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Sudhir A. Shah∗

April 29, 2024

Abstract

We propose an asset’s money-metric value as the appropriate repre-
sentation of its subjective value to an investor. This value is expressed
in monetary terms and is invariant across equivalent utility representa-
tions of the investor’s preference. The ordering of money-metric values
across assets matches the investor’s preference ordering over the assets.
The money-metric value of a risky asset is inversely related to the in-
vestor’s risk aversion, while the money-metric value of a risk-free asset
is uniform across preferences with comparable risk-aversion. Finally,
an asset’s arbitrage-free market price is the sum of its money-metric
value and the investor’s willingness-to-pay for fully de-risking the asset.

JEL classification: G11, G12
Key words: money-metric asset valuation, arbitrage-free prices, risk

aversion

1 Introduction

Let an asset be represented by a probability measure over a set of out-
comes. While our narrative will interpret outcomes as cash-flows over time,
our model is not tied to this interpretation. An investor’s (von Neumann-
Morgenstern) utility defined over the outcomes generates her expected utility
from an asset, which is a subjective hedonistic valuation, while the asset’s
market price is an objective measure of its exchange value to a price-taking
investor. We propose a hybrid of these valuation methods. Given an asset
and asset prices, there may be a cheaper asset that yields the investor an
expected utility that meets or exceeds the expected utility from the given
asset. Accordingly, the least cost of replicating or exceeding the expected
utility from a given asset will be called its money-metric value.

Consider an investor whose utility u is defined over the admissible out-
comes for that investor and assets whose supports are confined to these ad-
missible outcomes. Asset µ’s money-metric value to the investor is M(µ, u),
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which depends on the investor’s expected utility function U(., u) defined
over the assets and the market prices of assets generated by a function P .
Money-metric valuations have the following desirable properties:

(a) M(µ, u) assigns a monetary value to the asset, which depends on the
investor’s preference but is invariant across its equivalent utility rep-
resentations. This monetary denomination makes M(µ, u) and P (µ)
comparable.

(b) M(µ, u) relates to P (µ) in a simple, precise, and economically mean-
ingful and revealing way. Specifically, Theorem 3.3 shows that P (µ)
is the sum of M(µ, u) and the investor’s willingness-to-pay for fully
de-risking asset µ. An asset’s riskiness refers to the random deviations
of its cash-flows from its ‘mean’ risk-free cash-flow. Accordingly, de-
risking the asset refers to the elimination of these deviations, thereby
leaving the investor with the mean cash-flow.

(c) For assets µ and λ, Theorem 3.4 shows that the ordering of M(µ, u)
and M(λ, u) matches the ordering of U(µ, u) and U(λ, u).1

(d) Theorem 3.5 shows that, if asset µ is risky, then M(µ, .) varies inversely
with the risk aversion of the given preferences, and if µ is risk-free, then
M(µ, .) is uniform for preferences with comparable risk aversion.

In contrast to properties (a) and (b) of money-metric valuations, hedonic
valuations are not denominated in monetary units and therefore they cannot
be compared sensibly with market prices. Unlike property (d), hedonic
valuations are not meaningfully comparable across preferences since they
are determinate only up to increasing affine transformations. Contrasted
with properties (c) and (d), market prices are not systematically related to
hedonic valuations and individual preferences respectively.

A key assumption for our results is that the given price function P is
continuous and generates arbitrage-free asset prices.2 This yields the useful
facts recorded in Lemma 3.1, namely, the prices of risk-free assets generate
an increasing and continuous linear functional p on the space of all potential
outcomes and the price of an admissible asset is the expectation of functional
p with respect to the asset’s distribution.

The rest of this paper is organised as follows. Section 2 prepares the
technical ground, Section 3 derives the substantive results, and Section 4
sums-up the results. The lemmas are proved in the Appendix.

1For a suitable u, an appropriate stochastic dominance ordering of µ and λ implies the
ordering of U(µ, u) and U(λ, u), which in turn implies the ordering of M(µ, u) and M(λ, u);
see Strassen [14], Shaked and Shanthikumar [13], and Shah [11] for characterisations of
various notions of stochastic dominance that are relevant in Section 2’s setting.

