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Long-run macroeconomic impact of climate change on
total factor productivity - Evidence from Emerging

Economies ∗

Naveen Kumar† Dibyendu Maiti‡

Abstract

Emerging economies (EMEs) often ignore effective mitigation strategies for
climate risks to prioritise growth acceleration. This paper shows that EMEs cannot
sustain their economic growth trajectory due to the adverse impact of climate
change on total factor productivity (TFP). Using a standard growth model, it
demonstrates how temperature rise and variation from growing industrial emissions
reduce capital productivity along with the damage to ecosystem services and labour
productivity, adversely impacting total factor productivity (TFP). A cross-sectional
augmented auto-regressive distributed lag model (CS-ARDL), which addresses the
issues of endogeneity and cross-sectional dependence with stochastic trends, has
been applied to 21 EMEs over the period from 1990 to 2018 and reveals a strong
negative impact of temperature rise on total factor productivity. Although EMEs
have heterogeneous impacts across the countries depending upon their climatic
zones and income levels, a one-degree increase in temperature, on average, decreases
the TFP by approximately 3 per cent. It is much higher in the extreme climatic
zones and less developed EMEs.
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1 Introduction
Emerging market economies (EMEs)1 often prioritise the policy measures for growth acceleration
to overcome their various development challenges, overlooking the strong mitigation strategies
for dealing with the climate change risks, which adversely affect total factor productivity
(TFP). Growing industrial pollution and fossil fuel consumption have resulted in a rapid
rise in global temperature and emissions, damaging ecosystems and factor productivity and
raising concerns about the sustainability of long-term growth in EMEs. The existing literature
revealed that high temperatures are associated with reduced economic output [Dell et al., 2014,
Burke et al., 2015b, Hsiang et al., 2013, Tol, 2022, Chang et al., 2023]. Recently, Integrated
Assessment Models (IAMs) theoretically argue that climate change may alter the total factor
productivity, which significantly and negatively impacts growth and prosperity in the future
[Moore and Diaz, 2015a, Dietz and Stern, 2015, Moore and Diaz, 2015b]. Further, Letta and
Tol [2019] has empirically established a negative and linear relationship between temperature
and TFP growth in developed and developing economies. While estimating the impact in
the literature, some components of factor productivity (e.g., capital productivity) and the
ecosystems that add to the aggregate total factor productivity are ignored analytically and
empirically. This paper considers them to study the impact of temperature on TFP and its
components. We have included the impact of temperature on capital productivity, including
labour productivity and ecological services. This crucial factor has been overlooked in the
existing literature. Moreover, the existing methods [Kumar and Khanna, 2019, Letta and
Tol, 2019] suffer from an estimation bias arising from cross-sectional dependence, stochastic
temperature trends, and heterogeneity for variations in geo-climatic zones across countries and
development. The CS-ARDL model has been applied to eliminate such estimation biases. Since
TFP is vital for long-run economic growth, any negative impact of the temperature rise on TFP
would require a significant reassessment of future growth projections [Tol and Yohe, 2006, Letta
and Tol, 2019]. EMEs play a dominant role in global growth, and a better understanding of
the temperature-productivity nexus is very important to foresee their long-term sustainability
and world economic progress. Therefore, this paper investigates the long-term2 impact of
temperature rise on total factor productivity that includes labour and capital productivity
and ecosystem services at the aggregate level. This is extremely important when emerging
economies try to return to the growth track after the COVID-19-led crisis.

The COVID-led crisis has severely exposed a threat to human activities due to the growing
vulnerability to climate risks. In the recent past, the climate risks displayed significant losses
that account for the damages to factor productivity and ecological services. The rising greenhouse
gas (GHG) stocks significantly contribute to global warming [IPCC, 2018]. Weather anomalies
brought on by climate change have further wreaked devastation around the globe. Extreme
weather events caused 11,778 reported disasters between 1970 and 2021, with just over 2 million
deaths and US 4.3 trillion dollars in economic losses[WMO, 2023]. Extreme weather events, e.g.,
droughts, heat waves, cold waves, storms, flooding, hurricanes, and wildfires, are significantly

1Emerging markets have no formal definition but are categorised in terms of market access and
sustained economic progress in GDP. IMF classifies countries into advanced economies and EMEs based
on per capita income, export diversification and financial integration. EMEs have grown faster than
most developing economies.

2This research defines the long-run relationship that exists in the steady-state from a macro
perspective. The long-run relation can be estimated using the error correction term of the cross-sectional
augmented autoregressive distributed lag model (CS-ARDL) approaches [Ditzen, 2021]. This study
investigates such a long-term impact of annual temperature and its fluctuations at the time (t) on
log(TFP ) at the time (t + n) at the aggregate level, where n represents the average time required for
the complete effect to be realised.
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intensified by climate changes [Goyal et al., 2022]. Emerging markets are especially vulnerable
to the economic and social consequences of these climate transformations due to geographical
factors and levels of development, which restrict their adaptive capacity3. Therefore, such
weather deterioration is more harmful to the emerging markets facing social and economic
challenges in fostering productivity growth that determines economic growth. This urges the
EMEs to undertake mitigation strategies to reduce the burden of climate change. Whatever
may be the adoption strategies, it is important to understand the mechanism and magnitude of
temperature rise on the productivity impact. The mechanism by which temperature affects TFP
through its components has not been empirically established at the aggregate level in the existing
studies [Somanathan et al., 2021, Letta and Tol, 2019, Kumar and Khanna, 2019]. Identifying
the potential channels through which temperature impacts TFP will help policymakers allocate
resources efficiently to sectors that are most vulnerable to the adverse consequences of climate
change.

The existing studies, which quantified the impact of temperature on macroeconomic indicators,
have mainly used reduced-form econometrics methods and hence suffered from potential biases
in panel data analysis [Kahn et al., 2021, Chang et al., 2023]. Climate change variables have
been mostly treated as exogenous indicators, ignoring the possibility of reverse causality. When
estimating whether climate change will impact economic growth, the temperature may not
be strictly exogenous but rather weakly exogenous. In other words, economic growth in the
past could have feedback effects on future temperature [Kahn et al., 2021]. Moreover, Schultz
and Mankin [2019] emphasised national governments run the weather stations from which
meteorological data is collected, and this impacts the level of coverage and the continuity of
such coverage depending on their political capabilities. The state’s capacity to govern and run
its bureaucracy may impact its ability to create and maintain meteorological stations. Severe
instability could cause damage to infrastructure and be forced to divert government resources
away from gathering weather data, resulting in gaps in the record that are directly related to
the outcome of interest. This apart, the existing studies have overlooked the potential presence
of unit roots in the form of stochastic trends in panel data. If the temperature rises in almost
all countries in a sample, it may contain stochastic trends and the presence of cross-sectional
dependence [Kahn et al., 2021]. This study aims to avoid these issues and is methodologically
substantially different from these studies. This study relies on the cross-sectional augmented
autoregressive distributed lag model (CS-ARDL) [Chudik and Pesaran, 2015, Ditzen, 2021] to
avoid the cross-sectional dependence and heterogeneous effect of temperature on TFP across
countries that allows us to test for weak exogeneity and find consistent parameter in the presence
of feedback effect from TFP to temperature.

This paper contributes to the literature on climate productivity in several ways. We
empirically establish three potential channels (i.e. labour productivity, capital productivity
and damage in ecosystem services) through which temperature change affects total factor
productivity in the long-run. To the best of our knowledge, this paper is the first to establish the
effect of temperature rise on capital productivity as the performance of machines deteriorates in
extreme temperatures. Understanding temperature’s impact on TFP guides targeted policies
for adaptation and mitigation, addressing specific sectors or broader strategies to minimise
productivity decline. Micro-level studies in the literature provide empirical justification and
analytical support in these regards [Somanathan et al., 2021, Stevens, 2019].

Second, this paper offers an improved econometrics model (i.e., CS-ARDL) to establish long-
term relations that utilise diverse data in time and space and control for unobservable omitted

3The Global climate finance falls short of the estimated 3-6 trillion dollars per year needed to achieve
Paris Agreement goals [Prasad et al., 2022]. Less developed countries lack the ability to mobilise the
requisite funds and hence rely on external finance.
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variables. It allows different specifications to distinguish short- and long-term climate impacts
and identify potential adaptation effects using appropriate specifications. More specifically, this
paper explicitly focuses on the long-term effect of a persistent increase in temperature using a
panel cointegration technique. Kaufmann et al. [2010] modelled surface temperature as a time
variable that exhibits a stochastic trend together with radiative force and provides the potential
for a better understanding of the probable drivers of climate change and strategies to mitigate
its effects. Similarly, Pretis [2020] applied the energy-balance climate models 4 to establish
a cointegrated system econometrically in discrete time. It gives cointegration methods for
estimating climate responses and evaluating their feedback. Additionally, it is possible to assess
uncertainty in integrated assessment models of the economic implications of climate change
using the estimated parameters. This study applies the CS-ARDL error correction term tests
for a long-term relationship, which addresses the issue of heterogeneity by presenting estimates
for certain groups of countries with similar characteristics of climate exposure and level of
development. The estimation methods applied here sufficiently address potential cross-sectional
dependence resulting from simultaneous common shocks or spillovers among economies. In
comparing the magnitude of results, it is identified that the conventional panel fixed effect (FE)
estimation models substantially underestimate the impact magnitude. In those models, a one-
degree Celsius temperature increase was associated with a 1.7% point decrease in total factor
productivity (TFP), Whereas the CS-ARDL model suggests a drop of 3% points, showing a
greater impact.

Third, unlike the existing studies, this paper empirically tests for reverse causality between
temperature and TFP. Kahn et al. [2021] argued for potential feedback effects of TFP growth
on temperature. Even Schultz and Mankin [2019] argued that economic and political factors
arising from declined production could alter meteorological measurement. Hence, this study
used PVECM-based (panel vector error correction model) Granger causality and Xiao et al.
[2022], Juodis et al. [2021] Granger causality to find the direction of causality. The study
found evidence for short-run bi-directional causality between temperature and TFP using Xiao
et al. [2022], Juodis et al. [2021] Granger causality. In contrast, the PVECM-based short-run
Granger causality test does not find such evidence. However, the findings of this paper suggest
that the relationship between temperature and TFP is complex and depends on the time horizon
considered.

Fourth, the study investigated the heterogeneous effects of temperature rise across countries
due to their variation in geo-climatic locations. It found negative impacts in all countries
included in our data sample but revealed a greater effect in the two extreme climatic zones
than in the moderate temporal countries. This study finds evidence of a non-linear impact of
temperature on TFP. Previously, Letta and Tol [2019] did not find evidence of non-linearity in
its sample with a combination of negative and positive impacts of temperature rise, leading to
a smaller effect in the aggregate.

Finally, a greater impact of temperature rise found in this study suggests that the EMEs are
required to improve climate prediction accuracy, promote energy conservation, support green
technologies in high-energy-consuming industries more seriously, and invest more in technologies
to deal with extreme climatic events. This study also offers the channels of dampening effects by
which temperature impacts TFP. Moreover, we project the impact of climate change on TFP in
emerging markets, assuming no additional adaptation measures that could reduce the sensitivity
of output to high temperatures, consistent with the prior empirical literature on climate impacts
[Kumar and Khanna, 2019, Letta and Tol, 2019, Zhang et al., 2015]. This paper predicted how

4Energy balance models (EBMs) of the climate system are highly simplified models that provide
effective conceptual tools for understanding climatic changes. The radiation budget that accounts for
the energy flowing in from the Sun and leaving the Earth is used to determine the global temperature.
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climate change would be expected to affect TFP in the future and found that it would drop by
14.2 percentage points under the ”business as usual GHG emission scenario from 2023 to 2099
and by 1.37 percentage points under the “strict GHG emission scenario.” The future impact of
climate change is much worse in less developed emerging markets.

The remainder of the paper is organised as follows. Section 2 provides a brief literature
review of the temperature-TFP nexus. Section 3 presents the conceptual background and
mechanism through which temperature could impact the level of total factor productivity.
Section 4 presents the econometric methodology and describes the data. Estimation results
are presented in section 5, and section 6 concludes the paper.

2 Literature Review
Extreme weather events and rising global temperatures are pressing global issues with serious
implications for human and economic well-being. The projections of the Intergovernmental
Panel on Climate Change [IPCC, 2014] revealed that mean global temperatures could increase
upto 2°C to 4.8°C by 2100 compared to pre-industrial levels. Extensive research has consistently
established the detrimental effects of climate change on economic activities (see [Tol, 2022,
Chang et al., 2023]). Several scholars [Dell et al., 2012, Acevedo et al., 2020] have established a
robust and linear relationship between temperature fluctuations and economic growth. Burke
et al. [2015b] found country-level economic production concave in temperature. Various micro-
econometric studies have documented the adverse impact of climate change on the agriculture
sector [Schlenker and Roberts, 2009], labour productivity [Somanathan et al., 2021, Letta and
Tol, 2019], labour supply [Graff Zivin and Neidell, 2014, Somanathan et al., 2021], human
conflict 5 [Burke et al., 2015a], industry and trade [Dallmann, 2019], exports [Jones and Olken,
2010] and real exchange rate [Cha et al., 2021].

A relatively overlooked issue is the long-term impact of climate change on total factor
productivity (TFP). Given the preeminent importance of TFP for long-run economic growth
[Solow, 1956, Mankiw et al., 1992], if climate change harms TFP growth rates, this would entail
a radical revision of future projected growth estimates [Letta and Tol, 2019]. The social cost
of carbon (SCC) estimated by Integrated assessment models (IAMs) assumes that the TFP is
exogenously determined. Recently, several scholars have modified the assumption and allowed
climate change to impact TFP. For example, Dietz and Stern [2015] assumed climate change as
an endogenous damage driver, particularly for TFP, and found a rapid increase in the social cost
of carbon if the global mean temperature is above the pre-industrial level 6. Moore and Diaz
[2015b] found that climate change directly affects economic growth via the impact on TFP and
investment, which, in turn, increases the social cost of carbon. Moreover, an extensive body
of research has consistently revealed that developing nations experience a disproportionately
severe negative impact of temperature variations on macroeconomic activities compared to
their advanced economies [Burke et al., 2015b, Dell et al., 2012, Kumar and Khanna, 2019].
The impact of higher temperatures is expected to be more severe in emerging market economies
due to their greater reliance on agriculture and limited adaptive capacity. Additionally, many
low- and middle-income countries among emerging market economies are situated in regions
characterised by low latitudes, where intense heat extremes are projected to occur with greater
frequency and intensity [Diffenbaugh and Burke, 2019, Harrington et al., 2016].

