec (mm) 969.06 0.71 603.22 870.65 1159.35 5741.40 604.20 14836 
Wheat Yield (kg) 1722.72 46.11 1019.12 1517.13 2256.72 5541.52 933.33 12645 
Wheat Tmax (C) 28.87 -9.39 28.26 29.99 31.26 35.02 5.07 14836 
Wheat Prec (mm) 152.44 0.00 34.60 75.25 197.63 1934.17 194.26 14836 

1986-2015 
Rice Yield (kg) 

 
1832.77 

 
55.74 

 
1099.08 

 
1754.25 

 
2425.60 

 
5653.83 

 
925 

 
8252 

Rice Tmax (C) 31.73 8.01 30.92 32.46 33.55 39.32 4 8900 
Rice Tmax Clim (C) 31.59 8.44 30.80 32.33 33.38 37.53 3 8801 

Rice Prec (mm) 1028.35 23.05 645.06 890.50 1199.53 5914.72 645 8900 
Rice Prec Clim (mm) 1015.68 111.38 687.53 892.69 1158.22 4077.63 592 8801 
Maize Yield (kg) 1801.05 6.06 1033.39 1500.00 2162.24 11120.22 1170 7939 
Maize Tmax (C) 31.78 8.01 30.98 32.52 33.83 40.46 4 8900 

Maize Tmax Clim (C) 31.68 8.44 30.85 32.37 33.69 38.69 4 8801 
Maize Tmax (mm) 997.20 16.16 624.69 880.66 1175.16 5610.31 612 8900 
Maize Prec Clim (mm) 981.46 108.95 662.26 882.41 1121.57 3916.63 557 8801 
Wheat Yield (kg) 2037.72 74.32 1291.42 1882.35 2640.88 5541.52 974 7597 
Wheat Tmax (C) 29.00 -9.20 28.34 30.17 31.46 35.02 5 8900 
Wheat Tmax Clim (C) 28.79 -8.35 28.27 29.95 31.18 34.05 5.08 8801 
Wheat Prec (mm) 119.89 0 29.24 65.55 152.08 956.4 140.21 8900 
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Wheat Prec Clim (mm) 135.63 1.96 45.41 75.13 190.35 754.58 135.99 8801 
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Figure 1: Estimated climate change impacts over quantiles for rice crop at mean Tmax and precipitation for naïve models (R1 and R2) 
and penalty inclusive model (R2P) 

  
Note: R1 is the naïve model using the data for the period of 1966-2015 and R2 is the naïve model using data for the period of 1986-2015. Quantile and fixed effect in 
parentheses indicate that the models are estimated using quantile and fixed effect regression models. Shaded area indicates confidence interval. Longrun and 
Shortrun indicate long-run and short-run impacts; and quantile and fixed effect in parenthesis denote that the models are estimated using quantile and fixed effect 
regressions. Shaded area is an indicator of confidence intervals.  
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Figure 2: Estimated climate change impacts over quantiles for maize crop at mean Tmax and precipitation for naïve models (M1 and M2) 
and penalty inclusive model (M2P) 

 
Note: M1 is the naïve model using the data for the period of 1966-2015 and M2 is the naïve model using data for the period of 1986-2015. Quantile and fixed effect 
in parentheses indicate that the models are estimated using quantile and fixed effect regression models. Shaded area is an indicator of confidence intervals. Longrun 
and Shortrun indicate long-run and short-run impacts; and quantile and fixed effect in parenthesis denote that the models are estimated using quantile and fixed 
effect regressions. Shaded area is an indicator of confidence intervals.  
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Figure 3: Estimated climate change impacts over quantiles for wheat crop at mean Tmax and precipitation for naïve models (W1 and W2) 
and penalty inclusive model (W2P) 

