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Abstract

We formalise ‘bidding behaviour’ as a bidder’s choice of the ‘mean
winning probability’ at the interim stage of first-price and second-price
sealed bid auctions. This formulation simplifies and sharpens the anal-
ysis of bidding behaviour by virtue of confining it to the unit interval.
As an application, we show that the optimal mean winning probability
increases if and only if the bidder’s valuation of the prize increases.
Our formulation of bidding behaviour is rationalised by duality results
showing that optimal mean winning probabilities correspond to opti-
mal bid distributions.

JEL classification: D44
Key words: first-price auction, second-price auction, mean winning

probability, bidding behaviour, duality

1 Introduction

Consider first-price and second-price sealed bid auctions of a prize. At the
interim stage of the Bayesian game model of each of these auctions, if B is
Bidder 1’s valuation of the prize and G is the distribution function of the
highest bid among the rivals (henceforth, the ‘rival distribution’ function),
then Bidder 1 has to choose a bid distribution to maximise her expected net
payoff.1 If the realised bids make her the winner, then her net payoff is B
minus the payment determined by the auction form and the realised bids;
otherwise, she gets payoff zero. Bidder 1’s decision problem raises a natural
question: given G, how does a variation of B affect her bidding behaviour?

Lebrun [5] addresses the question: in a first-price auction with inde-
pendent private values, how does a variation of some bidder’s prior valua-
tion distribution affect the equilibrium bid functions?2 Although it bears

∗Department of Economics, Delhi School of Economics, University of Delhi, Delhi
110007, India. Email: sudhir@econdse.org

1Equations (10), (11), and (18)-(21) express G, B, and Bidder 1’s expected net payoff,
respectively, in terms of the game generated by an auction form.

2Similar questions are studied in Hopkins and Kornienko [4].
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a passing resemblance to our question insofar as it concerns a link between
valuations and bidding in auctions, this question is fundamentally different
because it concerns a Bayesian game’s ex ante stage and the game’s equilib-
rium mapping, while our question concerns the game’s interim stage and a
particular player’s best response mapping. Clearly, the dependent variables
in these questions are different and so are the parameters whose variational
effects are sought to be characterised.

Returning to our question, we observe that, given the rival distribution,
Bidder 1’s bids are ultimately a means of determining her expected proba-
bility of winning along with the entailed expected cost. Accordingly, instead
of analysing Bidder 1’s behaviour at the interim stage directly in terms of
bid distributions, we shall do so indirectly in terms of Bidder 1’s ‘mean
winning probability’, which is after all the ultimate object of interest for
her. Unlike bid distributions that are typically only partially ordered, mean
winning probabilities are real numbers that are completely ordered. This
feature simplifies and sharpens the analysis of bidding behaviour.

The first step towards the indirect formulation is the intermediate formu-
lation of Bidder 1’s problem wherein distributions over winning probabilities
replace bid distributions as Bidder 1’s choice variable. This shift is plausi-
ble and possible because a distribution over bids (resp., the unit interval)
generates a dual distribution over the unit interval (resp., bids) via the rival
distribution function G (resp., the quantile function dual to G).

The indirect formulation involves a further shift from the intermedi-
ate formulation by replacing distributions over the unit interval with their
means as Bidder 1’s choice variable. For a class of rival distribution func-
tions, Bidder 1’s problem in the indirect formulation is tractable in the
σ-additive setting, i.e., when the mean winning probabilities are generated
by σ-additive distributions over the unit interval. The problem is more gen-
erally tractable in the finitely additive setting, i.e., when the mean winning
probabilities are generated by finitely additive distributions over the unit
interval. The nature of distributions underlying the mean winning probabil-
ities is significant, not so much for generating the probabilities per se, but
for determining Bidder 1’s costs of implementing all the mean winning prob-
abilities and thereby shaping her incentives for choosing a particular mean
winning probability; see Section 1.1 for further elucidation of this point.