2Arbitrage-free asset pricing theory starts with Black and Scholes [1]. Early extensions
include Cox and Ross [2], Ross [9], Merton [6], and Harrison and Kreps [4]. Kreps [5]
initiates the study of the relationship between equilibrium and arbitrage-free prices.
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2 Technical preparation

The following specifications hold throughout this paper.

1. X is a metrisable locally convex topological vector space and X∗ is
the set of continuous real-valued linear functionals on X. X∗ is a total
family of linear functionals on X, i.e., if x ∈ X and h(x) = 0 for every
h ∈ X∗, then x = 0.3 B(X) is the Borel σ-algebra on X. ≥ is a
preordering on X. For x, y ∈ X, we say that x > y if x ≥ y and x 6= y.

The leading interpretation X will be as path-spaces of random processes.

2. O is a compact subset of X with |O| > 1. O is given the subspace
topology derived from X. The Borel σ-algebra on O, namely B(O),
coincides with the trace σ-algebra generated on O by B(X), i.e., E ∈
B(O) if and only if E = O ∩ F for some F ∈ B(X). Since O ∈ B(X),
it follows that B(O) ⊂ B(X).

We interpret O as the set of admissible outcomes for the investor
that meet some exogenous desiderata, say, bounds on cash-flows; elements
in X \O may be admissible outcomes for other investors.

3. C(X) (resp., C(O)) is the set of continuous and bounded real-valued
functions defined on X (resp., O).

4. ∆(X) (resp., ∆(O)) is the set of probability measures on (X,B(X))
(resp., (O,B(O))), which is given its weak* topology.4 We extend
µ ∈ ∆(O) to T (µ) ∈ ∆(X) by setting T (µ)(B) = µ(B ∩ O) for B ∈
B(X). Evidently, T (∆(O)) = {µ ∈ ∆(X) | µ(O) = 1}, which will be
represented by ∆(X)O.

5. For µ ∈ ∆(X) (resp., µ ∈ ∆(O)), mµ ∈ X is called a (Pettis, or weak)
mean of µ if x∗(mµ) =

∫
X µ(dz)x∗(z) (resp., x∗(mµ) =

∫
O µ(dz)x∗(z))

for every x∗ ∈ X∗.5 Since X∗ is a total family of linear functionals
on X, if mµ ∈ X exists, then it is unique. Let ∆(X)0 (resp., ∆(O)0)
denote the set of measures µ ∈ ∆(X) (resp., µ ∈ ∆(O)) for which a
mean mµ ∈ X exists.

3Consider x ∈ X \ {0}. Given X ex hypothesi, there exist disjoint convex open neigh-
bourhoods A and B of 0 and x respectively. Then, there exists a closed real hyperplane
H that strictly separates A and B (Schaefer [10], Chapter II, Theorem 9.1). Hence, there
exists h ∈ X∗ and α ∈ < such that H = h−1({α}) (Schaefer [10]), Chapter I, Proposi-
tion 4.2). So, either h(x) > α > h(0) = 0 or h(x) < α < h(0) = 0.

4This is the weakest topology on ∆(X) that renders the functionals ∆(X) 3 µ 7→∫
X
µ(dx) f(x) ∈ < continuous for every f ∈ C(X). The weak* topology on ∆(O) is

defined analogously.
5Vector mµ is the weak integral of the identity function à la Pettis [8]. If X = <n, then

mµ ∈ <n is characterised by the equations 〈ei,mµ〉 =
∫
X
µ(dz) 〈ei, z〉 for the canonical

basis {e1, . . . , en} ⊂ <n, which amounts to computing mµ component-by-component.
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An asset refers to µ ∈ ∆(X)0.
6 Asset µ is admissible for the investor

if µ ∈ ∆(X)O. If X is a path-space – say, a set of possible cash-flows
over a time domain – then it can be shown very generally that every asset
µ ∈ ∆(X)0 specifies a random process whose possible outcomes are the
cash-flows in X. Using this fact, it can be shown that distributions on
the above-specified X generate a large family of random processes that are
commonly used in financial modelling.7 We now collect some consequences
of the above specifications.

Lemma 2.1 Consider X and O as specified above.

(A) ∆(O) is compact metric.

(B) T : ∆(O) → ∆(X)O is a homeomorphism, with T−1(µ) being the
restriction of µ ∈ ∆(X)O to B(O).

(C) ∆(X)O is compact metric.

(D) If µ ∈ ∆(O)0, then T (µ) ∈ ∆(X)0 ∩∆(X)O and mT (µ) = mµ.