 
Note: W1 is the naïve model using the data for the period of 1966-2015 and W2 is the naïve model using data for the period of 1986-2015. Quantile and fixed effect 
in parentheses indicate that the models are estimated using quantile and fixed effect regression models. Shaded area is an indicator of confidence intervals. Longrun 
and Shortrun indicate long-run and short-run impacts; and quantile and fixed effect in parenthesis denote that the models are estimated using quantile and fixed 
effect regressions. Shaded area is an indicator of confidence intervals.  
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Figure 4: Rice yield responses to TMax and precipitation (fixed effect quantile panel model) 
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Figure 5: Maize yield responses to TMax and precipitation (fixed effect quantile panel model) 
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Figure 6: Wheat yield responses to TMax and precipitation (fixed effect quantile panel model) 
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Appendix 
 

Table A1: fixed effect panel data model estimates 

 Rice     Ma
ize 

    Wh
eat 

    

 50-year 
naïve 
model 
(R1) 

30-year 
naïve 
model (R2) 

Penalty 
inclusive 
model 
(R2P) 

50-year 
naïve 
model 
(M1) 

30-year 
naïve 
model 
(M2) 

Penalty 
inclusive 
model 
(M2P) 

50-year 
naïve 
model 
(W1) 

30-year 
naïve 
model 
(W2) 

Penalty 
inclusive 
model 
(W2P) 

Tmax 0.1844** 0.0276 -0.0560*** 0.1599* 0.2730** 0.1598* -0.0387* -0.0091 0.0075 
 (0.081) (0.063) (0.018) (0.090) (0.121) (0.096) (0.022) (0.020) (0.011) 
Tmax 2 -0.0050*** -0.0015 0.00001 -0.0035** -0.0058*** -0.0026* -0.0005 -0.0001 -0.0007** 
 (0.001) (0.001) (0.000) (0.0014) (0.002) (0.002) (0.000) (0.000) (0.000) 
Prec 0.0004*** 0.0003*** 0.0003*** 0.0001 -0.00002 -0.00001 -0.0011*** -0.0005*** -0.0006*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 -0.0000*** -0.0000*** -0.0000*** -0.0000 -0.0000 0.0000 0.0000*** 0.0000*** 0.0000*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
PenaltyTmax   -0.0194   -0.2420***   0.0042 
   (0.018)   (0.025)   (0.008) 
Penaltyprec    0.0000   -0.0000***   -0.0000** 
   (0.000)   (0.000)   (0.000) 
Constant 5.8280*** 7.4120*** 8.5759*** 5.2748*** 4.2148** 4.5616*** 8.6262*** 7.6459*** 7.4377*** 
 (1.268) (0.991) (0.335) (1.397) (1.872) (1.519) (0.314) (0.273) (0.180) 
          
LTmax -0.1342*** -0.0651*** -0.0553*** -0.0612*** -0.0979*** -0.0063 -0.0656*** -0.0157*** -0.0253*** 
 (0.008) (0.008) (0.008) (0.009) (0.012) (0.011) (0.004) (0.004) (0.008) 
STmax   -0.0621***   -0.0874***   -0.0235*** 
   (0.008)   (0.012)   (0.007) 
LPrec 0.0003*** 0.0002*** 0.00024*** 0.00003* -0.0000*** 0.00002 -0.0008*** -0.0003*** -0.0003*** 
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 (0.00002) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0001) 
SPrec   0.00025***   0.00001   -0.0003*** 
   (0.0000)   (0.0000)   (0.0001) 
          
R2 0.411 0.251 0.246 0.213 0.305 0.329 0.490 0.244 0.247 
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 13,763 8,252 8,158 13,022 7,939 7,844 12,645 7,597 7,512 
Districts 293 291 291 287 286 286 275 272 272 
Sample 1966-2015 1986-2015 1986-2015 1966-2015 1986-2015 1986-2015 1966-2015 1986-2015 1986-2015 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
LTmax: Long term marginal temperature effect at overall mean of observed temperature; STmax: Short term marginal temperature effect at overall mean of observed 
temperature; LPrec: Long term marginal precipitation effect at overall mean of observed precipitation; SPrec: Short term marginal precipitation effect at overall 
mean of observed precipitation; QTrend: Quadratic state time trend 
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Table A2:  Location and scale parameters of quintile regressions models  
Rice Maize Wheat  

Location scale Location Scale location scale  
Coef. Std. Err. Coef. Std. Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std. Err. 