We show in Sections 3 and 4 that the indirect formulation yields an ele-
mentary, sharp, and general answer to our question for both auction forms:
a higher optimal mean winning probability (i.e., ‘more aggressive bidding
behaviour’) corresponds to a higher B. For both auction forms, Bidder 1’s
choice space in the indirect formulation is just the unit interval, the objective
function on the unit interval is sufficiently regular that the characterisation
of a globally optimal choice involves the most rudimentary marginal con-
siderations, and the variational result yields a complete ordering of optimal
choices conditional on B.
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Since the direct formulation is the standard model in the auction con-
text, the indirect and intermediate formulations need to be rationalised in
terms of the direct formulation. In order to do so, we shall demonstrate in
Section 5 that the solutions – contingent on B and G – of all three formu-
lations of Bidder 1’s problem are bijectively related. These dualities hold
for both auction forms, provided Bidder 1’s decision problems are tractable
when choosing from σ-additive bid distributions in the direct formulation,
choosing from σ-additive distributions over the unit interval in the interme-
diate formulation, and choosing from the means of σ-additive distributions
over the unit interval in the indirect formulation.

For both auction forms, the duality between the intermediate and the
indirect formulations holds even more generally if Bidder 1 chooses from
finitely additive distributions over the unit interval in the intermediate for-
mulation and chooses from mean winning probabilities that are generated
by finitely additive distributions over the unit interval in the indirect for-
mulation.

These dualities also demonstrate the indirect formulation’s canonicity
inasmuch as every problem of optimally randomising over bids from some
bounded interval is shown to be equivalent to the problem of choosing a
probability from the unit interval, provided the settings of the various bid-
ding problems meet some regularity conditions.

In the rest of the paper, Section 2 states some formal preliminaries,
Section 6 summarises this paper’s findings, and Appendix contains proofs
of the lemmata. While these sections do not require prefatory remarks, it
may be useful to outline Sections 3-5 in somewhat greater detail prior to the
formal analysis.

1.1 Bidder 1’s problem

Section 3 is devoted to the construction of the indirect formulation. Given G
and the auction form, Bidder 1’s bid determines her probability of winning
the prize and the resulting expected cost conditional on the bid. Therefore,
a bid distribution generates a distribution over winning probabilities, the
mean winning probability, and the resulting expected cost. This suggests
an indirect formulation of Bidder 1’s problem wherein she chooses the mean
winning probability c that is to be generated by a bid distribution at the
least possible cost.3 Given this set-up, we identify the chosen c with ‘bidding
behaviour’. As Bidder 1’s expected benefit from choosing c is cB, the critical
issue is whether the minimum expected costs of generating various values of c
allow a characterisation of the optimal c that yields a predictable qualitative

3Such dual modelling of decision problems is commonplace in economics. For instance,
a firm may represent technology by a production function and optimally choose inputs to
indirectly determine the output, or equivalently represent technology by the cost function
(with efficient input choices embedded in it) and directly choose the optimal output.
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link between B and the optimal c. This problem is set up with increasing
generality as follows.

If Bidder 1 wishes to generate a winning probability c, then the least
expected cost of doing so by means of a single deterministic bid is g(c),
as defined by Equation (4). The restriction to deterministic bids results in
Bidder 1’s problem being: choose c to maximise cB − g(c). By Lemma 3.4,
this deterministic version of the indirect model is tractable if g is convex.

However, as g may not be convex, the problem is generalised as fol-
lows. For every c, let e(c) be the minimised expectation of g on the set
of σ-additive distributions over the unit interval with mean c. In effect, c
is reinterpreted as the mean winning probability instead of being the win-
ning probability. This randomisation does not change Bidder 1’s expected
benefit from winning as, for every c, the expected valuation derived from
a distribution with mean c is simply cB. Thus, Bidder 1’s problem with
the reinterpreted c becomes: choose c to maximise cB − e(c).4 Lemma 3.5
implies that this σ-additive version of the indirect model is tractable if g
is continuous. Lemma 3.3 characterises a continuous g for the two auction
forms in terms of the rival distribution function G.

However, g is generally neither convex nor continuous. This lacuna is
filled by allowing Bidder 1 to implement mean winning probabilities using
finitely additive distributions over the unit interval. For every c, let η(c) be
the minimised expectation of g on the set of finitely additive distributions
over the unit interval with mean c. Then, Bidder 1’s problem becomes:
choose c to maximise cB − η(c). Lemma 3.6 shows that this problem is
tractable even if g is discontinuous and non-convex.