(E) If µ ∈ ∆(X)0 ∩∆(X)O, then T−1(µ) ∈ ∆(O)0 and mT−1(µ) = mµ.

(F) If O is convex and µ ∈ ∆(X)O, then µ ∈ ∆(X)0 and mµ ∈ O.

3 Results

Asset µ ∈ ∆(X)0 is said to be risk-free if µ = δx for some x ∈ X, where δx is
the Dirac measure at x. Given the interpretation of outcomes as cash-flows,
the risk-free asset δx delivers the cash-flow x with probability one. While
the cash delivered by x can vary over time, the variations are completely
predictable; hence, δx is risk-free.

An asset portfolio is a function θ : ∆(X)0 → < such that supp θ =
θ−1(<\{0}) is finite. θ(µ) > 0 (resp., θ(µ) < 0) refers to the purchase (resp.,
sale) of |θ(µ)| units of asset µ.

Asset prices are exogenously given by P : ∆(X)0 → <. P is said to be
expected-arbitrage-free if there is no portfolio θ such that∑

µ∈supp θ
θ(µ)P (µ) ≤ 0 and

∑
µ∈supp θ

θ(µ)mµ ≥ 0 (1)

6An asset µ is equivalent to all portfolios of assets that generate the distribution µ.
7While these facts illustrate the model’s wide scope, they are not required for the results

in this paper. Therefore, we refer the interested reader to Appendices A and B in Shah [11]
for demonstrations of the facts that the accommodated processes include Wiener process,
Brownian motion, absorbed Brownian motion, geometric Brownian motion, Ornstein-
Uhlenbeck process, and a large class of second-order processes.
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with either inequality strict. Define the outcome price functional p :
X → < by p(x) = P (δx). The following result establishes the key properties
of p and P .

Lemma 3.1 Consider X and O as specified in Section 2. If P : ∆(X)0 → <
is continuous and expected-arbitrage-free, then

(A) p ∈ X∗, p is increasing, and

(B) if O is convex, then ∆(X)O ⊂ ∆(X)0 and P (µ) =
∫
O µ(dx) p(x) =

p(mµ) for every µ ∈ ∆(X)O.

Suppose O is convex. By Lemma 2.1, mµ ∈ O for every admissible asset
µ ∈ ∆(X)O. We say that u : O → < is risk averse if u(mµ) ≥

∫
O µ(dy)u(y)

for every µ ∈ ∆(X)O, i.e., the risk-free cash-flow mµ is preferred to the risky
cash-flow generated by µ. The following assumptions hold henceforth.

Assumption 3.2 In addition to the specifications of Section 2, suppose

(a) O is convex and there exists l ∈ O such that x ≥ l for every x ∈ O,

(b) u : O → < and v : O → < are continuous, risk averse, non-constant,
increasing, and

(c) P : ∆(X)0 → < is continuous and expected-arbitrage-free.

As O is compact, u ∈ C(O). Hence, the expected utility from µ ∈
∆(O) is U(µ, u) =

∫
O µ(dy)u(y) ∈ <. U(., u) : ∆(O) → < is continuous

as u ∈ C(O) and ∆(O) has the weak* topology. Given an admissible asset
µ ∈ ∆(X)O and u, let V (µ, u) = U(T−1(µ), u). As T−1 is continuous by
Lemma 2.1, V (., u) : ∆(X)O → < is continuous.

The money-metric value of an admissible asset µ ∈ ∆(X)O to the
investor with utility u is

M(µ, u) = inf{P (λ) | λ ∈ ∆(X)O, V (λ, u) ≥ V (µ, u)} (2)

i.e., it is the price of the cheapest asset that is admissible and yields at
least as much expected utility as µ. It is immediate that, if v : O → <
is an increasing affine transformation of u, then M(µ, v) = M(µ, u), i.e.,
the money-metric value of an asset depends on the preference, but not on
a particular von Neumann-Morgenstern representation of the preference.
Also note that, as V (., u) is continuous, Lemma 2.1 implies {λ ∈ ∆(X)O |
V (λ, u) ≥ V (µ, u)} is compact. As P is continuous, there exists λ ∈ ∆(X)O
such that U(λ, u) ≥ U(µ, u) and M(µ, u) = P (λ).
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Given an admissible asset µ ∈ ∆(X)O and u, the set of admissible cer-
tainty equivalent outcomes is