Sample 1966-2015 

Tmax 1.8E-01 8.1E-02 -1.2E-01 5.0E-02 1.6E-01 9.0E-02 1.1E-01 7.0E-02 -3.9E-02 2.2E-02 5.4E-03 1.3E-02 
Tmax 2 -5.0E-03 1.3E-03 2.8E-03 8.2E-04 -3.5E-03 1.5E-03 -1.5E-03 1.1E-03 -4.7E-04 4.0E-04 1.1E-04 2.4E-04 
Prec 4.1E-04 3.9E-05 -1.2E-04 1.9E-05 6.5E-05 4.1E-05 -5.0E-05 2.1E-05 -1.1E-03 9.5E-05 3.3E-04 5.8E-05 
Prec2 -6.1E-08 9.1E-09 2.2E-08 3.6E-09 -1.4E-08 1.3E-08 1.3E-08 6.3E-09 7.7E-07 1.3E-07 -3.0E-07 7.6E-08 

Sample 1986-2015 
Tmax 2.8E-02 6.3E-02 -1.9E-02 4.0E-02 2.7E-01 1.2E-01 -3.0E-02 7.9E-02 -9.1E-03 2.0E-02 -8.1E-03 2.0E-02 

Tmax 2 -1.5E-03 1.0E-03 6.4E-04 6.5E-04 -5.8E-03 2.0E-03 1.1E-03 1.3E-03 -1.1E-04 3.6E-04 1.4E-04 3.5E-04 

Prec 3.3E-04 3.5E-05 -8.3E-05 1.8E-05 -1.8E-05 5.0E-05 4.2E-05 2.4E-05 -4.9E-04 1.2E-04 3.8E-04 8.0E-05 
Prec2 -4.4E-08 6.6E-09 1.1E-08 3.2E-09 -6.5E-10 1.7E-08 -2.3E-09 5.2E-09 7.3E-07 1.6E-07 -4.6E-07 1.2E-07 

Sample 1986-2015 
Tmax -5.6E-02 1.8E-02 4.5E-02 1.1E-02 5.7E-03 2.4E-02 4.3E-02 1.4E-02 7.5E-03 1.1E-02 -1.4E-02 8.7E-03 

Tmax 2 1.3E-05 3.8E-04 -7.8E-04 2.3E-04 -3.5E-04 5.2E-04 -6.8E-04 2.9E-04 -7.4E-04 3.6E-04 4.2E-04 2.8E-04 
Prec 3.4E-04 3.6E-05 -7.0E-05 1.9E-05 -6.0E-06 4.8E-05 3.9E-05 2.2E-05 -5.5E-04 1.3E-04 4.4E-04 7.9E-05 
Prec2 -4.6E-08 6.6E-09 7.0E-09 3.5E-09 1.2E-08 1.5E-08 -4.3E-09 5.2E-09 9.1E-07 1.9E-07 -6.2E-07 1.2E-07 

Penaltyt

emp 
-1.9E-02 1.8E-02 3.3E-02 1.2E-02 -2.4E-01 2.6E-02 6.7E-02 2.1E-02 4.2E-03 7.7E-03 7.3E-04 4.9E-03 