1.2 Solving Bidder 1’s problem

In Section 4, we analyse Bidder 1’s problem. Lemma 4.1 characterises op-
timal mean winning probabilities in terms of B, which is nothing but an
expression of the canonical rule to equalise benefit and cost at the margin.
Using this characterisation, Theorem 4.3 shows that the optimal winning
probability increases if and only if B does so.

1.3 Duality results

Section 5 relates different models of Bidder 1’s problem to each other.
Three specifications determine each model: (1) whether the first-price or
the second-price auction is being considered, (2) whether the formulation is
direct, intermediate, or indirect, and (3) whether the setting involves Bid-
der 1 choosing σ-additive or finitely additive distributions.

Theorems 5.1, 5.2, and Remark 5.3 assert that the indirect and inter-
mediate models are equivalent for both auction forms and both settings in

4See the discussion following (13) for a formal justification of this objective function.
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the sense that the solvability of either model implies the solvability of the
other model and these solutions are bijectively related. These dualities are
broad in scope and hold generally without supplementary hypotheses. The
canonicity of the indirect formulation is demonstrated in Remark 5.4.

The other duality results are shown for the σ-additive setting only. Given
a continuous rival distribution function, Theorem 5.6 shows that the map-
ping of distributions over the unit interval to bid distributions using the
quantile function is a bijection. Theorem 5.8 shows that this bijection pre-
serves expected costs and mean winning probabilities across the intermediate
and direct formulations of bidding behaviour for both auction forms. Hence,
for both auction forms, the bijection preserves Bidder 1’s preference ordering
when it maps distributions over winning probabilities to bid distributions
(Corollary 5.9). Finally, for both auction forms, Bidder 1’s optimal choices
in the direct and intermediate models are a dual pair with respect to the
aforementioned bijection (Corollary 5.10). Combining this result with Theo-
rem 5.2 and Remark 5.3 yields a duality between the direct and the indirect
formulations.

2 Formal preliminaries

The following definitions and conventions will apply throughout this paper.
We say that a set is countable if it is either finite or denumerable. A

set X is said to be a co-countable subset of a set Y if X ⊂ Y and Y \
X is countable. Consider a real-valued function f defined on a domain
Dom (f). Suppose Dom (f) ⊂ <; throughout, ⊂ is to be understood in its
weak form. If f is differentiable at x ∈ Dom (f), then Df(x) denotes the
derivative of f at x. f is said to be increasing (resp., strictly increasing)
if x, y ∈ Dom (f) and x > y implies f(x) ≥ f(y) (resp., f(x) > f(y)).
If f is increasing and (x − ε, x) ⊂ Dom (f) (resp., (x, x + ε) ⊂ Dom (f))
for some ε > 0, then f(x−) = limn f(x − 1/n) = sup f((x − ε, x)) (resp.,
f(x+) = limn f(x + 1/n) = inf f((x, x + ε))). If Dom (f) = < and f is a
distribution function, then we assume f is right-continuous and set Φ(f) =
{c ∈ [0, 1] | |f−1({c})| > 1}; so, c ∈ Φ(f) corresponds to a flat portion
of f ’s graph. If Dom (f) ⊂ <n, then f is said to be strictly increasing if
x, y ∈ Dom (f), x ≤ y, and x 6= y implies f(x) < f(y).

For an interval I ⊂ <, B(I) is the Borel σ-algebra on I and ∆(I) is the
set of σ-additive distributions on (I,B(I)). For E ∈ 2<, we say E ∈ L if
Leb∗(T ) = Leb∗(T ∩ E) + Leb∗(T \ E) for every T ∈ 2<, where Leb∗ is the
Lebesgue outer measure on 2<. E ∈ L is called a Lebesgue measurable set.
Using Caratheodory’s theorem (Bruckner et al. [2], Theorem 2.32), L is a
σ-algebra and the restriction of Leb∗ to L is called the Lebesgue measure,
which is denoted by Leb. All references to absolute continuity of measures
shall be with respect to Leb.
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3 The cost function

In this section, we derive Bidder 1’s expected cost of efficiently ensuring a
mean winning probability c in three increasingly general settings: with a
deterministic choice in Section 3.1, with a σ-additive distribution in Sec-
tion 3.2, and with a finitely additive distribution in Section 3.3.