E(µ, u) = {x ∈ O | u(x) = V (µ, u)} (3)

and the set of risk premia is

Π(µ, u) = {π ∈ X | mµ − π ∈ O, u(mµ − π) = V (µ, u)} (4)

Clearly, x ∈ E(µ, u) if and only if mµ − x ∈ Π(µ, u). Given µ, a risk
premium π ∈ Π(µ, u) is a maximal cash-flow that the investor is willing to
sacrifice in order to get the risk-free net cash-flow mµ − π instead of the
hedonically equivalent risky cash-flow generated by µ. As cash-flows are
vectors, there are multiple certainty equivalent outcomes and multiple risk
premia associated with an asset. While X’s zero-vector is necessarily a risk
premium for a risk-free asset, there can be other risk premia.

Since π ∈ Π(µ, u) is a cash-flow ‘payment’ for swapping the risky asset
µ with its risk-free mean cash-flow mµ, the investor’s willingness-to-pay for
this exchange is measured by the maximal market value over the set of risk
premia, i.e., max p ◦Π(µ, u).

Part (A) of the following result characterises an asset’s money-metric
value in terms of the prices of its certainty equivalent assets. Part (B) is the
promised decomposition of an asset’s market price.

Theorem 3.3 Given Assumption 3.2, if µ ∈ ∆(X)O, then

(A) M(µ, u) = min p ◦ E(µ, u), and

(B) P (µ)−M(µ, u) = max p ◦Π(µ, u) ≥ 0.

Proof. As O is a compact subset of the metric space X, it is closed in X.
As O is also convex, u(O) is a closed interval. Hence, V (µ, u) ∈ u(O). So,
E(µ, u) 6= ∅. As u is continuous, it easily follows that E(µ, u) is closed in
X. As O is compact and E(µ, u) ⊂ O, E(µ, u) is compact.

(A) Consider x ∈ E(µ, u). Then, δx ∈ ∆(X)O and V (δx, u) = u(x) =
V (µ, u). Hence, M(µ, u) ≤ P (δx) = p(x). As this holds for every
x ∈ E(µ, u), we have M(µ, u) ≤ inf p ◦ E(µ, u).

We have M(µ, u) = P (λ) for some λ ∈ ∆(X)O such that V (λ, u) ≥
V (µ, u). Lemma 2.1 implies mλ ∈ O. As u is risk averse, u(mλ) =
u(mT−1(λ)) ≥ U(T−1(λ), u) = V (λ, u) ≥ V (µ, u) ≥ u(l). As u is
continuous and O is convex, there exists t ∈ [0, 1] such that tmλ +
(1− t)l ∈ E(µ, u). Since mλ ≥ l, Lemma 3.1 implies p(mλ) ≥ p(l) and
inf p ◦ E(µ, u) ≤ p(tmλ + (1 − t)l) = tp(mλ) + (1 − t)p(l) ≤ p(mλ) =
P (λ) = M(µ, u).

Hence, M(µ, u) = inf p ◦ E(µ, u). Since E(µ, u) is compact and p is
continuous, inf p ◦ E(µ, u) = min p ◦ E(µ, u).
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(B) By (A), there exists x ∈ E(µ, u) such that p(x) = M(µ, u). Setting
gµ = mµ − x ∈ Π(µ, u), we have p(mµ − gµ) = p(x) = M(µ, u).

Suppose hµ ∈ Π(µ, u) and p(hµ) > p(gµ). Then, mµ − hµ ∈ E(µ, u)
and p(mµ − hµ) = p(mµ) − p(hµ) < p(mµ) − p(gµ) = p(mµ − gµ) =
M(µ, u) = min p◦E(µ, u), a contradiction. So, p(gµ) = max p◦Π(µ, u).

So, Lemma 3.1 implies P (µ) = p(mµ) = p(gµ + x) = p(gµ) + p(x) =
max p ◦ Π(µ, u) + M(µ, u). As P (µ) ≥ M(µ, u), we have max p ◦
Π(µ, u) ≥ 0.

The next result shows that the ordering of an investor’s money-metric
valuations of admissible assets mimics her hedonic preference over the assets.