5Burke et al. [2015a] showed the impact of climate change on human conflicts, including interpersonal
and inter-group conflict, riots and civil wars

6This is in the era before the industrial revolution. Some studies have suggested that the pre-industrial
level baseline might be 1700-1800
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Empirical evidence on the nexus between temperature rise and total factor productivity at
the aggregate level is limited. While employing the ratio of total agricultural production to total
agricultural input as an indicator for total factor productivity (TFP), Ortiz-Bobea et al. [2018]
revealed that the impact of climate change on TFP is detrimental. They observed that weather
shocks positively influenced productivity growth in most USA states but hurt productivity in
four northern states. Moreover, when weather effects were omitted from the model, it resulted
in biased estimations of factors contributing to TFP growth across various regions. Similar
results were estimated for Australian farm sectors by Chancellor et al. [2021]. Using the panel
fixed effect model, Letta and Tol [2019] found that temperature negatively impacts the TFP
growth rate. Kumar and Khanna [2019] used stochastic frontier analysis to show a negative
impact of temperature on production efficiency and found that climate change has adversely
affected poor and developing countries.

In summary, numerous empirical studies have found the negative impact of temperature on
labour productivity [Adhvaryu et al., 2018, Letta and Tol, 2019], labour supply [Somanathan
et al., 2021], and cognitive abilities [Hancock et al., 2007]. The temperature can also impact
capital productivity [Mortier et al., 2010, Collins, 1963]. The specific mechanism through
which ecosystem services impact TFP hinges on reallocating resources away from research and
development towards climate change mitigation and adopting eco-friendly technologies. This
may also reduce the productivity of agricultural land and labour. However, the literature did
not estimate the combined impact of temperature increase on the TFP. Building on the recent
works [Letta and Tol, 2019, Kumar and Khanna, 2019], this paper employs the cross-sectional
augmented autoregressive Distributed Lag (CS-ARDL) approach, as opposed to the panel data
fixed effect (FE) method utilised in the prior studies to find better estimates.

3 Conceptual framework: Temperature and total factor
productivity (TFP)

It is evident in the existing literature that the temperature rise does not only affect the
favourable ecosystem services and labour productivity but also damages the productivity of
capital goods used in production. This section builds a framework to show that the global
temperature affects the TFP via three channels, i.e., reduction in ecosystem services, capital
productivity and labour productivity. According to a recent report by European Commission7,
burning fossil fuels, cutting down forests, and farming livestock are increasingly influencing the
climate and the earth’s temperature. But, the climatic response exhibits intricacies whereby
temperature ascends by a notable margin, say 5 degrees, within one locale, yet concurrently
witnesses a descent of 2 degrees within another. Every country is not contributing at the same
speed, but the aggregate damage to the atmosphere is responsible for global warming [Hansen
et al., 2010]. The warming may differ substantially within specific land masses and ocean basins.
We attempted to model this.

Let us assume a global production function of final goods that costlessly assimilates intermediate
outputs produced at the country level. There are many countries in the world, each producing a
single variety using their capital and labour. At the country level, each pollutes the environment
as a negative externality and consumes fossil fuels [Cole et al., 2005, Cole and Elliott, 2005].
The aggregate emission level is assumed to monotonically raise the global temperature, which
essentially damages the ecosystem, labour and capital productivity and, thereby, the total factor
productivity. Let us build the model formally.

7https : //climate.ec.europa.eu/climate − change/causes − climate − change en
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Assume that N identical countries produce one variety of intermediate goods each. Each
economy has two types of agents: households and firms. Households provide labour (L), receive
wages and interest incomes used to buy goods and services and save to accumulate capital assets
(K). The model assumes that all households have identical preferences, wage rates, and assets
per person. On the other hand, the firms employ workers and take the assets from households
to produce intermediate goods. While producing the goods, the firms pollute more by using
higher capital-intensive machines requiring fossil fuel consumption and emitting carbon that
raises the surface pollution level.

3.1 Household
Each household wants to maximise lifetime utility as given by

U =
∫ ∞

0
u[ct]e−ρtdt; u′(c) > 0, u′′(c) < 0 (1)

where ρ is the discount factor and c(t) represents per capita consumption. For simplicity, assume
the form of instantaneous utility function as follows:

u(ct) = c1−θ
t − 1
1 − θ

(2)

where, θ > 0, so the elasticity of marginal utility equals to the constant −θ. Households use
the income that they do not consume to accumulate as assets. The capital depreciates at δ
rate. Capital owners and workers are paid according to their marginal productivity, denoted
as r (rent) and w (wage). If the amount of capital (K) is assumed as assets and C is the
consumption, the motion of capital can be expressed as (by ignoring t subscript):

K̇ = (r − δ).K + w.L − C (3)

Labour (L) is fixed in an economy. Dividing both sides by L, this expression can be represented
in terms of per capita as follows:

k̇ = (r − δ).k + w − c (4)

Where, k = K/L and c = C/L. This would serve as the budget constraint for the household.
So, the household would maximise lifetime utility (U) subject to this constraint.

3.2 Firms
Assume that there are N identical countries worldwide, and each possesses one firm only
producing Yit intermediate output in i-th period. One single world output is produced for
consumption by bundling each country’s varieties costlessly. Assuming that the intermediate
goods produced by the respective countries are substitutable by σ, the world output can be
expressed as

Xt =
[

N∑
i=1

Y
(σ−1)/σ

it

]σ/(σ−1)

(5)

Where, Yit is the quantity of input variety i = 1, .., N . We assume that σ > 1, so it is
meaningful to consider changes in the number of inputs. If inputs are all equally priced in
identical countries, then their quantities are also equal, Yit = Yt, and the above expression can
be presented as follows: Xt = Nσ/(σ−1)Yt. Note that Nσ/(σ−1) > 1, capturing the productivity
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gain in the final goods production or world production arising from a rise in the number of
intermediate varieties. This means that the higher the variety of intermediate production at
the country level, the greater the productivity gain in the final goods production. It may also
apply to the emission level.

3.3 Emission and temperature
While producing intermediate goods at the country level, it emits pollution. The production
needs to consume fossil fuels that further release carbon emissions. The temperature, Tt,
may rise depending on the global emission level, Et, which is essentially influenced by global
production. Let us assume that the global emission level is Et = Xϕ

t ; ϕ > 0, where ϕ is the
emission elasticity of global production. This suggests that the emission level rises with global
production at a diminishing rate for 0 < ϕ < 1. Since the emission level cannot grow fast
once it reaches a higher level, it is expected that ϕ lies between zero and one. The global
temperature rises with the emission level and can be represented in logarithmic form, i.e.,
Tt = ln Et. Combining the emission and temperature functions, the global temperature can be
expressed as:

Tt = ϕ ln Xt (6)

This suggests that temperature rises with global production. If global production is assumed
to affect the temperature at the country level, the rising temperature due to growing global
emissions damages ecological services and capital and labour productivity. Similar to Cole
and Elliott [2005], we consider a Cobb-Douglas production function with the productivity
components attached to the factors and ecological content in efficiency terms. Assume that
AK and AL represent the efficiencies of capital and labour, respectively, and A(Tit) shows the
level of ecosystem services capturing the quality state of the environment. If labour Lit and
capital Kit are used to produce output (Yit) at t−th period in the i-th economy, the production
function country can be specified as follows:

Yit = A(Tit) [AK(Tit)Kit)α (AL(Tit)Lit]1−α = BitK
α
itL

1−α
it (7)

Where, Bit = A(Tit)AK(Tit)αAL(Tit)1−α, which denotes the aggregate productivity term. Note
that the production function exhibits constant return to scale. The TFP depends on the level
of ecosystem services and the productivity of capital and labour, which are further influenced
by the global temperature and are identical for similar countries. Here, Tt representing the
global temperature at t affects Yit at the country-level production. Ak and AL are capital and
labour productivity, respectively, and both depend on Tt; α and 1 − α are capital and labour
elasticities, respectively.

Suppose that the damage function of ecological services due to global warming is represented
as A(Tt) = A(1 − µATt), where µA is positive and captures the rate of ecological damages.
This could also be expressed as Ae−µATt . By substituting Tt, we get A(Tt) = Ae−µAϕ ln Et =
AX−µAϕ

t = A
(
Nσ/(σ−1)Yt

)−µAϕ
. Similarly, capital and labour productivity are assumed to

be damaged at µK and µL due to global temperature rise. Then, we can define the damage
functions of capital and labour productivity as AK(Tt) = AK(1 − µKTt) and AL(Tt) = AL(1 −
µLTt); µK , µL > 0. In the similar way, they can be presented as AK(Tt) = AX−µKϕ

t =
AK

(
Nσ/(σ−1)Yt

)−µKϕ
and AL(Tt) = AX−µLϕ

t = AL

(
Nσ/(σ−1)Yt

)−µLϕ
. Substituting these

damage functions in (eq 7), the production function can be simplified as follows:

8



Yt = BDY −Ω
t Kα

t L1−α
t (8)

Where, B = AAα
KA1−α

L ; Ω = [µA + αµK + (1 − α)µL]ϕ; D = N−Ωσ/(σ−1). B denotes the TFP
without damage. Ω represents the rate of damage due to temperature rise. It would be zero
iff ϕ = 0 or µA = µK = µL = 0. D represents the aggregate productivity loss or distortions
arising from the damages. Again, D = 0 when Ω = 0. Now, rearranging the Yt term, we find
the modified production function as follows:

Yt = (BD)
1

1+Ω K
α

1+Ω
t L

1−α
1+Ω
t (9)

Note that this function no longer exhibits constant return to scale. The return to scale is 1
1+Ω .

If 0 < ϕ < 0, we get that Ω > 0 and 1
1+Ω < 1. Hence, it exhibits a decreasing return to scale.

If Lt = L, the production function can be represented in per capita terms (in the lower letters)
as follows:

yt = (BD)
1

1+Ω k
α

1+Ω
t L

−Ω
1+Ω (10)

Note that the output per capita, yt, contains the term of productivity loss, D, due to the
damage.

3.4 Steady State and TFP terms
If the marginal productivity of capital is defined as the rental rate, we get the rental rate (rt)
as follows:

rt =
(

α

1 + Ω

)
(BD)

1
1+Ω k

−1+ α
1+Ω

t L− Ω
1+Ω − δ (11)

Since α
1+Ω is fraction, rt will be falling with the rise of kt. Applying the Hamiltonian optimisation

method, we find the growth rate of the economy as follows:

ċ

c
= 1

θ

[
α

1 + Ω(BD)
1

1+Ω k
α−Ω−1

1+Ω
t L

−Ω
1+Ω − (δ + ρ)

]
(12)

The first of the third bracket declines with capital accumulation. It will converge to δ + ρ. At
steady state, kt = k∗. Therefore, we find:

k∗ =
[((δ + ρ)(1 + Ω)

α

)1+Ω LΩ

BD

]− 1
1+Ω−α

(13)

If we substitute k∗ in the production function (10), we find the steady state output per capita
as follows:

y∗ = (BD)
1

1+Ω L
−Ω

1+Ω k∗ α
1+Ω (14)

The average productivity of capital and total factor productivity are defined in terms of yt/kt

and yt/kα
t and found as follows (for Ω > 0):

yt

kt
= (BD)

1
1+Ω L

−Ω
1+Ω k

α−Ω−1
1+Ω

t (15)

TFPt = (BD)
1

1+Ω L
−Ω

1+Ω k
−αΩ
1+Ω
t (16)

9



It shows that TFP is falling with capital accumulation during the transition period. Note
that when Ω = 0, we find that TFPt|Ω=0 = B. Moreover, the higher the value of D, the
lower the TFP. Because the higher the Ω lower would be TFPt. This productivity loss can be
decomposed by taking the deviation of TFPt (in logarithm form) for Ω > 0 and Ω = 0, i.e.,
∆ log TFPt = log TFPt|Ω>0 − log TFPt|Ω=0

∆ log TFPt = − 1
1 + Ω[Ω log B + log D] − Ω

1 + Ω log L − αΩ
1 + Ω log kt (17)

Equation 17 decomposes the loss of TFP into three sources. All three components on the right-
hand side are negative, representing the loss on each account. The first term of the right-hand
side captures the loss of productivity due to ecological damage, and the second and third terms
contain the loss of productivity with respective to the damage in labour and capital efficiencies,
respectively.

At kt = k∗, TFP would be fixed at TFP ∗, much smaller than B for Ω > 0. Moreover,
for a positive value of either µA, µK , µL or ϕ, we find that Ω > 0 and the TFP will be lower.
In other words, productivity would decline if the temperature rise damages any of the three
sources. Therefore, the production technology adversely affecting the temperature may widen
the negative impact on physical capital, ecology and labour, and hence, it becomes an empirical
question.

4 Data and Empirical Strategy
4.1 Data sources, sample composition and descriptive statistics
This study gathers climate indicators from the World Bank Climate Change Knowledge portal.8.
The total precipitation is measured in millimetres per year, while the temperature is reported in
degrees Celsius. The Climatic Research Unit (CRU) of the University of East Anglia provides
data on temperature and precipitation for geographical areas. The World Bank Climate Change
knowledge portal uses them to create an area-weighted average of climatic variables. Most
economic variables used in this study were sourced from the Penn World Table 10.0 [Feenstra
et al., 2015] and the World Development Indicators [WDI]. The total factor productivity at
constant national prices, normalised for each country to one in 2017, was obtained from the
Penn World Table 10.09. We use the Penn World Table employment statistics for the number of
people engaged in production activity. We also obtained Foreign direct investment (FDI), trade
openness 10, institutional quality, labour force participation, GDP and human capital available
at World Development Indicators (see Table 1).

Together with climate indicators and economic variables, this study gathers a complete
balanced panel data of 21 Emerging markets economies (EMEs)11 over the period from 1990
to 2018. Table 1 provides descriptions of the variables. To deal with the heterogeneity in the
analysis, the data sample has been divided by sub-sample average temperature12 and income

8https://climateknowledgeportal.worldbank.org/download-data
9The Törnqvist index values are calculated for consecutive periods in the chain together, eliminating

the need for a single base year. This index is derived by taking the weighted geometric mean of the price
relatives, with the arithmetic averages of the value shares in the two periods serving as weights.