PenaltyP

rec 
8.2E-09 1.6E-08 2.8E-08 9.7E-09 -1.4E-07 5.1E-08 4.3E-08 2.0E-08 -1.2E-06 4.7E-07 1.1E-06 2.5E-07 
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Table A3: Fixed effect quantile regression naïve model for rice crop (1966-2015) (R1) 
VARIABLES  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax 0.40158*** 0.30971*** 0.25080*** 0.20421*** 0.16540*** 0.12897*** 0.09496*** 0.05756*** 0.01161*** 
 (0.013) (0.010) (0.007) (0.005) (0.004) (0.003) (0.002) (0.002) (0.003) 
Tmax 2 -0.00995*** -0.00787*** -0.00654*** -0.00548*** -0.00460*** -0.00378*** -0.00301*** -0.00216*** -0.00112*** 
 (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec 0.00063*** 0.00053*** 0.00047*** 0.00043*** 0.00039*** 0.00035*** 0.00031*** 0.00028*** 0.00023*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 -0.00000 -0.00000* -0.00000** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000* 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTmax -0.228*** -0.188*** -0.162*** -0.143*** -0.126*** -0.110*** -0.096*** -0.079*** -0.059*** 
 (0.058) (0.042) (0.031) (0.023) (0.017) (0.011) (0.008) (0.009) (0.014) 
LTmax 0.0004*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 
 (0.0001) (0.0001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 13,763 13,763 13,763 13,763 13,763 13,763 13,763 13,763 13,763 
Districts 293 293 293 293 293 293 293 293 293 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
LTmax: Long term marginal temperature effect at overall mean of observed temperature; LPrec: Long term marginal precipitation effect at overall mean of observed 
precipitation; QTrend: Quadratic state time trend  
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Table A4:  Fixed effect quantile regression naïve model for rice crop (1986-2015) (R2) 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax 0.06146*** 0.04762*** 0.03855*** 0.03121*** 0.02470*** 0.01892*** 0.01359*** 0.00776*** 0.00006 
 (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Tmax 2 -0.00258*** -0.00212*** -0.00182*** -0.00158*** -0.00137*** -0.00117*** -0.00100*** -0.00080*** -0.00055*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
prec 0.00048*** 0.00042*** 0.00038*** 0.00035*** 0.00032*** 0.00030*** 0.00027*** 0.00025*** 0.00021*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
prec2 -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTemp -0.102*** -0.087*** -0.077*** -0.069*** -0.061*** -0.056*** -0.050*** -0.043*** -0.035*** 
 (0.019) (0.013) (0.011) (0.008) (0.007) (0.007) (0.008) (0.009) (0.011) 
LPrec 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 
 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 8,252 8,252 8,252 8,252 8,252 8,252 8,252 8,252 8,252 
Districts 291 291 291 291 291 291 291 291 291 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
LTmax: Long term marginal temperature effect at overall mean of observed temperature; LPrec: Long term marginal precipitation effect at overall mean of 
observed precipitation, QTime: Quadratic state time trend 

 
  