Theorem 3.4 Given Assumption 3.2, if µ, λ ∈ ∆(X)O, then V (µ, u) ≤
V (λ, u) if and only if M(µ, u) ≤M(λ, u).

Proof. It follows from (2) that V (µ, u) ≤ V (λ, u) impliesM(µ, u) ≤M(λ, u).
Conversely, suppose M(µ, u) ≤ M(λ, u) and V (µ, u) > V (λ, u). It fol-

lows from (2) that M(µ, u) ≥M(λ, u), and therefore, M(µ, u) = M(λ, u).
Theorem 3.3 implies the existence of x ∈ E(µ, u) such that p(x) =

M(µ, u) = M(λ, u). Since O is convex, u(x) = V (µ, u) > V (λ, u) ≥ u(l),
and u is continuous, there exists t ∈ [0, 1) such that tx+ (1− t)l ∈ E(λ, u).

As u(x) > u(l), we have x 6= l. Therefore, x > l. Applying Lemma 3.1
and Theorem 3.3, p(x) > p(l) and p(tx + (1 − t)l) = tp(x) + (1 − t)p(l) <
p(x) = M(λ, u) = min p ◦ E(λ, u) ≤ p(tx+ (1− t)l), a contradiction.

Since V (., u) is continuous on the compact set ∆(X)O, there exists
an optimal asset, i.e., µ ∈ ∆(X)O such that V (µ, u) ≥ V (λ, u) for ev-
ery λ ∈ ∆(X)O. Applying Theorem 3.4, the optimal asset maximises the
money-metric value among the assets in ∆(X)O. Applying Theorem 3.3, the
optimal asset also maximises the difference between its market price and the
investor’s willingness-to-pay to de-risk the asset’s cash-flow.

Finally, we show that money-metric valuations and risk aversion are
inversely related. Given x ∈ O and utility u satisfying Assumption 3.2, let

A(x, u) = {µ ∈ ∆(X)O | u(x) ≤ V (µ, u)}

be the acceptance set (Yaari [15]) of u at x. Given utilities u and v
that satisfy Assumption 3.2, we say that u is more risk averse than v if
A(x, u) ⊂ A(x, v) for every x ∈ O. The notion motivating this definition is
that a ‘less risk averse’ utility will accept every risk that is accepted by the
‘more risk averse’ utility.8

8In our vector outcomes setting, this criterion is equivalent to the natural extensions
of several other criteria for comparing risk aversion in the setting with real outcomes
(Shah [11], Theorems 4.5 and 5.3).
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Theorem 3.5 In addition to Assumption 3.2, suppose for all x, y ∈ O,
there exists z ∈ O such that z ≥ x and z ≥ y. If u is more risk averse than
v, then

(A) M(µ, u) ≤M(µ, v) for every µ ∈ ∆(X)O, and

(B) M(δx, u) = M(δx, v) for every x ∈ O.

Proof. Consider X, O, u, and v ex hypothesi. We start with an observation.

• ¬πv > πu for all πu ∈ Π(µ, u) and πv ∈ Π(µ, v).

Suppose πv > πu for some πu ∈ Π(µ, u) and πv ∈ Π(µ, v). Let v∗(.) =
v(.) + u(mµ − πu) − v(mµ − πu). Then, A(., v∗) = A(., v), Π(., v∗) =
Π(., v), E(., v∗) = E(., v), u(mµ − πu) = v∗(mµ − πu), and mµ − πv ∈
E(µ, v) = E(µ, v∗). So, V (µ, v∗) = v∗(mµ − πv) < v∗(mµ − πu) =
u(mµ − πu) = V (µ, u). Thus, µ ∈ A(mµ − πu, u) \ A(mµ − πu, v∗) =
A(mµ − πu, u) \A(mµ − πu, v), which contradicts the hypothesis that
u is more risk averse than v, i.e., A(mµ − πu, u) ⊂ A(mµ − πu, v).

Now we prove the claims.

(A) Consider µ ∈ ∆(X)O, x ∈ E(µ, v), and y ∈ E(µ, u).

Suppose u(x) < u(y). As O has the upper bound property, there
exists z ∈ O such that z ≥ x and z ≥ y. As u is increasing, u(z) ≥
u(y) > u(x). So, z > x. As {x + t(z − x) | t ∈ [0, 1]} is convex and
u is continuous, there exists t ∈ (0, 1] such that r = t(z − x) > 0 and
u(x+r) = u(y). It follows that mµ−x ∈ Π(µ, v), mµ−x−r ∈ Π(µ, u),
and mµ − x > mµ − x− r, which contradicts the above observation.