10We calculated trade openness as the ratio of the sum of export and import to GDP
11Argentina, Brazil, Bulgaria, Chile, China, Colombia, Egypt, India, Indonesia, Iran, Malaysia,

Mexico, Morocco, Nigeria, Peru, Philippines, Russia, South Africa, Thailand, Turkey and Ukraine.
12We created three sub-samples having average temperature range 0-10, 10-20 and 20-30 into

cold, moderate and hot regions. The categorisation of temperature into distinct bins, based on the
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groups13. The study used the Climate Change Knowledge Portal (CCKP) temperature data
to project future impact. It presents four distinct RCP14 Scenarios outlined representative
concentration pathways incorporating various greenhouse gas emissions, air pollutant emissions,
and land use. The RCP scenarios assessed the costs associated with reducing emissions while
considering various concentration pathways, including stringent mitigation scenarios (RCP 2.6),
two intermediate scenarios (RCP 4.5 and RCP 6.0), and one scenario involving high emissions
(RCP 8.5), which is also referred to as the business-as-usual scenario. To improve the accuracy
of the findings, the CCKP (World Bank) employed a multi-model ensemble approach that
combined monthly data from 16 different models. The description of data details, including
their source and the reasoning behind their selection, is provided in Table 1.

This study examines the patterns of total factor productivity (TFP) in emerging market
economies (EMEs), as shown in Figure A2 in the Online Appendix. South Africa and Brazil
exhibit the highest TFP levels, while Thailand has the lowest between 1990 and 2018. Our
dataset shows the highest annual mean temperatures in Brazil, India, Egypt, and Nigeria,
whereas Russia and Ukraine have the lowest temperatures15.

frequencies of weather events falling into each bin, is employed as a method to discern the heterogeneous
impacts of temperature on economic indicators. This approach enables us to explore the nuanced
relationship between temperature and total factor productivity, considering the varying effects of different
temperature ranges. [Zhang et al., 2018a, Deschênes and Greenstone, 2011, Barreca, 2012, Behrer and
Park, 2017]

13In the sub-sample, countries with a per capita income below 4,000 dollars are classified as ”less-
developed emerging market,” while those with an income above 4,000 dollars per capita are considered
”developed emerging markets.”

14Representative concentration pathways (RCPs) are comprehensive and encompass four distinct
pathways of greenhouse gas (GHG) emission, air pollutant emission, and land use. RCP scenarios are
designed to evaluate the costs associated with emission reductions for various concentration pathways.
The RCP framework comprises four different pathways, including stringent mitigation scenarios (RCP
2.6), two intermediate scenarios (RCP 4.5 and RCP 6.0), and one scenario characterised by very high
emissions (RCP 8.5). RCP 8.5 is also called the business-as-usual scenario.

15For Summary Statistics (see Supplementary material Table A3 Online Appendix)
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Table (1) Compendium of Variable Definitions and Data Sources: Rationale and Previous Literature
Variables Definitions Source of Data Indicator Justification: Rationale and Existing Literature

Economic Variables
Total factor productivity TFP at constant national price (2017=1) Penn World Table Productivity Data Sheet [Letta and Tol, 2019, Kumar and Khanna, 2019]

Human Capital secondary schl. enrollment rate, secondary (% gross) World Development Indicators (WDI, 2016) [Islam et al., 2010, Wei and Hao, 2011]
EXGDP Exports of goods and services (current US$) World Development Indicators (WDI, 2016) construction of Trade openness variable [Miller and Upadhyay, 2000]
IMGDP Imports of goods and services (current US$) World Development Indicators (WDI, 2016) construction of Trade openness variable [Miller and Upadhyay, 2000]

Institutional quality General government final consumption expenditure (% of GDP) World Development Indicators (WDI, 2016) [Rodrik et al., 2004, North, 1990, Venard, 2013]
Foreign direct investment Foreign direct investment, net inflows (% of GDP) World Development Indicators (WDI, 2016) [Findlay, 1978, Blalock and Gertler, 2009, Azman-Saini et al., 2010]

Total Labour force Labor force, total World Development Indicators (WDI, 2016) [Yildirim et al., 2009, Henseler and Schumacher, 2019]
Output GDP (current US$) World Development Indicators (WDI, 2016) [Kahn et al., 2021, Dell et al., 2014]

Employment Number Of Persons engaged (in millions) Penn World Table Productivity Data Sheet [Yildirim et al., 2009, Henseler and Schumacher, 2019]
Capital stock Capital Stock at Constant 2017 national Prices (in mil. 2017 US) Penn World Table Productivity Data Sheet [Henseler and Schumacher, 2019, Hallegatte, 2005, Mortier et al., 2010]

Capital Productivity (GDP per unit of capital) Author Construction [Hallegatte, 2005, Mortier et al., 2010]
Labour Productivity (GDP per unit labour) Author construction [Henseler and Schumacher, 2019, Letta and Tol, 2019]
Forest area (sq. km) Proxy for ecosystem services World Development Indicators (WDI, 2016) [Riley and Gardiner, 2020]

Cereal yield Cereal Yield (kg per hectare) World Development Indicators (WDI, 2016) [Kahn et al., 2021]
Manufacturing Manufacturing value-added s % of GDP World Development Indicators (WDI, 2016) [Acevedo et al., 2020]

Agriculture Agricultural value-added as % of GDP World Development Indicators (WDI, 2016) [Acevedo et al., 2020]
Natural resources rent Total natural resources rents (% of GDP) World Development Indicators (WDI, 2016) [Akadiri et al., 2023]
Weather Indicators

Rainfall Rainfall Precipitation Climate Change Knowledge Portal (World Bank) [Kahn et al., 2021, Letta and Tol, 2019, Kumar and Khanna, 2019]
Weather Max Temperature Climate Change Knowledge Portal (World Bank) [Giovanis and Ozdamar, 2022]
Weather Average Temperature Climate Change Knowledge Portal (World Bank) [Kumar and Khanna, 2019, Letta and Tol, 2019]
Weather Long term temperature anomalies Author Construction [Barrios et al., 2010, Portmann et al., 2009]
Weather temperature volatility Author Construction Diebold and Rudebusch [2022]
Weather Negative temperature shocks Author Construction [Kahn et al., 2021]
Weather Positive temperature shocks Author Construction [Kahn et al., 2021]

Projected Weather Data
Weather Projected Temperature RCP 2.6 Scenario Climate Change Knowledge Portal (World Bank) [Kumar and Khanna, 2019, Letta and Tol, 2019]
Weather Projected Temperature RCP 4.5 Scenario Climate Change Knowledge Portal (World Bank) [Kumar and Khanna, 2019, Letta and Tol, 2019]
Weather Projected Temperature RCP 6.0 Scenario Climate Change Knowledge Portal (World Bank) [Kumar and Khanna, 2019, Letta and Tol, 2019]
Weather Projected Temperature RCP 8.5 Scenario Climate Change Knowledge Portal (World Bank) [Kumar and Khanna, 2019, Letta and Tol, 2019]
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4.2 Empirical Strategy
4.2.1 Non-stationarity

Since most economic variables in time series likely exhibit stochastic trends, performing unit root
tests on the series is reasonable. Two main types of panel unit root tests have been employed
in the literature. The first-generation unit root test is the most commonly used, based on the
assumption that cross-sections are independent. However, the first-generation unit root test
is subject to size distortion in the presence of common shock among countries simultaneously.
Hence, the second-generation unit root test is preferred. The Pesaran unit root test [Pesaran,
2007a, 2003] uses cross-sectional dependence with serially correlated terms. This test filters out
cross-sectional dependence by augmenting individual ADF regressions with the cross-sectional
average of lagged and first differences of the individual series as proxies for unobserved common
factors. Both the first-generation unit root test [Im et al., 2003, Levin et al., 2002] and the
second-generation unit root test [Pesaran, 2007b] are utilised in this study.

4.2.2 Long run estimate and cointegration

The existing literature, which quantified the impact of temperature on macroeconomic variables,
has mainly used a set of reduced-form econometric methods [Dell et al., 2012, Letta and Tol,
2019, Hsiang et al., 2013]. However, if one or more independent variables are not strictly
exogenous, the standard FE estimator used in the model specification will result in biased
estimations. Moreover, Kahn et al. [2021] has questioned these methodologies for three reasons.
First, the temperature is assumed as an exogenous indicator, which rules out reverse causality16.
Second, these methods ignore the potential presence of unit root in the form of stochastic trend
17. Third, they have ignored the potential presence of cross-sectional dependence. This study
aims to address these issues with improved methodologies using the cross-sectionally augmented
ARDL(CS-ARDL) framework, which considers slope heterogeneity and cross-sectional dependence
to establish the long-term relationship between temperature levels and TFP. One of the main
advantages of this estimation method is its ability to estimate the long-run effects in large
dynamic heterogeneous panel data models with cross-sectionally dependent errors. While
estimating the long-run effects using panel data, the existing studies (e.g., panel data fixed effect
[Letta and Tol, 2019], Stochastic Frontier Analysis [Kumar and Khanna, 2019], Fully modified
ordinary least squares (FMOLS) technique [Pedroni, 2001], panel dynamic ordinary least square
(DOLS) approach [Mark et al., 2005]) did not take into account cross-sectionally dependent
errors. The cross-sectional dependence may lead to a biased estimate due to serial or cross-
correlation between common factors and idiosyncratic errors. Such cross-sectional dependence
can be eliminated by using the cross-sectional average of the dependent and independent
variables in the model. Chudik and Pesaran [2015] included dynamic panels with heterogeneous
coefficients and weakly exogenous regressors in the cross-sectionally augmented ARDL method.

16When estimating whether climate change will impact economic growth, the temperature may not
be strictly exogenous but rather weakly exogenous to income growth. So, economic growth in the past
could have feedback effects on future temperatures. Kahn et al. [2021] and Schultz and Mankin [2019]
emphasised that a government runs the weather stations from which meteorological data is collected
and that this impacts the level of coverage and the continuity of such coverage depending on their
political capabilities. The ability of the state to control and run its bureaucracy may affect its capacity
to create and maintain meteorological stations. Moreover, violence and instability could cause damage
to infrastructure or divert government resources away from gathering weather data, resulting in gaps in
the record that are directly related to the outcome of interest.

17Kahn et al. [2021] found temperature has been rising for almost all the countries in their sample,
indicating that temperature may contain stochastic trend
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Based on ARDL specification estimation, this method is augmented with cross-sectional averages
to eliminate the impacts of unobserved common components from the long-term estimates.
The CS-ARDL approach appropriately incorporates cross-sectional averages into individual
regression to filter out the effects of common factors, similar to the Common Correlated Effects
(CCE) estimators. The significant advantage of this method (CS-ARDL) is its consideration of
all three critical panel characteristics: dynamics, heterogeneity, and cross-sectional dependency.
The main benefit of this method is its ability to accurately estimate the long-term effects
while accounting for cross-sectional dependence, which is critical for making correct policy
recommendations.

Long run estimate

Given a greater degree of financial and trade integration among emerging markets, the estimation
can suffer from cross-sectional dependence among countries. The CS-ARDL model takes care of
slope heterogeneity and cross-sectional dependence. It first estimates the short-run coefficient
and then derives the long-run coefficient. This method employs a dynamic panel data approach
incorporating lagged dependent variables as regressors to examine the long-term relationship
between temperature and total factor productivity for the i-th country at the t-th period. If
the log(TFP ) measures total factor productivity and T denotes the annual temperature, this
model can be presented as follows:

log(TFP )i,t = αi +
pT F P∑
l=1

λl,ilog(TFP )i,t−l +
pT∑
l=0

βl,i(T )i,t−l +
pK∑
l=0

γ′
i,lzt−l + ei,t. (18)

with zt−l =
(
log(TFP i,t−l, (T )i,t−l

)
. Further, log(TFP )t = N−1 ∑N

i=1 ln TFPit and T t =
N−1 ∑N

i=1 Tit are the averages of the lagged log(TFP) and the annual mean temperature. We
focus on the long-run average effect of temperature on log(TFP ), which can be calculated from
the mean values of the individual country coefficients [Pesaran et al., 1995]. The subscript i refers
to their coefficients and shows they can vary across cross-section observations. αi represents
individual country specific factors. The parameters, pT F P and pT , denote the lags of log(TFP )
and annual mean temperature.

We are interested in the long-run average impact of temperature at time t on the total factor
productivity on time at t + n, where n is the time taken (on average) for the full effect to be
realised. The long run coefficient offers this effect, and the mean group coefficient is:

θ̂CS−ARDL,i =
∑pT

l=0 β̂l,i

1 −
∑pT F P

l=1 λ̂l,i

ˆ̄θMG =
N∑

i=1
θ̂i

(19)

We have also tested the sign and significance of the annual mean temperature, including other
covariates such as trade openness, foreign direct investment, human capital, institutional quality,
and precipitation as controls in our estimation.

Cointegration

The long-run estimates obtained from the CS-ARDL model are consistent. The asymptotic
normality of these estimates holds true for both stationary and non-stationary underlying
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variables under the condition that the residuals are stationary. When the residuals are stationary,
it implies the presence of co-integration between integrated economic time series. Numerous
studies have shown that the common correlated effects (CCE) estimator yields accurate size
tests irrespective of the stationary or non-stationary nature of the variables, as long as the
residuals are stationary, indicating the existence of co-integration. The use of CS-ARDL helps
estimate the long-run coefficients and test the cointegration. The error correction model of
CS-ARDL can be written as follows:

∆log(TFP )i,t =ϕi [log(TFP )i,t−1 − θi(T )i,t]

−
pT F P −1∑

l=1
λl,i∆llog(TFP )i,t−1 −

pT∑
l=1

βl,i∆l(T )i,t +
pK∑
l=0

γi,I z̄i,t + µi,t

(20)

ϕi is the error correction coefficient. If ϕi is negative and statistically significant, the cointegration
exists between log(TFP ) and annual temperature as a long-run forcing variable. The test of
significance of the above estimate is used as a test for cointegration 18.

This implies that no relevant integrated variables are omitted if a set of variables is cointegrated.
Any non-stationary variable not included in the cointegrating relationship would be part of the
error term and cause non-stationary residuals, making it difficult to identify cointegration. If
cointegration between variables exists, this relationship would still exist even if other relevant
variables are added. The cointegration property remains invariant even when the model is
extended.

4.2.3 Cross-sectional dependence, causality, sub-sample estimates, endogeneity
and non-linearity

Another issue in large panel data estimation is cross-sectional dependence. It is a common
problem in literature while using many observations across cross-sections and time. The unobserved
common factors can be strong if they affect all countries in the sample or weak if they affect
the subset of the countries. Strong factors are induced in the cases of climate change, global
shocks, etc., and weak factors may be due to greater financial and trade integration or pollution
spillover. Both annual temperature and log(TFP ) share common factors without accounting
for this in estimation (Equation 18), which may produce an inconsistent and biased coefficient.