 33 

Table A5:  Fixed effect quantile regression inclusive of penalty term model for rice crop (1986-2015) (R2P) 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax -0.13607*** -0.10410*** -0.08202*** -0.06446*** -0.04933*** -0.03554** -0.02269 -0.00915 0.00933 
 (0.041) (0.030) (0.023) (0.019) (0.016) (0.016) (0.017) (0.020) (0.025) 
Tmax 2 0.00138 0.00084 0.00046 0.00016 -0.00010 -0.00034 -0.00056 -0.00079* -0.00111** 
 (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 
Prec 0.00046*** 0.00041*** 0.00038*** 0.00035*** 0.00033*** 0.00031*** 0.00029*** 0.00027*** 0.00024*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
PenaltyTmax -0.07668* -0.05380* -0.03800 -0.02544 -0.01462 -0.00475 0.00444 0.01413 0.02735 
 (0.043) (0.032) (0.024) (0.020) (0.017) (0.017) (0.018) (0.021) (0.026) 
Penaltyprec -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000* 0.00000* 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTemp -0.048* -0.051*** -0.052*** -0.054*** -0.056*** -0.057*** -0.058*** -0.059*** -0.061*** 
 (0.026) (0.022) (0.017) (0.014) (0.012) (0.012) (0.013) (0.015) (0.019) 
STemp -0.088*** -0.077*** -0.070*** -0.065*** -0.059*** -0.055*** -0.051*** -0.047*** -0.041*** 
 (0.023) (0.016) (0.013) (0.010) (0.009) (0.009) (0.009) (0.011) (0.014) 
LPrec 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 
 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
SPrec 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 
 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTime Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 8,252 8,252 8,252 8,252 8,252 8,252 8,252 8,252 8,252 
Districts 291 291 291 291 291 291 291 291 291 
Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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LTmax: Long term marginal temperature effect at overall mean of observed temperature; STmax: Short term marginal temperature effect at overall mean of observed 
temperature; LPrec: Long term marginal precipitation effect at overall mean of observed precipitation; SPrec: Short term marginal precipitation effect at overall 
mean of observed precipitation; QTrend: Quadratic state time trend 
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Table A6: Fixed effect quantile regression naïve model for maize crop (1966-2015) (M1) 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax -0.0087*** 0.0601*** 0.1039*** 0.1396*** 0.1717*** 0.2045*** 0.2368*** 0.2726*** 0.3191*** 
 (0.003) (0.002) (0.002) (0.002) (0.003) (0.004) (0.004) (0.005) (0.006) 
Tmax 2 -0.0011*** -0.0021*** -0.0027*** -0.0032*** -0.004*** -0.0041*** -0.0046*** -0.0051*** -0.0058*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) 
Prec 0.00015*** 0.00011*** 0.0001*** 0.00007*** 0.0001*** 0.00004*** 0.00003*** 0.00001*** -0.0000*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 -0.0000 -0.0000* -0.000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTmax -0.078*** -0.071*** -0.067*** -0.063*** -0.060*** -0.0568** -0.0536** -0.0499* -0.0453 
 (0.019) (0.013) (0.013) (0.015) (0.018) (0.022) (0.0266) (0.0316) (0.038) 
LPrec 0.0000* 0.0000** 0.0000* 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 13,022 13,022 13,022 13,022 13,022 13,022 13,022 13,022 13,022 
Districts 287 287 287 287 287 287 287 287 287 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
LTmax: Long term marginal temperature effect at overall mean of observed temperature; LPrec: Long term marginal precipitation effect at overall mean of 
observed precipitation; QTrend: Quadratic state time trend 
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Table A7: Fixed effect quantile regression naïve model for rice crop (1986-2015) (M2) 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax 0.32105*** 0.30244*** 0.29069*** 0.27946*** 0.26954*** 0.25978*** 0.25036*** 0.24115*** 0.22849*** 
 (0.004) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001) (0.001) (0.002) 
Tmax 2 -0.00755*** -0.00689*** -0.00647*** -0.00607*** -0.00571*** -0.00536*** -0.00502*** -0.00470*** -0.00424*** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.001) 
Prec -0.00009*** -0.00006*** -0.00004*** -0.00003*** -0.00001*** 0.00000 0.00001*** 0.00003*** 0.00004*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTmax -0.159* -0.135** -0.120** -0.106** -0.093*** -0.081*** -0.069*** -0.057* -0.0412 
 (0.089) (0.067) (0.054) (0.042) (0.033) (0.027) (0.026) (0.030) (0.041) 
LPrec -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 
 (0.002) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 7,939 7,939 7,939 7,939 7,939 7,939 7,939 7,939 7,939 
Districts 286 286 286 286 286 286 286 286 286 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
LTmax: Long term marginal temperature effect at overall mean of observed temperature; LPrec: Long term marginal precipitation effect at overall mean of 
observed precipitation; QTrend: Quadratic state time trend 
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Table A8: Fixed effect quantile regression inclusive of penalty term model for maize crop (1986-2015) (M2P) 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax -0.06325 -0.03684 -0.01933 -0.00436 0.01041 0.02414 0.03705 0.05072 0.06962 