So, u(x) ≥ u(y) ≥ u(l). As u is continuous, there exists t ∈ [0, 1]
such that u(tx+ (1− t)l) = u(y), i.e., tx+ (1− t)l ∈ E(µ, u). As p is
linear and increasing, p(x) ≥ p(tx+ (1− t)l) ≥ min p ◦ E(µ, u). Since
this holds for every x ∈ E(µ, v), we have M(µ, v) = min p ◦ E(µ, v) ≥
min p ◦ E(µ, u) = M(µ, u).

(B) Fix x ∈ O. By (A), M(δx, u) ≤ M(δx, v). By definition, M(δx, u) =
inf{P (λ) | λ ∈ ∆(X)O and V (λ, u) ≥ u(x)} = inf{P (λ) | λ ∈
A(x, u)} = inf P ◦ A(x, u). Similarly, M(δx, v) = inf P ◦ A(x, v).
As A(x, u) ⊂ A(x, v), we have M(δx, u) = inf P ◦ A(x, u) ≥ inf P ◦
A(x, v) = M(δx, v). Thus, M(δx, u) = M(δx, v).

The following lemma provides an alternative route to part (B), which
clarifies how the comparability of risk aversion is important for this result.

Lemma 3.6 Given Assumption 3.2, if u is more risk averse than v, then
u(z) ≥ u(y) if and only if v(z) ≥ v(y) for all y, z ∈ O.
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Thus, von Neumann-Morgenstern utilities with comparable risk aversion
must be ordinally congruent.9 If u is more risk averse than v and δx ∈
∆(X)O is a risk-free asset, then E(δx, u) = E(δx, v). Hence, Theorem 3.3
implies M(δx, u) = M(δx, v).

Combining Theorems 3.3 and 3.5, an investor’s subjective decomposition
of an asset’s market price varies systematically with risk aversion: as risk
aversion increases, the money-metric value component of the price decreases
and it is offset exactly by a higher willingness-to-pay for de-risking the asset.
In the case of a risk-free asset, the decomposition in Theorem 3.3 is invariant
with respect to preferences with comparable risk aversion.

4 Concluding remarks

We have shown that an asset’s money-metric value is the appropriate way of
representing its subjective value to an investor. The grounds for this claim
are: (1) Equation (2) implies that it is a monetary value that is invariant
across equivalent utility representations of the investor’s preference, (2) an
asset’s market price is shown to be the sum of its money-metric value and
the investor’s willingness-to-pay for fully de-risking the asset (Theorem 3.3),
(3) the ordering of money-metric values across assets matches the investor’s
preference ordering over the assets (Theorem 3.4), and (4) money-metric
values are meaningfully related to an investor’s attitude to risk insofar as
the money-metric value of a risky asset is inversely related to the investor’s
risk aversion, while the money-metric value of a risk-free asset is uniform
across preferences with comparable risk-averseness (Theorem 3.5).

Appendix

Proof of Lemma 2.1 Consider X and O ex hypothesi.

(A) As O is compact metric, ∆(O) is compact metric (Parthasarathy [7],
Chapter II, Theorem 6.4).

(B) Since B(O) ⊂ B(X), it is easily checked that T is bijective.

Consider a sequence (µn) ⊂ ∆(O) converging to µ ∈ ∆(O) and f ∈
C(X). Since

∫
X T (µn)(dz) f(z) =

∫
O µn(dz) f(z) →

∫
O µ(dz) f(z) =∫

X T (µ)(dz) f(z), the sequence (T (µn)) ⊂ ∆(X) converges to T (µ).
So, T is continuous.

Consider a net (µi) ⊂ ∆(X)O converging to µ ∈ ∆(X)O and f ∈ C(O).
As X is a metric space, it is a normal space (Dugundji [3], Chapter IX,
Theorem 5.2). As O is a compact subset of a metric space, it is closed
in X. By the Tietze extension theorem (Dugundji [3], Chapter VII,

9Ordinal congruence holds trivially for all increasing utilities defined over real outcomes.
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Theorem 5.1), f has an extension g ∈ C(X). As
∫
O T
−1(µi)(dz) f(z) =∫

X µi(dz) g(z) →
∫
X µ(dz) g(z) =

∫
O T
−1(µ)(dz) f(z), it follows that

the net (T−1(µi)) ⊂ ∆(O) converges to T−1(µ) ∈ ∆(O). So, T−1 is
continuous.