The standard method for addressing unobserved common factors involves time dummies
and de-meaning the data. However, this technique is only effective if cross-sectional dependence
assumptions originate from a common source and remain the same across countries. In cases
where the pair-wise cross-section covariance of error components varies across individual series,
cross-section de-meaning is not generally applicable and cannot eliminate cross-sectional dependence.
However, the CS-ARDL includes a cross-sectional average as a proxy for the unobserved common
factors. This approach is known as common correlated effects (CCE). It allows for the heterogeneous
effects by correlating the observed regressor with common factors. Chudik, Pesaran, and Tosetti
[2011] provided proof of consistency and asymptotic normality of the CCE estimator subject to
the finite number of observed common factors than the alternative principal component-based
approach. In addition, we explicitly test for cross-sectional dependence (CD) in the residuals of

18Following the existing literature, we also use this confirmatory cointegration test. Results of Kao
and Pedroni panel cointegration are provided in supplementary material Table A4 Online Appendix
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estimated models using the CD test of Pesaran [2021]. The CD test statistic is defined as

CD =
√

2T

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂ij

 (21)

where
ρ̂ij = ρ̂ji =

∑T
t=1 ε̂itε̂jt(∑T

t=1 ε̂2
it

) 1
2

(∑T
t=1 ε̂2

jt

) 1
2

This is the sample estimate of the pairwise correlation of the residuals of the estimated models,
ε̂it. The CD test statistic is normally distributed under the null hypothesis of no cross-sectional
dependence.

Another advantage arising from the presence of cointegration is that the estimates of the
long-run parameters are, in general, robust and consistent (e.g. [Pesaran et al., 1995]). The
implication is that endogeneity should not lead to inconsistent long-term parameter estimates
[Engle and Granger, 1987]. The CS-ARDL estimator remains unaffected by heteroscedasticity,
as its variance/covariance estimator relies solely on the difference between individual and mean
group estimates [Ditzen, 2021]. After establishing the long-run relationship, we also estimate the
causal relationship between TFP and annual temperature. The causality can be unidirectional
or bi-directional simultaneously. Following the literature, we use the panel causality test based
on the PVECM and Granger non-causality test [Xiao et al., 2022]. To distinguish between
cause and effect, the “arrow of time” can be used, which is based on the idea that the cause
occurs before the effect. This assumption, of course, eliminates the idea that projections about
future temperatures influence current levels of TFP. Since the current total factor productivity
primarily depends on the past and the present rather than the predicted temperature scenario,
we do not believe this option will likely occur [Herzer, 2019, 2020].

Moreover, the existing studies have suggested that the impact of climate change is not
the same across all countries [Dell et al., 2012]. Nonetheless, the conventional dynamic panel
estimators, e.g., ordinary least square (OLS), instrumental variables estimation IV, and generalised
method of moments (GMM), impose slope homogeneity restrictions across countries, which may
produce invalid and misleading estimates of the average slope coefficients in the presence of
heterogeneous coefficients [Pesaran et al., 1995]. Therefore, we use a heterogeneous CS-ARDL
mean estimator. In addition, we address the issue of parameter heterogeneity by including
sub-sample estimates based on the level of development and climate exposure.

In parallel, a nonlinear relationship between temperature and log(TFP ) can be verified in
two ways. First, a cross-sectionally augmented non-linear ARDL (CS-NLARDL) framework
uses two indicators, temperature positive and negative temperature shocks, taking partial sum
decomposition from mean temperature and testing for long and short-run asymmetry using the
Wald test. Second, a squared temperature term is introduced to adopt the nonlinearity in the
model. The squared temperature establishes non-linear relationships in climate-growth nexus
literature [Letta and Tol, 2019, Acevedo et al., 2020, Hsiang et al., 2013].

5 Empirical results
5.1 Panel unit root test
The order of integration for the panel data series has been presented first using three-panel
unit root tests proposed by Im et al. [2003], Levin et al. [2002] and Pesaran [2007a]. We
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report the null hypothesis results in the presence of a unit root in Levin et al. [2002] and Im
et al. [2003] with intercept and trend, where the intercept varies across countries. Similar to
Pesaran [2007a], we compute unit root statistics using lag orders of 0, 1, and 2, respectively.
Results of panel unit roots are reported in the Online Appendix (See supplementary material
Table A2 Online Appendix). In the set of economic variables, log(TFP ) exhibits difference
stationarity and is integrated into order 1. As additional control co-variates, trade openness
and human capital are integrated into order 1, while foreign direct investment, institutional
quality, including all climate indicators, are stationary at this level. Annual mean temperature,
maximum temperature, and precipitation exhibit the level of stationarity. Therefore, we observe
a combination of both stationary and integrated series.

5.2 Long run estimate and cointegration
We report the result of the baseline specification of equation 18, which provides an estimated
coefficient of the relationship between annual mean temperature and log(TFP ) in Table 2.
Chudik and Pesaran [2015] suggested that a rule of thumb number for lags inclusion in the CS-
ARDL model should be an integer part of T

1
3 , where T denotes data span. Dynamic common

correlated effects provide inconsistent estimates if the cross-section’s lags are too large [Chudik
and Pesaran, 2015, Herzer, 2019]. Following these works, we took the number of lags to be one.

The long-run estimate suggests a significant negative relationship between the annual mean
temperature and the log(TFP ). Regarding the magnitude of impact, an increase in one-degree
temperature decreases approximately 3% of TFP in the long run, on average (see column 1 in
Table 2). Letta and Tol [2019] concluded that an increase in one degree Celsius decreases total
factor productivity growth by 0.49%, and Kumar and Khanna [2019] provide results where one
degree Celsius increase is associated with 0.1% change in production efficiency. Comparing our
findings to standard panel fixed effect estimation, we find an underestimation of the impact
magnitude (see Table A.1). A one-degree Celsius temperature increase resulted in a 1.7% point
drop in total factor productivity (TFP) according to FE estimation, whereas CS-ARDL analysis
suggested a 3% point decrease. Underestimating the magnitude of temperature’s impact on
total factor productivity can lead to inadequate resource allocation and ineffective policies for
adaptation and mitigation.

The CD test rejects the presence of cross-sectional dependence Pesaran [2021] as reported
in Table 2, Column 1. We compute Pesaran [2007a] CIPS panel unit root test for the residual
as a test for cointegration [Holly et al., 2010, Baltagi and Griffin, 1997]. We find the presence of
cointegration between log(TFP ) and annual temperature, suggesting the long-run relationship
between temperature shocks and log(TFP ). These results confirm that the estimated coefficients
are non-spurious.
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Table (2) Estimates of the long-run relationship between temperature and TFP
(1) (2) ( 3) (4) (5) (6)

Variables CS-ARDL CS-ARDL PMG-ARDL PMG- ARDL NSYC-IV NSYC-IV
Mean Temperature -0.0322* -0.0458** -0.0079**

(0.0146) (0.0116) (0.0047)
Maximum Temperature -0.0222* -0.0387* -0.0084**

(0.0099 ) (0.0105) (0.0049)
CIPS Statistics -7.236*** -7.377*** -3.835*** -3.481*** NA NA
Cointegration Yes Yes Yes Yes NA NA
CD Statistics -0.19 -0.45 10.674*** 10.366*** NA NA

R-Squared(Mean group) 0.64 0.63 0.48 0.53 NA NA
Number of observation 609 609 609 609 609 609
Number of Countries 21 21 21 21 21 21

Notes: The dependent variable is log (Total factor productivity) in CS-ARDL model [Chudik and Pesaran, 2015, Ditzen, 2021]. PMG: Pooled mean Group;
NSYC-IV: Defactored instrument variable estimation Norkutė et al. [2021]. CD: Cross-sectional dependence test [Pesaran, 2021] - The CD statistics have
a null hypothesis of no cross-sectional independence in the residual of the estimated model. CIPS is cross-sectionally augmented IPS of the residuals of
long-run relationships. () contains a standard error. (*** )(**) (*) indicate the level of significance at the ( 1%) (5%) and (10% ).
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5.3 Robustness
We check the robustness of the estimated results using three distinct approaches: first, by
employing two alternative estimation techniques; second, by employing three alternative indicators
as proxies for temperature shock; and finally, by incorporating additional control variables.

We examine the relationship between log(TFP ) and annual mean temperature using two
alternative techniques: de-factored instrumental variable estimation [Norkutė et al., 2021] and
pooled mean group ARDL [Pesaran and Smith, 1995]. The de-factored instrument variable
estimation [Norkutė et al., 2021] is a two-stage instrument variable approach that employs
the principal component analysis (PCA) and has been utilised to extract common factors
from exogenous covariates. This can then be utilised as valid instruments. In the subsequent
stage, the PCA is employed again to extract factors from second-stage residual and de-factored
covariates as valid instruments. Compared to alternative methods that rely on iterative principal
component analysis, this approach has a distinct advantage as it can avoid potential drawbacks,
e.g., size distortion, computational complexity, and limited flexibility. We also used pooled mean
group ARDL [Pesaran and Smith, 1995] to estimate the long-run relationship between log(TFP )
and annual variation in mean temperature. PMG-ARDL relies on both pooling and averaging
techniques. PMG-ARDL allows for both homogeneous long-run and heterogeneous short-run
coefficients. Estimates of long-run relationship from both pooled mean group ARDL and de-
factored error correction approach produce quantitatively similar results (see Columns 3 and
5 in Table2). Nonetheless, when it comes to the PMG-ARDL model, it is important to note
that CD statistics reveal the existence of cross-sectional dependence. As a result, the outcomes
of the PMG-ARDL approach must be interpreted carefully and with caution. The findings
using PMG-ARDL and de-factored instrument variable estimation suggest mean temperature
suggests a significant negative impact on log(TFP ).

In addition, we also examine the relationship between annual maximum temperature and
log(TFP ). An increase in maximum temperature renders the country less inhabitable, potentially
reducing both labour and capital productivity. Giovanis and Ozdamar [2022] used maximum
temperature as a proxy for climate change to study its relationship with fiscal balance. Annual
maximum temperature exhibits a negative and statistically significant coefficient (see columns
2, 4 and 6 of Table 2). Both the PMG-ARDL and de-factored instrument variable estimation
produce consistent findings. As additional robustness exercises, we included temperature anomalies
and temperature volatility as independent regressors instead of temperature levels. The procedure
for calculating temperature anomalies is straightforward: a pre-defined multi-year mean temperature
is subtracted from a particular temperature observation, and the difference is divided by the
temperature’s standard deviation. The standard deviation accounts for natural differences in
climate variability between nations and corrects for historical variances. This transformation
minimises the impact of missing observations, altitude variation, and urban heat impacts while
balancing temperature changes across geographic units [Barrios et al., 2010, Portmann et al.,
2009].

Temperature volatility is measured as the difference between maximum and minimum
temperature. Temperature extremes like heat waves highly depend on how the entire temperature
distribution changes, including both central tendency and variability. Such temperature extremes
can have detrimental impacts on society and the economy. Temperature volatility can affect
output directly but can also raise the stress level of workers and reduce labour productivity
[Diebold and Rudebusch, 2022]. This study’s findings confirm that temperature anomalies and
temperature volatility have a detrimental impact on the log(TFP ) (see columns 2 and 3 Table
A.1). This result is consistent across all estimated models, providing robust evidence for the
negative relationship between temperature and productivity. The negative effect of temperature
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anomalies and volatility on log(TFP ) is further supported by the statistical significance of their
respective coefficients, suggesting that even small changes in temperature can have substantial
economic consequences.

Table (3) Estimates of the long-run relationship between temperature and TFP with
additional variables

(1) (2) ( 3) (4) (5)
CS-ARDL CS-ARDL CS-ARDL CS-ARDL CS-ARDL

Variables Log(TFP) Log(TFP) Log(TFP) Log(TFP) Log(TFP)
Mean Temperature -0.0361* -0.0379*** -0.0364* -0.0554* -0.0398*

(0.0162) (0.0122) (0.0143) (0.0278) (0.0156)
Precipitation -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Human Capital 0.0014* 0.0012 0.0017 0.0018

(0.0006) (0.0012 ) (0.0016) (0.0014 )
Trade openness 0.0998* 0.0082 0.1032*

(0.0443) (0.0547) ( 0.0499)
Institutional quality -0.0055*

(0.0025 )
Foreign direct investment -0.0020

(0.0019)
Error correction term -0.9866*** -1.0825*** -1.2899*** -1.2123*** -1.4116***

CIPS Statistics -7.140 *** -7.698 *** -10.952*** -9.429*** -10.009
Cointegration Yes - Yes Yes Yes Yes
CD Statistics -0.72 0.11 -0.11 -0.54 -0.73

R-Squared(Mean group) 0.35 0.42 0.62 0.71 0.58
Number of observation 609 474 426 389 426
Number of Countries 21 21 18 16 18

Notes: The dependent variable is log (Total factor productivity) in CS-ARDL model: Cross-sectional
autoregressive distributed lag of CD [Chudik and Pesaran, 2015, Ditzen, 2021]: The CD statistics has
the null hypothesis of no cross-sectional independence in the residual of the estimated model. CIPS
is cross-sectionally augmented IPS of the residuals of long-run relationship.() contains standard errors.
(*** )(**) (*) indicate the level of significance at the ( 1%) (5%) level (10% ) level

Although discussed in the previous section, the omitted variables are not a problem if co-
integration exists among variables. We perform additional robustness tests to examine long-run
estimates of annual mean temperature, including precipitation, human capital, trade openness,
institutional quality and foreign direct investment, which shows the negative impact. The long-
run estimate of annual mean temperature is statistically significant and negative (reported in
Table 3). Overall, we find consistent evidence of annual temperature’s negative and significant
impact on log(TFP ) across all models. We find the presence of co-integration in all the models as
the coefficient of error correction term is negative and significant. Moreover, the CIPS panel unit
root test results reject the null hypothesis of the presence of unit root in the residual. We also
applied the CD test proposed by Pesaran [2021] to investigate the cross-sectional dependence
in all our models, and the results suggest the absence of cross-sectional dependence.
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5.4 Mechanisms and Adaptation
Annual mean temperature rise can affect total factor productivity through input productivity
and reduction in ecosystem services19. We use the ratio of output to labour as a proxy of
labour productivity and output to capital as a proxy of capital productivity. Forest cover area
has been taken as a proxy for ecological services. Regression results of annual mean temperature
separately on three variables are presented in 4.