 (0.247) (0.187) (0.148) (0.114) (0.083) (0.056) (0.038) (0.041) (0.072) 
Tmax 2 0.00075 0.00033 0.00005 -0.00019 -0.00043 -0.00065 -0.00085 -0.00107 -0.00138 
 (0.005) (0.004) (0.003) (0.002) (0.002) (0.001) (0.001) (0.001) (0.002) 
Prec -0.00007 -0.00005 -0.00003 -0.00002 -0.00000 0.00001 0.00002 0.00004 0.00005 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Penaltytmax -0.35271 -0.31101 -0.28336* -0.25971** -0.23640*** -0.21471*** -0.19433*** -0.17273*** -0.14290* 
 (0.251) (0.190) (0.150) (0.116) (0.084) (0.056) (0.039) (0.041) (0.073) 
Penaltyprec -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTemp -0.022 -0.0185 -0.0166 -.0148 -0.013 -0.011 -0.010 -0.008 -0.006 
 (0.166) (0.125) (0.099) (0.076) (0.055) (0.037) (0.025) (0.027) (0.048) 
STemp -0.139 -0.123 -0.111 -0.102* -0.092* -0.083*** -0.075*** -0.066*** -0.054 
 (0.138) (0.104) (0.082) (0.064) (0.046) (0.031) (0.021) (0.022) (0.040) 
LPrec -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
SPrec -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 7,844 7,844 7,844 7,844 7,844 7,844 7,844 7,844 7,844 
Districts 286 286 286 286 286 286 286 286 286 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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LTmax: Long term marginal temperature effect at overall mean of observed temperature; STmax: Short term marginal temperature effect at overall mean of 
observed temperature; LPrec: Long term marginal precipitation effect at overall mean of observed precipitation; SPrec: Short term marginal precipitation effect at 
overall mean of observed precipitation; QTrend: Quadratic state time trend 
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Table A9: Fixed effect quantile regression naïve model for wheat crop (1966-2015) (W1) 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax -0.04801*** -0.04416*** -0.04156*** -0.03946*** -0.03769*** -0.03624*** -0.03478*** -0.03309*** -0.03098*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Tmax 2 -0.00066*** -0.00058*** -0.00053*** -0.00048*** -0.00044*** -0.00041*** -0.00038*** -0.00035*** -0.00030*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec -0.00164*** -0.00140*** -0.00124*** -0.00110*** -0.00099*** -0.00090*** -0.00081*** -0.00071*** -0.00058*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000** 0.00000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTmax -0.086*** -0.078*** -0.072*** -0.067*** -0.063*** -0.060*** -0.057*** -0.053*** -0.048*** 
 (0.008) (0.006) (0.004) (0.003) (0.003) (0.003) (0.003) (0.004) (0.005) 
LPrec -0.001*** -0.001*** -0.001*** -0.0009*** -0.0008*** -0.0007*** -0.0006*** -0.0005*** -0.0004*** 
 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 12,645 12,645 12,645 12,645 12,645 12,645 12,645 12,645 12,645 
Districts 275 275 275 275 275 275 275 275 275 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
LTmax: Long term marginal temperature effect at overall mean of observed temperature; LPrec: Long term marginal precipitation effect at overall mean of 
observed precipitation; QTrend: Quadratic state time trend 
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Table A10: Fixed effect quantile regression naïve model for wheat crop (1986-2015) (W2) 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax 0.00488*** -0.00112*** -0.00485*** -0.00790*** -0.01046*** -0.01287*** -0.01512*** -0.01760*** -0.02096*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Tmax 2 -0.00035** -0.00025** -0.00019** -0.00013* -0.00009 -0.00005 -0.00001 0.00003 0.00009 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec -0.00115*** -0.00087*** -0.00069*** -0.00055*** -0.00043*** -0.00031*** -0.00021*** -0.00009*** 0.00007*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000** 0.00000 0.00000 0.00000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTmax -0.015* -0.016** -0.016*** -0.0158*** -0.0157*** -0.0157*** -0.0158*** -0.0158*** -0.0159*** 
 (0.008) (0.006) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.006) 
LPrec -0.0008*** -0.0006*** -0.0005*** -0.0004*** -0.0003*** -0.0002*** -0.0001*** -0.00003*** 0.00008 
 (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 7,597 7,597 7,597 7,597 7,597 7,597 7,597 7,597 7,597 
Districts 272 272 272 272 272 272 272 272 272 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
LTmax: Long term marginal temperature effect at overall mean of observed temperature; LPrec: Long term marginal precipitation effect at overall mean of 
observed precipitation; QTrend: Quadratic state time trend 
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Table A11: Fixed effect quantile regression inclusive of penalty term model for wheat crop (1986-2015) (W2P) 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Tmax 0.03121 0.02106 0.01476 0.00963 0.00527 0.00114 -0.00274 -0.00701 -0.01285 
 (0.028) (0.020) (0.015) (0.012) (0.011) (0.010) (0.011) (0.012) (0.016) 
Tmax 2 -0.00146* -0.00115* -0.00096** -0.00081** -0.00068** -0.00055* -0.00043 -0.00030 -0.00013 
 (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 
Prec -0.00131*** -0.00099*** -0.00078*** -0.00062*** -0.00048*** -