Consider either the first-price or second-price sealed bid auction of a
prize with the set of bidders {1, . . . , n}, with n ≥ 2. For i ∈ {2, . . . , n}, let
yi be the nonnegative-valued random variable that generates bidder i’s bid.

Throughout this paper, let C = [0, 1], let G be the distribution function
of the random variable y∗ = max{y2, . . . , yn} such that

0 = G(0) < G(b) for b > 0, inf G−1({1}) = β1 <∞, G(β1−) = 1 (1)

and let b : C → [0, β1] be the corresponding quantile function defined by

b(c) = inf[G−1([c, 1]) ∩ <+] (2)

Additional assumptions about G and b will be stated when required; see Equa-
tion (10) for G’s derivation from the game generated by an auction form.

0b

G(b)=c'

b(c')b(G(b))
Bid

Winning 
probability

Bid

Graph of 
G(.)

Graph of 
b(.)

1

b(c)

C

C
_

=C

b(c)

Figure 1: Duality between G and b

For both auction forms, we assume that Bidder 1 wins whenever she is a
highest bidder. Therefore, if Bidder 1 bids b, then she wins with probability
G(b). Figure 1 illustrates the duality between the rival distribution function
G and the corresponding quantile function b. In this diagram, the negative
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part of the horizontal axis isG’s domain, the interval C = [0, 1] in the vertical
axis is G’s codomain and b’s domain, and the positive part of the horizontal
axis is b’s codomain. Evidently, b(0) = 0, b(1) = β1, b(c) = inf G−1([c, 1]) >
0 for c ∈ (0, 1], and jumps (resp., flat portions) in G’s graph correspond to
flat portions (resp., jumps) in b’s graph. If c ∈ C, then G−1([c, 1]) ∩ <+ is
bounded below by 0, and as G is right-continuous, G−1([c, 1]) is closed in <.
So, b(c) ∈ G−1([c, 1]), i.e., G ◦ b(c) ≥ c. If b < b(c), then b 6∈ G−1([c, 1]), i.e.,
G(b) < c. Thus, b(c) is the minimum bid by Bidder 1 that yields a winning
probability greater than or equal to c. Let

c = inf b−1({b(c)}) and c̄ = sup b−1({b(c)}) (3)

for c ∈ C. It follows that c, c̄ ∈ C, 0̄ = 0, and c̄ ≥ c > 0 for c > 0. We
collect a number of useful facts about G and b in the following lemma.

Lemma 3.1 Given G,

(A) b is nonnegative, bounded, increasing, measurable, and left-continuous,

(B) b (resp. G) is continuous if and only if G (resp., b) is strictly increasing
on [0, β1] (resp., C),

(C) b(c̄) = b(c) for every c ∈ C,

(D) c̄ = G ◦ b(c̄) ∈ G([0, β1]) for every c ∈ C,

(E) c < G ◦ b(c) for c < c̄, and

(F) G([0, β1]) = {c ∈ C | c = c̄}. So, G ◦ b ◦ G(β) = G(β) for every
β ∈ [0, β1].

(G) If G is continuous, then b−1([0, x]) = G([0, x]) for every x ∈ [0, β1].

(H) If G is continuous and strictly increasing, then G(B) ∈ B(C) for every
B ∈ B([0, β1]).

3.1 Cost with deterministic choice

If Bidder 1 wins, then she pays her own bid in a first-price auction and y∗ in
a second-price auction; otherwise, she pays nothing. For c ∈ C, if Bidder 1
bids b(c), then the implied expected payment by Bidder 1 is

g1(c) = b(c)G ◦ b(c) and g2(c) =

∫
[0,b(c)]

y dG(y) (4)

in the first-price auction and second-price auction respectively. Note that

g2(c) = g1(c)−
∫

[0,b(c)]
dy G(y) (5)
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Evidently, g2 < g1 over (0, 1], i.e., the expected payment entailed by
a deterministically implemented positive winning probability is lower in a
first-price auction than in a second-price auction.

Henceforth, a statement concerning g is to be understood as holding for
both g1 and g2, unless g1 or g2 is specified explicitly.

Lemma 3.2 The expected payment function g : C → < given by Equa-
tion (4) is nonnegative with g(0) = 0, bounded, increasing, and integrable.

The next result characterises the continuity of g1 and g2 in terms of G’s
properties.