Annual mean temperature negatively and significantly impacts capital and labour productivity
(see column 3, Table 4). The production can be adversely affected by the uncertainty arising
from extreme weather events caused by climate change [IPCC, 2014]. Extreme weather events
can trigger resource reallocation, impacting total factor productivity (TFP) by disrupting
resource allocation efficiency. Farmers and investors may choose the incorrect mix of agricultural
inputs due to the increased uncertainties surrounding climate change. Investors cut their
investments, which leads to less capital and labour and maybe lowers TFP. In estimated models
of input productivity (refer to columns 1,2,3 and 4 of Table 4), the results indicate significant
negative error correction terms, suggesting the presence of cointegration. Furthermore, the
CD statistics indicate no evidence of cross-sectional dependence in the model. These findings
provide evidence that the models are well-specified.

The annual mean temperature exhibits a negative and statistically significant relationship
with labour and capital productivity in Models 2 and 4 of Table 4, implying that climate change
dampens them. One can argue that developing countries face greater challenges in capital
accumulation during high temperatures primarily due to their reliance on agriculture, which is
particularly vulnerable to temperature fluctuations. This is because higher temperatures can
diminish the productivity of agriculture, resulting in lower financial and physical output. As a
result, savings may decrease, which in turn can limit the accumulation of capital. Also, elevated
temperature-induced extreme weather events can damage physical capital. Higher temperatures
can also have negative effects on capital productivity. The elevated temperatures can limit the
effectiveness of lubricants in reducing surface friction between mechanical components [Mortier
et al., 2010], increase failure rates by increasing the volume of input materials required [Collins,
1963], and slow down hardware processing speed. Furthermore, natural disasters caused by
climate change can increase physical risk to capital. Temperature dampens capital efficiency
and capital productivity’ magnifying its impact on TFP. The decreased capital accumulation
and disruptions in agriculture-dependent sectors further diminish TFP by distorting resource
allocation and production efficiency.

The existing literature on micro-level studies indicates that temperature can have a detrimental
impact on various aspects of economic productivity, including labour productivity [Adhvaryu
et al., 2018], labour supply [Somanathan et al., 2021], and cognitive abilities [Hancock et al.,
2007]. Our macro-level results support them ( refer Table 4). Micro-level studies consistently
demonstrate the negative impact of extreme temperatures on labour productivity in labour-
intensive manufacturing industries [Stevens, 2019, Cai et al., 2018]. In a study of Chinese
industrial firms, Zhang et al. [2018b] found higher temperatures have detrimental effects on
both total factor productivity (TFP) and output. Chen and Yang [2019] found that rising
temperatures decrease labour productivity, reduce investment, and increase inventory levels.
Somanathan et al. [2021] conducted a comprehensive study in India, highlighting the link
between high temperatures, decreased worker outputs, and the impact on firm-level production.
These findings emphasised the importance of understanding and addressing the economic implications
of temperature changes. Labour supply can be reduced with extreme heat through health
channels. Warmer temperatures affect working hours in weather-exposed industries and leisure

19For detail, see Section 3
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time allocation, leading to short-term reallocation or unemployment and changes in labour
supply, thus affecting TFP [Graff Zivin and Neidell, 2014]. Extreme heat and cold have reduced
work time in China [Garg et al., 2020]. Somanathan et al. [2021] discovered an increased
absenteeism in response to high temperatures in an Indian industrial factory. Negative impacts
of temperature on both labour supply and labour productivity can have a compounding effect
on total factor productivity (TFP) by reducing available labour resources and decreasing the
efficiency of the production process. The estimated results in columns 1 and 3 of table 4 are
consistent with the literature.

The third mechanism by which extreme events may impact TFP is driven by reducing
ecosystem services and shifting resources away from research and development towards climate
mitigation efforts. We use forest cover as a proxy for ecosystem services. The findings obtained
through the CS-ARDL specification reveal that rising temperatures have a dual effect: a decrease
in ecosystem services and a simultaneous increase in natural resource rent. Furthermore, the
decline in forest cover resulting from deforestation or unsustainable logging practices leads to
resource depletion, ecological degradation, and a reduced capacity to generate natural resource
rent over the long term. This relationship is further observed in the estimated coefficients
of forest cover and natural resource rent presented in columns 5 and 3 of Table 4 and Table
A.2, respectively. The decrease in ecosystem services, particularly in the form of forest cover,
can impact total factor productivity (TFP) through various channels20. The declined ecology
may raise the greater possibility of bacterial and viral infections, known as zoonotic disease
transmission, due to the increased human-wildlife interactions, potentially resulting in the
deterioration of human health, increased healthcare costs, and productivity losses, ultimately
affecting TFP.

20Decreased forest cover reduces natural resource availability, contributes to soil erosion and land
degradation, disrupts ecosystem services, and diminishes tourism revenue, all of which negatively impact
total factor productivity (TFP).
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Table (4) Temperature shocks and mechanism
(1) (2) (3) (4) (5)

Labour Capital Labour productivity Capital productivity Forest cover
CS-ARDL CS-ARDL CS-ARDL CS-ARDL CS-ARDL

Regressor Production function Component Productivity measure Ecosystem service
Mean Temperature -0.8059** -0.1375** -449.2864** -0.0050** -0.0084

( 0.4327) ( 0.0823) (265.4978) (0.0029) (0.0085)
Error correction term -0.9057*** -0.9952*** -0.8948*** -0.9550*** -0.2795***

CIPS Statistics -8.954 *** -9.741*** -7.457*** -8.778*** -8.338
Cointegration Yes Yes Yes Yes Yes
CD Statistics 1.41 -0.03 -0.97 -2.27* 0.99

R-squared (Mean Group) 0.60 0.32 0.50 0.34 0.90
Number of observation 609 609 609 609 609
Number of Countries 21 21 21 21 21

Notes: CS-ARDL: Cross-sectional autoregressive distributed lag of Chudik and Pesaran [2015]Ditzen [2021] CD: Cross-sectional dependence test of Pesaran
[2021] CIPS is cross-sectionally augmented IPS of the residuals of long run relationship. () contains a standard error. (*** )(**) (*) indicates the
level of significance at the ( 1%) (5%) (10% )
Labour -Number Of Persons engaged (in millions), Capital-Capital Stock at Constant 2017 national Prices (in mil. 2017 US $), Labour productivity -
GDP per unit of labour, Capital productivity- GDP per unit of capital. Forest cover - Forest Area (sq. km)
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Adaptation and mitigation of climate change require factor reallocation in the short run and
investment in research and development in the long run. As some sectors are more vulnerable
to heat than others, a sectoral-level analysis was conducted to identify the necessary adaptation
policies for climate change mitigation. The negative impact of climate change on sectors, with
a similar magnitude in emerging economies (see Table A.2), suggests that climate change has
significant and widespread economic effects. This study finds similar to Dell et al. [2012], where
they observe significant and comparable effects of temperature on agricultural and industrial
sectors. Understanding these effects can help policymakers and stakeholders develop effective
mitigation and adaptation strategies, including investments in resilient infrastructure, improving
crop management practices, and promoting sustainable manufacturing practices. Further,
the presence of cointegration is confirmed with stationary residual. However, the estimated
CD statistics show the presence of cross-sectional dependence. As temperature increases,
crops undergo heat stress, leading to decreased yields. This decline in agricultural output
directly affects the country’s overall productivity since the agricultural sector holds significant
importance, particularly in emerging markets economies. The estimated impact of temperature
rise on cereal yield is negative and significant (see Column 4 A.2). The disruption in cereal yield
can impact food prices and supplies, potentially impacting food security. It is well established
that climate change impacts agricultural productivity and output.

If countries are adapting appropriate measures to climate change, we expect the estimate
of the long-run relationship between climate change and log(TFP ) to shrink over time. Using
the CS-ARDL methodology with a full sample and dropping one year to create a sub-sample.
Figure 1 shows that the estimated coefficients do not shrink over time. One possible explanation
is that rising temperatures may undermine the effectiveness of both mitigation and adaptation
measures intended to address climate change. Additionally, firms may be reluctant to adopt
available technologies designed to address climate change due to concerns about the associated
costs or a lack of awareness about the potential impact of future extreme climate events. Another
factor to consider is that emerging markets may experience structural changes in their growth
patterns, resulting in a sectoral reallocation of growth from heat-exposed sectors to those less
affected by heat.

24



Figure (1) Long-Run Effects of Climate Change on Log(TFP) with different sub-sample
based on Starting year

Notes: Figures show the long-run effect (and their 95% standard error bands) of climate change on log(T F P ) on the sub-sample of

different windows, using the CS-ARDL specification. We start the estimation with the full sample and then drop one year at a time.

5.5 Causality
The results in table 5 reveal a long-run causal relationship runs from annual mean temperature
to log(TFP ). To test for causality, we use two tests for Granger causality - panel vector
error correction model (PVECM)-based Granger causality and Xiao-Juodis method of Granger
causality [Xiao et al., 2022, Juodis et al., 2021].

The Granger causality establishes whether an indicator changes the other variable or gets
affected by that variable, and it also establishes the direction of causality between two variables.
We employed the PVECM based on the Granger causality test to identify the direction of
causality.

(∆lnTFPit) = c1i + α1eci,t−1 +
k∑

j=1
ϕ11ln(TFP )i,t−j +

k∑
j=1

ϕ12ln(T )i,t−j + ϵT F P
it (22)

(∆Tit) = c2i + α2eci,t−1 +
k∑

j=1
ϕ21ln(TFP )i,t−j +

k∑
j=1

ϕ22ln(TFP )i,t−j + ϵT
it (23)

where lagged differences show short-run dynamics, while the error correction term gives a long-
run relationship, the optimal lag length was chosen to be 2 using the information criteria. Here,
ec refers to the error correction term, and k is the number of optimal lags.

Specifically, the error correction term represents the deviation from the long-run relationship.
At the same time, the adjustment coefficients, α1 and α2, capture how lnTFPit and Tit respond
to the deviation from long-run relationship. In PVECM-based Granger causality, there are two
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sources of causality, i.e. error correction and lagged dynamic terms. The lagged dynamic term
captures the short-run Granger causality test. We can perform three types of causality - weak,
short-run Granger causality and strong exogeneity tests.

To test for weak exogeneity, we set the coefficient of the error correction term to zero. The
short-run Granger causality test is performed on the lagged value of the explanatory variable. In
strict exogeneity, we test the joint significance of the error correction term and the lagged value
of the explanatory variable. Weak exogeneity is akin to long-run causality. Hence, if we fail to
reject the null hypothesis of weak exogeneity of temperature shock, total factor productivity has
no causal impact. The results from Table 5 (panel 2.1) show that the null hypothesis of weak
exogeneity is rejected at the 1% level for annual temperature. Similarly, short-run Granger
causality is rejected at a 10% level. Finally, strong exogeneity, which does not differentiate
between the short and long runs, is rejected, implying that annual temperature Granger causes
total factor productivity. In contrast, we find no evidence of reverse causality of log(TFP ) to
temperature (see Table 5 panel 2.2). Long-run and short-run Granger causality are rejected,
implying no evidence of reverse causality from log(TFP ) to annual temperature.

The model developed by Xiao et al. [2022], Juodis et al. [2021] for no Granger causality is
valid for homogeneous or heterogeneous coefficients. Under the null hypothesis, the causality
parameter will be zero. Hence, it is homogeneous Juodis et al. [2021] used a split panel jackknife
and construct estimators that are free from nickel bias. This approach has several advantages
over the model offered by Dumitrescu and Hurlin [2012]. Although Dumitrescu and Hurlin
[2012] test accounts for heterogenous slope under the null and alternative hypothesis, it is
only justified for the sequence when N

T 2 tends to zero. This implies that the method can suffer
substantial size distortion if T is sufficiently smaller. This method involves running N individual
regressions to obtain N individual-specific Wald statistics, which are subsequently averaged
over the cross-section. The results obtained from Juodis et al. [2021], Xiao et al. [2022] for
Granger non-causality indicate bidirectional causality between temperature and TFP in the
short-run, indicating the presence of reverse causality in contrast to the findings of PVECM-
based Granger causality. The null hypothesis of ”average temperature does not Granger cause
log(TFP)” is rejected, suggesting causality runs from annual temperature to log(TFP ) based
on the significant Wald coefficients. Additionally, we observe causality running from log(TFP )
to temperature (see panel 15).

Therefore, this study shows that the relationship between temperature and TFP is complex
and depends on the time horizon considered. Specifically, we find mixed evidence for short-run
bi-directional causality between them, with the improved method by Xiao et al. [2022] suggesting
bi-directional causality. In contrast, the PVECM-based short-run Granger causality test does
not find such evidence. However, the PVECM-based approach finds evidence for unidirectional
long-run causality from temperature to TFP, as indicated by the significant coefficient of the
error correction term and the rejection of the null hypothesis for weak exogeneity.
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Table (5) Causality tests between log(TFP ) and Temperature shock
1. Juodis, Karavias and Sarafidis (2021) Granger non-causality test

HPJ Wald Statistics Number of Lags
H0- average temperature does not Granger cause Log (TFP) 5.0259** 1
H0- Log(TFP) does not Granger cause average temperature 4.8071** 1

2. Granger causality test based on PVECM
Chi-square statistics Coefficient on lagged TEMP coefficient of lagged TEMP Number of Lags

2.1 H0- average temperature do not Granger cause Log (TFP)
Weak exogeneity test 66.8811 2

a1 = 0 [0.0000] 2
Short-run Granger non-causality test 4.7973 0.0011 0.0060 2

ϕ12j = 0 [0.0908] (0.0029) (0.0027) 2
Strong exogenity test 71.6148 2

ϕ12j = a1 = 0 [0.0000] 2
Number of observations 609

Number of countries 21
Chi-square statistics Coefficient on lagged LTFP coefficient of lagged LTFP Number of Lags

2.2 H0- Log (TFP)do not granger average temperature
Weak exogeneity test 0.0374 2

a1= 0 [0.8460] 2
Short-run Granger non-causality test 0.3790 -0.0944 0.3339 2

ϕ12j = 0 [0.8272 ] (0.5363) (0.5441) 2
Strong exogenity test 0.4180 2

ϕ12j = a1 = 0 [0.9635] 2
Number of observations 609

Number of countries 21

Notes: [] contains p values of Wald statistics and () contains standard error of the individual coefficient.
(*** )(**) (*) indicate the level of significance at the ( 1%) (5%) level (10% ) level
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5.6 Heterogeneity
The existing literature indicates that the effect of annual temperature varies significantly across
different geographical regions. The impact of temperature shocks on macroeconomic outcomes is
also highly heterogeneous among countries, with differential effects observed between developed
and developing nations [Dell et al., 2012, Hsiang et al., 2013, Acevedo et al., 2020, Letta and Tol,
2019]. The standard dynamic panel approach imposes conditions of slope homogeneity across
cross-sections that produce inconsistent results and are potentially misleading in the presence
of a heterogeneous coefficient. The CS-ARDL employs a heterogeneous mean estimator and
takes care of slope heterogeneity.