(C) follows from (A) and (B).

(D) If µ ∈ ∆(O)0, then T (µ) ∈ ∆(X)O and there exists mµ ∈ X such that∫
X T (µ)(dz)x∗(z) =

∫
O µ(dz)x∗(z) = x∗(mµ) for every x∗ ∈ X∗. So,

T (µ) ∈ ∆(X)0 and mT (µ) = mµ.

(E) If µ ∈ ∆(X)0∩∆(X)O, then T−1(µ) ∈ ∆(O) and there is mµ ∈ X such
that x∗(mµ) =

∫
X µ(dz)x∗(z) =

∫
O µ(dz)x∗(z) =

∫
O T
−1(µ)(dz)x∗(z)

for every x∗ ∈ X∗. So, T−1(µ) ∈ ∆(O)0 and mT−1(µ) = mµ.

(F) Give <X∗
the product topology and define H : X → <X∗

by H(x) =
(h(x))h∈X∗ . H is continuous as every h ∈ X∗ is continuous. If H(x) =
0 for some x ∈ X, then h(x) = 0 for every h ∈ X∗, which implies
x = 0. So, H is injective. As O is compact and <X∗

is Hausdorff, H
embeds O in <X∗

.

As O is compact and H is continuous, H(O) is compact. Since <X∗
is

Hausdorff, H(O) is closed in <X∗
. Moreover, H(O) is metrisable.

Consider λ ∈ ∆(O) with |suppλ| < ∞. For every h ∈ X∗, we have∫
O λ(dz)h(z) =

∑
z∈suppλ λ({z})h(z) = h(

∑
z∈suppλ λ({z})z). There-

fore, mλ =
∑
z∈suppλ λ({z})z. As O is convex and suppλ ⊂ O, we

have mλ ∈ O.

Consider µ ∈ ∆(X)O. Then, T−1(µ) ∈ ∆(O). As O is compact met-
ric, it is separable. Consequently, there is a sequence (µn) ⊂ ∆(O)
converging to T−1(µ) such that |suppµn| < ∞ for every n ∈ N
(Parthasarathy [7], Chapter II, Theorem 6.3). As shown above, mµn

exists, mµn ∈ O and H(mµn) ∈ H(O) for every n ∈ N . As the re-
striction of h ∈ X∗ to O is continuous and bounded, limn↑∞ h(mµn) =
limn↑∞

∫
O µn(dz)h(z) =

∫
O T
−1(µ)(dz)h(z) =

∫
X µ(dz)h(z) for every

h ∈ X∗. So, limn↑∞H(mµn) = (
∫
X µ(dz)h(z))h∈X∗ .

As (H(mµn)) ⊂ H(O) and H(O) is closed in <X∗
, it follows that

(
∫
X µ(dz)h(z))h∈X∗ ∈ H(O). As H embeds O in <X∗

, there is a
unique mµ ∈ O such that H(mµ) = (

∫
X µ(dz)h(z))h∈X∗ , i.e., h(mµ) =∫

X µ(dz)h(z) for every h ∈ X∗.

Proof of Lemma 3.1 Consider X, O, and P ex hypothesi.

(A) Suppose p is not linear. Then there exist x, y ∈ X and α, β ∈ < such
that p(αx+βy) < αp(x)+βp(y). Consider the portfolio θ = 1δαx+βy −
α1δx − β1δy . Then,

∑
µ∈supp θ θ(µ)P (µ) = P (δαx+βy) − αP (δx) −
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βP (δy) = p(αx + βy) − αp(x) − βp(y) < 0 and
∑
µ∈supp θ θ(µ)mµ =

αx+ βy − αx− βy = 0, which contradicts condition (1).

Suppose p is not increasing. Then there exists x ∈ X such that x > 0
and p(x) ≤ 0. If θ = 1δx , then

∑
µ∈supp θ θ(µ)P (µ) = P (δx) = p(x) ≤ 0

and
∑
µ∈supp θ θ(µ)mµ = x > 0, which contradicts condition (1).