0.00034*** 
-0.00022* -0.00008 0.00011 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Prec2 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000*** 0.00000** 0.00000 -0.00000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
PenaltyTmax 0.00292 0.00345 0.00379 0.00406 0.00429 0.00451 0.00471 0.00494 0.00525 
 (0.022) (0.015) (0.012) (0.010) (0.008) (0.008) (0.008) (0.010) (0.012) 
Penaltyprec -0.00000*** -0.00000*** -0.00000*** -0.00000*** -0.00000** -0.00000 -0.00000 -0.00000 0.00000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
          
LTmax -0.033* -0.0298** -0.0277** -0.0259*** -0.0245*** -0.0232*** -0.0219*** -0.020** -0.0185* 
 (0.019) (0.013) (0.010) (0.008) (0.007) (0.007) (0.007) (0.008) (0.011) 
STmax -0.0319* -0.0283** -0.026*** -0.0243*** -0.0227*** -0.0212*** -0.0199*** -0.0183** -0.0162* 
 (0.016) (0.011) (0.009) (0.007) (0.006) (0.006) (0.006) (0.007) (0.009) 
LPrec -0.0008*** -0.0006*** -0.0005*** -0.0004*** -0.0003*** -0.0002** -0.0001 -0.0000 0.0001 
 (0.0002) (0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0001) (0.0001) (0.0001) 
SPrec -0.0007*** -0.00056*** -0.0004*** -0.0003*** -0.0002*** -0.0002*** -0.0001 -0.0000 0.0001 
 (0.0002) (0.0001) (0.0001) (.0001) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) 
          
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State QTrend Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 7,512 7,512 7,512 7,512 7,512 7,512 7,512 7,512 7,512 
Districts 272 272 272 272 272 272 272 272 272 
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Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
LTmax: Long term marginal temperature effect at overall mean of observed temperature; STmax: Short term marginal temperature effect at overall mean of 
observed temperature; LPrec: Long term marginal precipitation effect at overall mean of observed precipitation; SPrec: Short term marginal precipitation effect at 
overall mean of observed precipitation; QTrend: Quadratic state time trend
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Figure A1: Trend in crop yields 
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Figure A2: Rice yield responses to Tmax and precipitation (fixed effect panel 
model) 
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Figure A3: Maize yield responses to Tmax and precipitation (fixed effect panel 
model) 
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Figure A4: Wheat yield responses to Tmax and precipitation (fixed effect panel 
model) 

 
 
 
 
 
 
 