We address the issue of parameter heterogeneity by re-estimating the impact of long-term
annual temperature on log(TFP ) by stratifying our sample into sub-samples based on climate
exposure and level of development. Subsequently, we created three sub-sample categories in
terms of average temperature: the cold region (0-10 degrees Celsius), the moderate region (10-
20 degrees Celsius), and the hot region (20-30 degrees Celsius). In the second sub-sample, we
employed the level of development as the criterion and created two sub-samples: less-developed
EMEs (with per capita income less than 4000 US dollars) and developed EMEs (with per capita
income more than 4000 US dollars).

In all three climate exposure sub-samples, we find a negative impact of annual mean
temperature on log(TFP ). This study shows that the negative impact of annual mean temperature
on log(TFP ) remains significant in cold and moderate regions, with adverse effects observed
in very hot and cold temperatures. It suggests that as the temperature rises, the productivity
drop slowed down a bit from -2.73% in the cold regions to -1.44% in moderately hot regions, and
it increased up to -2.69% in the very hot region (see columns 1-3, Table 6). The productivity
loss tends to be greater in the extreme climatic regions than the moderately hot regions. These
results suggest the potential for non-linearity in the relationship between temperature and
TFP21, labour and physical capital effects 22, energy demand, cost, and supply chain disruption.
We have also examined the non-linear relation between temperature and TFP in Section 5.7.

The level of development directly influences a country’s ability to cope with weather shocks
and reduce associated damages. Higher-income countries typically have well-equipped housing
and better government policies that enhance resilience to severe weather events. However, there
is a lack of robust evidence on how the development level protects countries against climate
change impacts. In the second panel, we find a negative and significant impact of temperature
on log(TFP ), with the magnitude of the impact being higher in less developed countries than
in developed as a one-degree Celcius change in average temperature decreases 5.86% of TFP
in the long run whereas, it is 0.6% of TFP in high-income countries(see columns 4-5, Table
6). Property rights in many less developed countries are not well-established, and access to
credit is limited, which can lead to further adverse consequences in the face of climate change.
Hisali et al. [2011] found richer countries have better property rights and access to credit than
poorer countries. Additionally, Di Falco et al. [2011] found that easy access to credit can limit
the adverse effect of temperature rise. Poorer countries spend less on productivity-enhancing
technologies due to their limited access to credit, which can exacerbate the negative impacts of
climate change in these economies. This study finds consistent results similar to Letta and Tol

21Different economic activities and sectors have an optimal temperature range in which they operate
most efficiently. Rising temperatures negatively affect productivity, benefiting activities sensitive to
colder temperatures, like agriculture in colder regions. However, excessive heat reduces productivity
beyond the optimal range, particularly for labour-intensive sectors and temperature-sensitive processes.

22Heat stress, exhaustion, and heatstroke impair workers’ abilities, increasing accident risks and
reducing efficiency. Similarly, high temperatures affect machinery and equipment performance,
decreasing productivity.
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[2019]. Based on country-level data from emerging market economies, the study reveals that
developed economies exhibit a smaller marginal effect of heat on productivity.

For the sake of completeness, the error correction term is negative and significant, thus
indicating the existence of cointegration. Even CIPS statistics confirm the estimated result is
non-spurious. Cross-sectional dependence emphasises that even though fewer countries exist in
models 1 and 4, the cross-sectional and time-series data ensure more than enough observations
to produce reasonably reliable estimates. However, statistical power is sensitive due to the
relatively small sample size.

Table (6) Estimates of the long-run relationship between temperature and TFP
(1) (2) ( 3) (4) (5)

Cold Moderate Hot Very Hot less-developed EMEs Developed EMEs
CS-ARDL CS-ARDL CS-ARDL CS- ARDL CS-ARDL

Mean Temperature -0.0273* -0.0144* -0.0269 -0.0586* -0.0056
(0.0087) (0.0067) (0.0197) (0.0307) (0.0080)

CIPS Statistics -3.639*** -2.561** -5.743*** -3.132*** -6.288***
Cointegration Yes Yes Yes Yes Yes

R-squared (Mean Group ) 0.43 0.35 0.42 0.29 0.38
Number of observation 112 189 270 189 370
Number of Countries 4 7 10 7 14

Notes: The dependent variable is log (Total factor productivity) CS-ARDL: Cross-sectional
autoregressive distributed lag of Chudik and Pesaran [2015]Ditzen [2021] CD: Cross-sectional dependence
test of Pesaran [2021] - The CD statistics have the null hypothesis of no cross-sectional independence in
the residual of the estimated model. CIPS is cross-sectionally augmented IPS of the residuals of long-run
relationships. () contains standard error. Cold - Temperature Bin(0-10 C) , Moderate Hot - Temperature
Bin(10-20 C) and Very Hot - Temperature Bin(20-30 C) (*** )(*) (**)Indicate rejection of the null
hypothesis at the( 1%) (5%) level (10% ) level

5.7 Non-Linearity
The existing literature has investigated the non-linear effects of climate change on economic
growth [Burke et al., 2015b, Dell et al., 2012]. In this study, we employed two distinct approaches
to explore non-linearity, including the quadratic term [Letta and Tol, 2019, Acevedo et al., 2020].
Again, we utilised a Cross-Sectionally Augmented Non-Linear ARDL model (CS-NARDL) to
study the relationship between climate change and total factor productivity.

This study revealed a statistically significant and negative impact of quadratic temperature
on TFP, consistent with Letta and Tol [2019]. The negative and significant value of the error
correction term suggests the presence of cointegration. Even CIPS Statistics for residual is
stationary, supporting cointegration and non-spurious result ( Table 7). The CS-NLARDL
methodology provides a novel approach for modelling the impact of temperature shocks on
log(TFP ) that accounts for asymmetry in the response. This implies that positive and negative
temperature shocks are not expected to affect TFP similarly. To capture this asymmetry,
we have created two variables, one for positive temperature shocks and another for negative
temperature shocks. These variables are computed through the use of partial sum decomposition
of temperature changes, as defined below:

yt = β+PosTempt + β−NegTempt + ut

where β+and β− are the associated long-run parameters and Tempt is a k×1 vector of regressors
decomposed as:

Tempt = Temp0 + PosTempt + NegTempt,
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where PosTempt and NegTempt sum processes of positive and negative changes in Tempt :

PosTempt =
t∑

l=1
∆PosTempl =

t∑
l=1

max (∆PosTempl, 0)

and NegTempt =
t∑

l=1
∆NegTempl =

t∑
l=1

min (∆NegTempl, 0)

∆log(TFP )i,t =ϕi [log(TFP )i,t−1 − θ1i(PosTemp)i,t − θ2i(NegTemp)i,t]

−
py−1∑
l=1

λl,i∆llog(TFP )i,t−1

−
px∑

l=1
β1l,i∆l(PosTemp)i,t

−
px∑

l=1
β2l,i∆l(NegTemp)i,t +

pT∑
l=0

γi,I z̄i,t + µi,t

(24)

with zt−l =
(
log(TFP i,t−l, (PosTemp)i,t−l, (NegTemp)i,t−l

)
.

The results of the CS-NLARDL model indicate a non-linear relationship between temperature
shocks and total factor productivity (TFP). Specifically, the impact of positive temperature
shocks on TFP is negative, while the impact of negative temperature shocks is positive, confirming
the presence of asymmetry. Moreover, the error correction term is negative and significant,
suggesting deviations from the long-run equilibrium are corrected over time. To assess the
presence of asymmetry between positive and negative temperature shocks, we utilised the Wald
test [Bahmani-Oskooee and Arize, 2019, Khatoon et al., 2022]. The results of this test, presented
in Table 7, indicate that we can reject the null hypothesis of symmetry in both the short
and long run, providing evidence for the absence of asymmetry between positive and negative
temperature shocks. Furthermore, the stationary residuals support the non-spuriousness of the
estimates and the presence of cointegration.

This study concludes that temperature does have a negative effect and tends to show an
inverse U-shaped impact on TFP across the entire sample. Letta and Tol [2019] do not observe
a significant non-linear relationship between temperature and TFP growth, in contrast to us.
Interestingly, Zhang et al. [2018b] found an inverted u-shaped relationship between temperature
and TFP in a micro-econometric study using data from 500,000 Chinese manufacturing firms
between 1998 and 2007.
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Table (7) Estimates of the Asymmetric Panel CS-ARDL
(1) (2)

Asymmetric CS-ARDL CS-ARDL with non linear term
Log(TFP) Log(TFP)

Error correction term -0.8049*** -1.1618***
Long run coefficient

Temperature(-ve) 0.0001
(0.0068)

Temperature(+ve) -0.0013
(0.0059)

Temperature 0.6837
(0.2870)

Temperature2 -0.0168**
(0.0086)

Short run coefficient
Temperature(-ve) -0.0034

(0.0047)
Temperature(+ve) -0.0040

( 0.0044)
Temperature 0.7379**

( 0.2855)
Temperature2 -0.0190**

(0.0074)
Long run assymetry

Temperature(-ve)/ Temperature(+ve) 0.71
Short run assymetry

Temperature(-ve)/ Temperature(+ve) 0.52
CIPS Statistics -8.129** -6.789 ***
Cointegration Yes Yes
CD Statistics -0.22 -0.43

R-squared (Mean Group) 0.31 0.40
Number of observation 474 609
Number of Countries 21 21

Notes: The dependent variable is log (Total factor productivity) CS-ARDL: Cross-sectional
autoregressive distributed lag of Chudik and Pesaran [2015]Ditzen [2021] CD: Cross-sectional dependence
test of Pesaran [2021]. CIPS is cross-sectionally augmented IPS of the residuals of long-run relationships.
() contains a standard error. (*** )(**) (*) indicate the level of significance at ( 1%) (5%) and
(10% ) level

5.8 Projected impact of temperature on TFP 2021-2100
We projected the future impact of climate change on the TFP by combining the estimated
coefficients (see model 1, Table 2) with the projection of climate change under different RCP
scenarios for the period 2021-2100. We assumed that the future impact of climate change on
TFP would respond similarly to our observed sample. The projected temperature level data
was obtained from the World Bank Climate Change Knowledge Portal, and we employed a
multi-model ensemble approach, which combines monthly data from 16 different models for
more accurate results. We observe 0.426 Degrees Celsius, 1.627 Degrees Celsius, 2.283 Degrees
Celsius and 4.4137 Degrees Celsius rise in temperature levels for RCP 2.6, RCP 4.5, RCP 6.0
and RCP 8.5 scenarios, respectively ( see Figure 2).
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Figure (2) Temperature under RCP Scenarios over 2021-2100

Table (8) TFP projections (%) over the period 2020–2099
Scenario 2021-2041 2041-2061 2061-2081 2081-2100

Level of log(TFP)
RCP 2.6 -1.255 -0.386 +0.2576 +0.032
RCP 4.5 -1.932 -1.771 -1.288 -0.2576
RCP 6.0 -1.3524 -2.02 - 2.32 -1.642
RCP 8.5 -2.6404 - 3.70 -3.77 -4.089

Source: Authors’ calculation based on data drawn from the World Bank Climate Change Knowledge
Portal
Notes: Positive (+) and Negative(-) sign indicates the magnitude of increase or decrease of the level of
TFP in 2021-2100. RCP 2.6 - Low Emission Scenario, RCP 4.5 RCP 6.0- Intermediate emission scenario,
RCP 8.5- Business as usual scenario

Using the estimated parameters, we find that the level of TFP decline under the RCP 8.5
(Business as usual) Scenario is the highest, registering at 14.2% points. The declines in TFP
levels under RCP 2.6, RCP 4.5, and RCP 6.0 account for 1.37% points, 5.15% points, and 7.34%
points, respectively. In the low-emission scenario, the countries would experience a decline in
TFP of 1.25% points and 0.38% points, respectively, during the periods 2021-2041 and 2041-2061
and an increase in TFP of 0.25% points and 0.03% points, respectively, in the years 2061-2081
and 2081-2100. Similar trends are shown by the intermediate emission scenarios RCP 4.5 and
RCP 6.0. According to the RCP 6.0 Scenario, the TFP declines by 1.352% points between
2021 and 2041, 2.02% points between 2041 and 2061, 2.32% points between 2061 and 2081, and
1.642% points between 2081 and 2010. In the “business as usual” scenario, we observe a sharp
reduction in TFP, with declines in TFP of 2.64% points in the period 2021-2041, 3.70% points
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in the period 2041-2061, 3.77% points in the period 2061-2081, and 4.084% points in the period
2081-2100.

Figure (3) TFP projections (in percentage) over the period 2020–2099 (Linear
Projection Estimate)

(a) RCP 2.6 Low Emission Scenario (b) RCP 4.5 Intermediate emission scenario

(c) RCP 6.0 Intermediate emission scenario (d) RCP 8.5 Business as usual scenario
Source: Authors’ calculation based on data drawn from the World Bank Climate Change Knowledge
Portal; Note: Figures are percentage changes of the TFP in 2021-2100. RCP 2.6 Low Emission Scenario,
RCP 4.5 RCP 6.0 Intermediate emission scenario, RCP 8.5 Business as usual scenario

The future projection of TFP losses due to temperature shocks reveals that the impact of
temperature is not uniform across countries under different RCP Scenarios. Specifically, under
the RCP 2.6 Scenario, we observe a decline in TFP losses from 2080 to 2100 for developed
emerging economies. In contrast, under the business-as-usual scenario, we find adverse effects
of temperature shocks in TFP losses, predominantly affecting countries in hot climatic zones.
Additionally, we also used projection in conjunction with the estimate of the squared term (see
Table 7) in the non-linear estimates. We found similar results (See Online Appendix Table A5
and Figure A3). Similarly, Moyer et al. [2014] and Dietz and Stern [2015] demonstrated that
small TFP damages significantly alter consumption growth paths, the social cost of carbon and
future growth impacts.
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6 Conclusion
This study offered a simple conceptual framework that explained the rise of global temperature
from growing carbon emissions and fossil fuel consumption, dampening the total factor productivity
by damaging in three channels - losses in ecology, labour and capital productivity. Further, it
explored the impact of climate change on TFP using the CS-ARDL model, which is much
better than the existing models and offers results closer to the scientific climate model. This
model addresses endogeneity, cross-sectional dependence and heterogeneity, producing better
estimates. The findings suggest a significant negative effect of temperature rise on the TFP.
In the long term, a degree Celcius increase in the mean temperature reduces of TFP by 3.22%
points. The robustness of the results has been verified with a set of alternatives. This study
overcomes the limitations of current damage functions used in IAM projections. These functions,
which calculate the economic impacts of climate change, are often static and fail to consider the
dynamic effects of temperature changes on macroeconomic growth. Additionally, integrating
long-run estimates into IAMs can improve understanding of the long-term impacts of climate
change on welfare [Chang et al., 2023, Moyer et al., 2014, Dietz and Stern, 2015, Tol, 2022].
This further highlights that the TFP (Total Factor Productivity) losses caused by temperature
changes can be mitigated but requires greater investments in the research and development
sector and encouragement to enhance better energy efficiency and green technologies.