Consider a sequence (xn) ⊂ X converging to x ∈ X. Then, (δxn) ⊂
∆(X)0, δx ∈ ∆(X)0, and limn

∫
X δxn(dy) f(y) = limn f(xn) = f(x) =∫

X δx(dy) f(y) for f ∈ C(X). So, (δxn) converges to δx. As P is contin-
uous, limn p(xn) = limn P (δxn) = P (δx) = p(x). So, p is continuous.

(B) Consider ν ∈ ∆(X) with finite support. By definition, x∗(mν) =∫
X ν(dx)x∗(x) =

∑
x∈supp ν ν({x})x∗(x) = x∗(

∑
x∈supp ν ν({x})x) for

every x∗ ∈ X∗. As X∗ is total, we have mν =
∑
x∈supp ν ν({x})x,

and therefore ν ∈ ∆(X)0. If
∑
x∈supp ν ν({x})P (δx) < P (ν), then

θ =
∑
x∈supp ν ν({x})1δx − 1ν contradicts condition (1) as∑

µ∈supp θ
θ(µ)P (µ) =

∑
x∈supp ν

ν({x})P (δx)− P (ν) < 0

and ∑
µ∈supp θ

θ(µ)mµ =
∑

x∈supp ν
ν({x})x−mν = 0

We can similarly rule out P (ν) <
∑
x∈supp ν ν({x})P (δx). So,

P (ν) =
∑

x∈supp ν
ν({x})P (δx) =

∫
X
ν(dx) p(x) (5)

Consider µ ∈ ∆(X)O. By Lemma 2.1(F), µ ∈ ∆(X)0. Lemma 2.1(E)
implies T−1(µ) ∈ ∆(O)0. As O is compact metric, it is separable.
So, there is a sequence (µn) ⊂ ∆(O) converging to T−1(µ) such that
|suppµn| < ∞ for every n ∈ N (Parthasarathy [7], Chapter II, The-
orem 6.3). It follows that mµn =

∑
x∈suppµn µn({x})x ∈ O for every

n ∈ N . Therefore, (µn) ⊂ ∆(O)0. By Lemma 2.1(D), (T (µn)) ⊂
∆(X)0∩∆(X)O. Using (5), we have P (T (µn)) =

∫
X T (µn)(dx) p(x) =∫

O µn(dx) p(x) for every n ∈ N . Using Lemma 2.1(B), limn T (µn) =
T (limn µn) = T ◦ T−1(µ) = µ. By Lemma 2.1(F), mµ ∈ O. Using
(A), as O is compact, the restriction of p to O is in C(O). Hence,
P (µ) = P (limn T (µn)) = limn P (T (µn)) = limn

∫
O µn(dx) p(x) =∫

O T
−1(µ)(dx) p(x) =

∫
X µ(dx) p(x) = p(mµ), as required.

Proof of Lemma 3.6 Suppose u is more risk averse than v and there exist
y, z ∈ O such that, either

(a) u(z) ≥ u(y) and v(z) < v(y), or

(b) u(z) < u(y) and v(z) ≥ v(y).
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If (a), then δz ∈ A(y, u) \ A(y, v). If (b) and v(z) > v(y), then δy ∈
A(z, u) \A(z, v). In both cases, u is not more risk averse than v, which is a
contradiction.

Suppose (b) and v(z) = v(y). As v is non-constant, there exists x ∈ O
such that, either v(x) > v(y) or v(x) < v(y).

Suppose v(x) > v(y). AsO is convex, c(t) = tx+(1−t)z ∈ O for every t ∈
(0, 1). As u is continuous and v is concave, there exists t ∈ (0, 1), sufficiently
close to 0, such that u(c(t)) < u(y) and v(c(t)) ≥ tv(x) + (1− t)v(z) > v(y).
Thus, δy ∈ A(c(t), u) \A(c(t), v), which contradicts the hypothesis that u is
more risk averse than v.

Suppose v(x) < v(y). Let µ(t) = tδx + (1 − t)δy ∈ ∆(O)0. Then,
U(µ(t), u) = tu(x)+(1−t)u(y) > u(z) for some t ∈ (0, 1) sufficiently close to
0. As U(µ(t), v) = tv(x)+(1−t)v(y) < v(z), we have µ(t) ∈ A(z, u)\A(z, v),
which contradicts the hypothesis that u is more risk averse than v.
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