We also find labour productivity, capital productivity, and reduction in ecosystem services
as the potential channels through which climate change influences the TFP. Such transmission
dynamics of temperature change impacting TFP are vital for effective adaptation policies,
enabling policymakers to allocate resources efficiently to vulnerable sectors. This paper conveys
that an emerging country cannot sustain growth by ignoring mitigation strategies to control
the damage done by the temperature rise.

This apart, climate change has a heterogeneous impact, with greater adverse effects in less
developed than relatively developing emerging countries. So, temperature hurts TFP across
the entire sample, with poorer countries being more severely affected than richer ones and the
extreme climatic zones being more affected than the moderately hot ones. Letta and Tol [2019]
do not observe a significant non-linear relationship between temperature and TFP growth, in
contrast to us.

This study highlights important policy recommendations and insights on the future implications
of climate change in emerging markets. We project the potential future impact of climate change
on the TFP using temperature projection data drawn from the climate change knowledge
portal combined with our estimated parameter estimate. Under the high emission scenario,
TFP declines from 2.6 to 4.0% points. Our findings indicate climate change will greatly harm
less developed emerging markets, necessitating substantial climate funds to support effective
adaptation and mitigation policies. Policymakers should prioritise raising funds for these
purposes, seeking commitments from major international banks such as the European Central
Bank, International Monetary Fund and World Bank. Countries can take several actions to
address climate change, including enhancing climate prediction accuracy, promoting energy
conservation, supporting green technologies in high-energy-consuming industries, investing in
technologies for extreme climate events, and providing subsidies to the research and development
sector.

However, it is essential to acknowledge the limitations and caveats of this study. TFP
calculations are based on the Solow residual method, which may be subject to measurement
errors. Unfortunately, no other comprehensive TFP datasets available at the country level cover
a similar time frame for the derivation [Letta and Tol, 2019]. Additionally, it is worth noting
that potential future climate change, especially under extreme climate scenarios, could lead
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to a significant rise in sea level, which would be an unprecedented historical event. Future
climate impact projections must be suitably discounted to properly account for adaptation
and mitigation strategies. Future projection in this study is premised on the assumption that
the historical relationship will stay the same. Future research should focus on identifying the
potential empirical nexus between climate change and ecosystem services.

To address the asymmetric impacts of climate change through a combination of adaptation
and mitigation measures, the strategies for climate finance, green technology, and adherence
to the Paris Climate Action Plan require proper planning in terms of priorities for promoting
sustainable total factor productivity (TFP) and ensuring a thriving economy for future generations.
Failing to take decisive action would further add to the risks of irreversible environmental
damage and economic instability and make it imperative for countries to work together to
combat the challenges posed by climate change. The benefits of proactive climate action
far outweigh the costs, as it leads to a healthier planet, enhanced resilience, and sustainable
economic development.
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Table (A.1) Addition robustness result with fixed effect, temperature volatility and
temperature anomalies

Log(TFP) Log(TFP) Log(TFP)
Panel Fixed effect CS-ARDL CS-ARDL

Mean Temperature -0.0162
( 0.0123)

Temperature Volatility -0.03171
(0.0234)

Temperature Anomalies -0.4146*
(0.0085)

Error correction term -1.4242*** -1.1989***
Economic Indicator

Precipitation
Time fixed effect
CD Test statistics -2.955** 0.73 -2.09*

Number of observation 609 609 609
Number of Countries 21 21 21

Notes: CS-ARDL: Cross sectional autoregressive distributed lag of Chudik and Pesaran [2015]Ditzen
[2021] CD: Cross sectional dependance test of Pesaran [2021] - The CD statistics has null hypothesis
of no cross sectional independance in the residual of estimated model. () contains a standard error.
(*** )(*) (**)Indicate rejection of the null hypothesis at the( 1%) (5%) level (10% )
level Temperature volatility - the maximum temperature in year t - the minimum temperature in year
t-1 , Temperature Anomalies - (Temperature- long run average temperature)/ Standard deviation of
temperature
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Table (A.2) Temperature shocks and Sectoral impact
(1) (2) (3) (4)

Manufacturing Agriculture Natural Resource rent Cereal yield
CS-ARDL CS-ARDL CS-ARDL CS-ARDL

Regressor Sectoral impact Prices
Mean Temperature -0.2011 -0.2056 0.3257 -128.31***

(0.3961) (0.2743) (0.3138) (39.7184) )
Error correction term -0.9226*** -1.1557*** -0.9899*** -1.3061***

CIPS Statistics -5.466 -7.182 -9.849*** -9.877***
Cointegration Yes Yes Yes Yes
CD Statistics -2.08* -2.12** 4.12*** -2.27**

R-squared (Mean Group) 0.19 0.35 0.60 0.42
Number of observation 609 609 609 609
Number of Countries 21 21 21 21

Notes: CS-ARDL: Cross sectional autoregressive distributed lag of Chudik and Pesaran [2015]Ditzen [2021] CD: Cross-sectional dependence test of Pesaran
[2021]CIPS is cross-sectionally augmented IPS of the residuals of long run relationship .() contains a standard error. (*** )(**) (*) indicates the level
of significance at the ( 1%) (5%) (10% )
Cereal yield-Cereal Yield (kg per hectare) Manufacturing -Manufacturing value-added s % of GDP Agriculture -Agricultural value-added as % of GDP
Natural resources rent-Total natural resources rents (% of GDP)
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A.1 Summary of Studies on the impact of temperature on Total factor productivity

Table (A.1) Summary of Studies on the impact of temperature on Total factor productivity
Study Study Type Climate Change measure Outcome Variable Period Estimation Method Conclusion

Dell et al. [2014] Empirical(Cross-Country) Mean Temperature Growth and level 1950-2003 Panel Fixed effect,Linear temperature is affecting growth
rates, not just income levels

Hsiang et al. [2013] Empirical(Cross-Country) Annual Mean Temperture GDP 1970-2006 Panel Fixed effect,Linear National output falls 2.5 percent per 1°C warming

Burke et al. [2015] Empirical(Cross-Country) Annual Mean Temperture GDP per capita 1960-2010 Country Fixed effect Non-linaer relationship

Kahn et al. [2021] Empirical(Cross-Country), Long term temperture anamolies real per capita GDP 1960-2014 Fixed effect , HPJ-Fixed effect, ARDL model
persistent increase in average global
temperature by 0.04°C per year, in the absence of mitigation policies, reduces world real GDP per
capita by 7.22 percent by 2100

Acevedo et al. [2020] Empirical(Cross-Country) fluctuations in temperature real per capita GDP 1950–2015 Local linear Projection, Linear
a rise in temperature lowers per
capita output in countries with high average temperatures, in both the short and medium
term,

Dietz and Stern [2015] Theoretical Model Allows temperature affect TFP
assumed climate change as an endogenous damage driver,
particularly for TFP, and found a rapid increase in the social cost of carbon if the global mean
temperature is above the industrial leve

Moore and Diaz [2015] Theoretical Model DICE Model(Integrated Assesment Model)
found allowing climate
change to directly affect economic growth via the impact on TFP and investment, which, in
turn, increases the social cost of carbon

Ortiz-Bobea et al. [2018] Empirical(USA)-Micro Avg Temp and Avg Rain Estimation of Production Function 1960-2004 Bayesian Method
weather shocks accelerated productivity growth in 12 out of 16 states by
the equivalent of 11.4% of their group-average TFP growth, but slowed down
productivity by the equivalent of 6.5% of the group-average TFP growth in the other four states

Letta and Tol [2019] Empirical(Cross-Country) fluctuations in temperature TFP Growth rate 1960-2006 Fixed effect, Linear

results show a negative relationship only exists in
poor countries, where a 1 °C annual increase in temperature decreases TFP growth rates by
about 1.1–1.8 percentage points, whereas the impact is indistinguishable from zero in rich
countries.it basically confirms the results of Dell et al. (2012) and rejects the conclusions of Burke
et al. (2015). We also show that the assumptions of Dietz and Stern (2015), Moore and Diaz
(2015) and Moyer et al. (2014) have no empirical grounding.

Kumar and Khanna [2019] Empirical(Cross-Country) Annual Mean Temperture TFP Growth rate 1950-2014 Stochastic Frontier Analysis an increase in temperature by 1 degree Celcius reduces
average efficiency growth while increasing its uncertainty, Heterogenous impact
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A.2 Panel unit root test

A.2.1 Panel unit root test

In the first generation panel data unit root test , we estimate following uni-variate model

Yit = µi + ϕiYit−1 + ϵit (1)

or
∆Yit = µi + ρiYit−1 + ϵit (2)

where i= 1,2,.... N represents cross-sectional units.
t = 1,2,.....,T represent time series observations and µi is fixed effects. Null Hypothesis

is
H0 : ρi = 0

The main difference between different models is the level of heterogeneity. In our paper,
we have used IPS and LLC tests.

A.2.2 Levin- Li - Chu test

Levin, Lin, and James Chu [2002] test assumes that all panels have a common auto-
regressive parameter. In order to augment the model to take serial correlation into
consideration, Levin, Lin, and James Chu [2002]uses lags of the dependent variable. We
use the mean corrected form of equation 1.

Ŷit = ϕiŶit−1 + ϵit (3)

Ŷit = Yit − Ȳi

Given the initial values and assumption that errors are independently and identically
distributed.

E(ϵit) = 0

E(ϵitϵjs) = σ2
i ......∀i = j, t = s.

E(ϵitϵjs) = 0......∀i ̸= j, t ̸= s.

In Levin, Lin, and James Chu [2002], the null hypothesis that each individual time series
contains a unit root is to be tested against the alternative hypothesis that each time

4



series is stationary.
H0 : ρi = ρ = 0

HA : ρi = ρ < 0

for all i = 1, . . . N, with auxiliary assumptions about the individual effects µi = 0 for all
i = 1, . . . N under H0.

We follow three steps. In Step one augmented dickey fuller regression is run on each
cross-section to obtain residuals and then these residuals are adjusted to correct individual
specific variances. Once the optimal lag order is determined two auxiliary regression is
run to get residuals and these residuals are standardised to control for different variances
across ’i’. In step two, We transform the residual and these residuals using orthogonalized
transformation[Arellano and Bover, 1995]

e∗
it =

√
T − t

T − t + 1 .(ẽit − ˜eit+1 + ... + ˜eit+1

T − 1 )

and with intercept and trend

v∗
it−1 = ( ˜vit−1 − ṽi1 − T − 1

T
ṽiT )

with intercept and no trend
v∗

it−1 = ( ˜vit−1 − ṽi1)

with no intercept and no trend
v∗

it−1 = ( ˜vit−1)

Finally in step 3 , the pooled regression with NT ∗ observations

e∗
it = ρv∗

it−1 + ϵit (4)

where T ∗ is the average number of observations per individual panel. T ∗ = T − P̄ − 1
P̄ is the average lag order of the individual ADF regression. Pooled regression is run to
obtain t statistics for H0 = 0 which follows a standard normal distribution and we don’t
require any kernel computation. An alternative hypothesis for Levin, Lin, and James
Chu [2002] is the autoregressive process for all cross sections is stationary. It requires
pooling of the observations before forming the pooled statistics.
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A.2.3 Im–Pesaran–Shin test

Im, Pesaran, and Shin [2003] is more flexible and computationally simple. Im, Pesaran,
and Shin [2003] relax the assumptions of common autoregressive parameters. Starting
point of the IPS test is the set of Dickey fuller regressions. Im, Pesaran, and Shin [2003]
test allows for heterogeneous coefficient of yit−1. ADF regression in IPS

Z∆Yit = Zeµi + ρiZYit−1 +
p∑

j=1
βijZ∆Yi,−j + Zϵit

It is a set of ADF test. Null is the presence of unit root in series for all cross sections,
the alternative allows for N1 out of N individual series to have a unit root.

This procedure is conducted in two steps. First, the ADF regression is run for each
cross-section and t statistics are obtained for every cross-section. We obtain the IPS t-bar
statistics as the average of the individual ADF Statistics as

t̄ = 1
N

N∑
i=1

tρi

When tρi
is the individual t statistics and H0 : ρi = 0 is for all i. Im, Pesaran, and Shin

[2003] calculated statistics critical value for t̄ for different N and T dickey fuller regression
containing intercept only or intercept and linear trend. However, if ρi is not zero for some
’i’ in general case thenIm, Pesaran, and Shin [2003] shows that the following standardised
t bar has an asymptotic distribution.

The values of E(tiT /ρi) and V ar(tiT /ρi) have been computed using Im, Pesaran, and
Shin [2003] via simulations for different values of T and ρi’s

A.2.4 CADF unit root test

We also conducted Pesaran [2003] cross-sectionally augmented Dickey fuller test (CADF)
in our analysis. Pesaran suggests the other way than assuming homogeneity of cross-
sectional and without requiring balanced panel data. According to Pesaran [2003] Pesaran
[2007], one way of accounting for cross-sectional sectional dependence is to augment the
ADF regression with lagged cross-sectional mean and its first difference to capture the
cross-sectional dependence that is due to the single factor loading model. The simple
CADF regression is

∆Yit = αi + ρ∗
i Yit−1 + d0Ȳit−1 +

p∑
j=1

.j + 1∆Yt−j +
p∑

k=1
ck∆Yi,t−k + ϵit
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where we choose a number of lags depending on the information criteria. Once we run
the CADF regression for each panel, we obtained CADF statistics for the ith cross-section
unit and we take an average of all these t statistics to obtain the CIPS statistics.

CIPS = 1
N

N∑
i=1

CADF

Due to the presence of cross-sectional averages, it makes limiting distribution of these
tests different from dickey fuller distribution. Hence Pesaran used a truncated version of
Im et al. [2003] test to avoid the problem of moment calculated.
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Table (A.2) Panel unit root test result
First generation unit root test Second generation unit root test

IPS (c) IPS (c,t) LLC (c) LLC (c,t) CADF lag(0) CADF lag(1) CADF lag(2)
Variables p-value p-value -p-value

Total factor productivity 2.1151 -1.9127** -0.9173 -0.6272 1.9810 1.6570 0.7780
(0.9828) (0.0279) 0.1795 0.2653 0.9760 0.9510 0.7820

∆ Total factor productivity 10.8564*** -11.3223*** -7.6069*** -7.0219*** -11.9290*** -6.1050*** -4.0920***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Mean Temperature -7.1131*** -12.6674*** -6.9556*** -12.1421*** -13.5000*** -7.3510 *** -7.5660***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Maximum Temperature -7.9070*** -11.7831*** -5.3834*** -12.1421*** -11.870** -5.841 *** -5.006***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Heat Degree Days -9.4135*** -12.6674*** -6.6075*** -8.0920*** -14.151** -8.535 *** -6.068***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Precipitation -11.6903*** -12.6324*** -6.7655*** -5.8694*** -15.680** -5.628 *** -2.927***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002)

Trade openness -1.1591 -3.8235*** -2.4651* -2.1807* -0.887 -1.009 -1.148
(0.1232) (0.001) (0.006) (0.014) (0.188) (0.156) (0.875)

∆ Trade openness -12.4207*** -12.7212*** -10.857*** -2.766*** -2.134
(0.000) (0.000) (0.000) (0.003) (0.984)

Human Capital -3.6227 -2.1873* -1.3937** -1.9033* 0.328 -1.009 1.148
(0.9999) (0.0144) (0.0068) (0.0146) (0.188) (0.156) (0.875)

∆ Human Capital -8.5126*** -8.6833*** -10.857*** -2.766*** 2.134***
(0.000) (0.000) (0.000) (0.000) (0.001)

Institutional quality -1.7083* -3.3161*** -2.8265* -0.9507 -0.919 -2.196 -2.382***
(0.0438) (0.000) (0.002) (0.170) (0.179) (0.014) (0.000)

Foreign Direct Investment -5.7878*** -6.6931 *** -3.9650*** -2.7652* -7.236** -4.658*** -1.829*
(0.000) (0.000) (0.000) (0.002) (0.000) (0.000) (0.034)

Notes: c indicates unit root test without intercept and c(t) indicates that we allow for different intercepts (and time trends) for each country. Large
negative values lead to the rejection of a unit root in favour of (trend) stationarity. We tested for both first generation unit root test which assumes
cross-sectional Independence and second generation unit root test which assumes cross-sectional dependence. (*** )(*) (**)Indicate rejection of the
null hypothesis of a unit root at the( 1%) (5%) level (10% ) level
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Table (A.3) Summary Statistics- Countrywise
Country TFPGSFA TFPPenn GDP Employment Temperature volatility Precip HC Tradepen Inf GCN FDI

Argentina 0.44 1.00 3.35 15.58 13.02 596 93.59 0.28 10.36 13.14 2.22
Brazil 0.40 1.11 1.24 75.92 10.660 1758 100.38 0.23 295 19.08 2.62

Bulgaria .40 1.05 3.25 3.24 10.02 628 93.8 .997 67.81 17.37 6.27
Chile .29 1.04 1.43 6.15 10.4 537.1 91.05 .625 6.14 11.52 6.07
China 0.12 0.88 4.26 748.1 11.9 610 59.92 0.426 4.11 15.08 3.43

Colombia 0.38 1.00 1.81 16.24 9.26 2629 82.2 0.361 10.96 15.12 3.15
Egypt 0.45 1.06 1.45 19.31 14.63 33 77.6 0.487 10.21 11.25 2.34
India 0.32 0.79 1.06 432.4 11.85 1049 57.31 0.35 7.44 10.85 1.19

Indonesia 0.49 0.90 4.46 97.54 9.46 2581 64.15 0.54 9.46 8.40 1.19
Iran 0.34 1.03 2.70 18.61 14.13 208.4 75.84 0.44 18.99 11.69 0.64

Malaysia 0.44 0.91 1.72 10.44 8.20 3125 76.12 1.72 2.73 12.28 4.13
Mexico 0.40 1.04 8.17 40.96 15.33 765 78.38 0.54 10.07 10.39 2.49

Morocco 0.56 0.88 6.68 9.92 12.48 301 49.05 0.65 2.57 17.83 2.30
Nigeria -0.20 0.83 2.14 45.22 11.90 1154 37.44 0.37 18.5 4.24 1.74

Peru 0.41 0.96 1.02 12.29 12.25 1540 83.66 0.41 280.3 10.78 3.63
Philippines 0.24 0.83 1.52 31.63 8.4 2469 79.59 0.74 5.7 10.58 1.65

Russia 0.37 0.84 9.61 69.45 9.7 465 92.73 0.54 67.65 17.96 1.78
South Africa 0.54 1.06 2.35 14.79 14.97 455.9 90.44 0.53 6.9 19.40 1.23

Thailand 0.43 0.78 2.41 34.17 10.28 1559.6 73.21 1.13 3.07 13.71 2.37
Turkey 0.43 1.006 4.90 21.65 11.63 574.5 81.56 0.464 37.35 13.00 1.208
Ukraine 0.48 0.82 9.17 20.70 8.67 560.9 96.64 0.93 245.45 19.08 2.87
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A.2.5 Trends in Productivity and temperature

Figure (A.2) Trends in Total factor productivity
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Figure (A.3) Trends in annual variation in temperature
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A.3 Panel cointegration approach

A.3.1 Panel Cointegration test

If the linear combination of the I(1) Series is stationary, we say that process is cointegrated.
Cointegration means that series move together and it has a long-term relationship. We
used the following panel data model for I(1) dependant variable Yit where i= 1,....N and
t = 1....T denotes time

yit = X
′

itβi + Z
′

itγi + ϵit (5)

βi represent cointegrating vector . Zit controls for panel-specific mean and panel-specific
linear trend. Xit each of the control vector is of order I(1).

A.3.2 Pedroni Panel cointegration test

It is a residual-based panel cointegration test. Pedroni allows for individual heterogeneous
fixed effects and trends with two types of test statistics. Panel test statistics(within
dimension based) are obtained by pooling the residual of individual regression is done
along within the dimension of the panel. Group mean statistics were obtained by pooling
the statistics between dimensions. We obtained seven test statistics. The Pedroni panel
cointegration test is based on the regression equation for our analysis.

TFPit = αi + δit + βiXit + ϵit

where i = 1.....N and t = 1......T . T is the number of observations over time . N denotes
the number of countries in the panel. TFPit is the total factor productivity for the ith
country in period t. Xit is the explanatory variable determining productivity for country
i. βi is the slope coefficient (cointegrating vector) allowed to vary across cross-sections so
that cointegrating vectors do not vary over time. αi is country specific fixed effect and δi

is the detrministic regression.
Above regression is estimated by OLS individually for each cross-section. Once we

estimate the residual from above regression.

L̂2
11i = 1

T

T∑
t=1

ξ̂2
it + 2

T

Mi∑
s=1

(
1 − s

Mi + 1

)
T∑

t=s+1
ξ̂itξ̂i,t−s (6)

Pedroni defined seven test statistics using thses residual. Panel v Statistics

T 2N
3
2 Zv̂NT = T 2N

3
2

(
N∑

i=1

T∑
t=1

L̂−2
11iê

2
i,t−1

)−1

(7)
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Panel ρ Statistics

T
√

NZρ̂NT −1 = T
√

N

(
N∑

i=1

T∑
t=1

ê2
i,t−1

)−1 N∑
i=1

T∑
t=1

(êi,t−1∆êit − λ̂t) (8)

Panel t Statistics(Semi-parametric)

ZtNT = (σ2
NT

N∑
i=1

T∑
t=1

ê2
i,t−1

)− 1
2 N∑

i=1

T∑
t=1

(êi,t−1∆êit − λ̂t) (9)

Panel t Statistics (Parametric)

Z∗
tNT =

(
s∗2

NT

N∑
i=1

T∑
t=1

L̂−2
11iê

2
i,t−1

)− 1
2 N∑

i=1

T∑
t=1

L̂−2
11iêi,t−1∆êit (10)

Group ρ Statistics

TN− 1
2 Z ρ̂NT −1 = TN− 1

2

N∑
i=1

( T∑
t=1

ê2
i,t−1

)−1 T∑
t=1

(êi,t−1∆êit − λ̂t)
 (11)

Group t statistics (Semi Parametric)

N− 1
2 ZtNT = N− 1

2

N∑
i=1

(σ̂2
i

T∑
t=1

ê2
i,t−1

)− 1
2 T∑

t=1
(êi,t−1∆êit − λ̂t)

 (12)

Group t statistics (Parametric)

N− 1
2 Z

∗
tNT = N− 1

2

N∑
i=1

(ŝ∗2
i

T∑
t=1

ê2
i,t−1

)− 1
2 T∑

t=1
êi,t−1∆êit

 (13)

with
λ̂i = 1

T

Mi∑
s=1

(
1 − s

Mi + 1

)
T∑

t=s+1
ûitûi,t−s ,ŝ2

i = 1
T

T∑
t=1

û2
it (14)

σ̂2
i = ŝ2

i + 2λ̂i ,σ̂∗2
NT = 1

N

N∑
i=1

L̂−2
11iσ̂

2
i (15)

ŝ∗2
i = 1

T

T∑
t=1

û∗2
it , ŝ∗2

NT = 1
N

N∑
i=1

ŝ∗2
i (16)

To obtain the panel v and parametric t-test statistics, we use difference regression
ignoring the deterministic trend term of equation 5. Using these residuals, long-run
variance is calculated. For calculating semi parametric statistics, we test the regression
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êit = ρêit−1+ϵit where ϵit is obtained from the equation 5. The parametric test statistics(panel
t and group t) are obtained with the help of the residual ϵit from equation 5. Using
regression equation êit = ρêit−1 +∑T

i=1 γiêit−1 + ϵit than simple and long run variance is
calculated.

The first four statistics are obtained by adding the numerator and denominator over
the N cross section individually. Between-dimension statistics are calculated by obtaining
the ratio of each time series and then computing the standardised sum of the entire ratio
over the N dimension of the panel.

Table (A.4) Panel cointegration test result
Pedroni Panel co-integration test Kao Panel co-integration test

Test Statistics Test Statistics
Test Statistics Statistics P value Test statistics Statistics p-value

Modified Philip perron test -1.0789 0.1403 Modified dickey fuller-t 2.2109 0.0135
Philip perron t -3.0379 0.0012 Dickey fuller-t 2.1512 0.0157

Augmented dickey fuller t -2.8827 0.002 Augmented dickey fuller t 2.1923 0.0142
Unadjusted modified dickey fuller t 1.2958 0.0975

Unadjusted dickey fuller t 1.1252 0.1303

Notes: The null hypothesis for all tests is that there is no cointegration. The Kao and Pedroni tests’
alternate hypothesis is that the variables are cointegrated in all panels . To avoid over-parametrization
and the resulting loss of power, only one lag was included in the tests. In the Model, We test
the cointegration between total factor productivity and mean temperature. (*** )(*) (**)Indicate
rejection of the null hypothesis at the( 1%) (5%) level (10% ) level
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B Additional results on projected impact of temperature
on TFP 2021-2100
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Table (A.5) Level of TFP projections over the period 2020–2099(Non-linear projection
estimate)
Scenario 2021-2041 2041-2061 2061-2081 2081-2100
Levels of log(TFP)
RCP 2.6 -0.6552 -0.2016 0.1344 0.00672
RCP 4.5 -1.00296 -0.924 -0.672 -0.1344
RCP 6.0 -0.69888 -1.0584 -1.2096 -0.86856
RCP 8.5 -1.373736 -1.932 -1.9656 -2.14368

Notes: Positive (+) and Negative(-) sign indicates the magnitude of increase or decrease of the level of
TFP in 2021-2100. RCP 2.6 - Low Emission Scenario, RCP 4.5 RCP 6.0- Intermediate emission scenario,
RCP 8.5- Business as usual scenario

Figure (A.3) Level of TFP projections over the period 2020–2099(Non-Linear Projection
Estimate)

(a) RCP 2.6 - Low Emission Scenario (b) RCP 4.5 Intermediate emission scenario

(c) RCP 6.0- Intermediate emission scenario (d) RCP 8.5- Business as usual scenario

Magnitude of increase or decrease of the level of TFP in 2021-2100. RCP 2.6 - Low Emission Scenario,
RCP 4.5 RCP 6.0- Intermediate emission scenario, RCP 8.5- Business as usual scenario
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C Literature on impact of Human capital, trade openness,
Institutional quality and total factor productivity

C.1 Trade openness

There is a significant body of literature suggesting that countries that are more open to
trade are better positioned to benefit from technology diffusion. By fostering international
exchange and exposing nations to foreign technology, trade openness can stimulate technological
innovation and improve allocative efficiency. The research conducted by Miller and
Upadhyay provides empirical support for this view, as their study found a positive
relationship between trade openness and economic growth. Furthermore, the Melitz
model, which examines the impact of trade on productivity, suggests that greater exposure
to trade can lead to welfare gains.

C.2 Human Capital

According to [Islam et al., 2010], a study conducted on 99 countries, human capital has a
positive impact on Total Factor Productivity (TFP) growth. This finding is corroborated
by the results of [Wei and Hao, 2011], who also found a positive relationship between
human capital and TFP growth.

C.3 Institutional Quality

The quality of institutions can have a significant impact on the economic incentives within
a country. Specifically, a strong property rights system can encourage individuals to invest
in physical and human capital, leading to increased output. Therefore, as institutional
quality improves, productivity is likely to rise. This relationship between institutions and
economic growth has been highlighted in the influential paper by Rodrik et al. [2004].
Additionally, several researchers have examined the relationship between institutional
quality and economic development [North and Thomas, 1973, Law et al., 2013, Venard,
2013, Azam and Emirullah, 2014, Karimi and Heshmati Daiari, 2018]. North [1990] has
argued that the institutional framework can create incentives and foster an environment
conducive to economic growth. Acemoglu, Johnson, and Robinson [2004] also emphasised
the importance of economic institutions for productivity.
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C.4 foreign direct investment (FDI)

The inflow of foreign direct investment (FDI) has been shown to contribute to technology
diffusion [Findlay, 1978] and technology spillover [Blalock and Gertler, 2009], which can
affect the growth of total factor productivity (TFP) in host countries. Empirical studies
have consistently found a positive relationship between FDI inflows and economic growth
[Azman-Saini et al., 2010]. However, the impact of FDI on TFP growth remains a topic of
debate. While some studies have found no significant impact [Alfaro et al., 2009], others
have reported a negative relationship [De Mello, 1999]. Yet other studies have found a
positive association between FDI and productivity growth [Woo, 2009, Baltabaev, 2014].
The mixed results suggest that the relationship between FDI inflows and TFP growth
may depend on specific factors and contexts.
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