Lemma 3.3 Consider G, b, g1, and g2 given by Equations (1), (2), and
(4).

(A) If G is strictly increasing on [0, β1] and continuous, then G : [0, β1]→
C is a homeomorphism with function inverse b : C → [0, β1]).

(B) G is strictly increasing on [0, β1] and continuous if and only if g1 is
continuous.

(C) G is continuous if and only if g2 is continuous.

Simple examples show that the discontinuities of g1 and g2 can occur
on (0, 1). Hence, neither g1 nor g2 is necessarily convex. However, if g is
convex, then it renders Bidder 1’s problem tractable without resorting to
randomisation.

Lemma 3.4 Consider g given by Equation (4). If g is convex, then

(A) g(c) ≤
∫
C λ(dx) g(x) for c ∈ C and λ ∈ ∆(C) such that

∫
C λ(dx)x = c,

(B) g is nonnegative, bounded, convex, increasing, e(0) = 0,

(C) g is continuous on [0, 1),

(D) g is subdifferentiable on (0, 1), differentiable on a co-countable subset
of (0, 1), twice differentiable Leb-a.e., and

(E) for some c0 ∈ [0, 1], g is constant over [0, c0] and strictly increasing
over [c0, 1].

On the other hand, if g is not convex, then Bidder 1 may lower her
expected payment for implementing a winning probability c ∈ C by ran-
domising over C using a distribution with mean c. This randomisation does
not affect Bidder 1’s expected gross payoff cB as it is linear in c.
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3.2 Cost with σ-additive distributions

Suppose the buyer chooses a distribution λ ∈ ∆(C) to randomise over C.
The resulting mean winning probability is m(λ) =

∫
C λ(dc) c for both auc-

tion forms, the implied bid distribution is λ ◦ b−1 ∈ ∆([0, β1]), and the
expected payment is L(g1, λ) =

∫
C λ(dx) g1(x) for the first-price auction

and L(g2, λ) =
∫
C λ(dx) g2(x) for the second-price auction. As the set of im-

plementations of the mean winning probability c is ∆(C, c) = {λ ∈ ∆(C) |
m(λ) = c}, the least expected cost of implementing c using σ-additive dis-
tributions is

e1(c) = inf L(g1,∆(C, c)) and e2(c) = inf L(g2,∆(C, c)) (6)

for the first-price auction and the second-price auction respectively. Hence-
forth, a statement concerning e is to be understood as holding for both e1

and e2, unless e1 or e2 is specified explicitly.
Lemma 3.4(A) amounts to saying that, if g is convex, then e(c) = g(c) =

L(g, δc) for every c ∈ C and e has various regularity properties. The fol-
lowing result provides another sufficient condition for the infimum in Equa-
tion (6) to be achieved on the set ∆(C, c) and for e to have essentially the
same regularity properties.

Lemma 3.5 Consider g and e given by Equations (4) and (6) respectively.
If g is continuous, then

(A) for every c ∈ C, e(c) = L(g, λc) ∈ < for some λc ∈ ∆(C, c),

(B) e is nonnegative, bounded, and e(0) = 0,

(C) e is convex,

(D) e is increasing,

(E) e is continuous,

(F) e is subdifferentiable on (0, 1), differentiable on a co-countable subset
of (0, 1), twice differentiable Leb-a.e., and

(G) for some c0 ∈ [0, 1], e is constant over [0, c0] and strictly increasing
over [c0, 1].

3.3 Cost with additive distributions

Since g may be non-convex and discontinuous, there remains the problem
of deriving the efficient expected payment when g is assumed to have only
the general properties noted in Lemma 3.2. In order to derive the efficient
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expected payment implied by a general g, we expand the set of available
randomisations from σ-additive to all finitely additive distributions over C.

Let B(C) be the set of uniform limits of finite linear combinations of the
indicator functions of sets in B(C).5 Given the supremum norm, B(C) is a
Banach space. As the identity function on C and g are bounded and Borel
measurable, both functions are in B(C). Let ba(C) be the set of bounded,
finitely additive real-valued functions defined on B(C).6 Given the variation
norm, ba(C) is a Banach space that is isomorphic to the continuous dual
of B(C) (Dunford and Schwartz [3], Theorem IV.5.1). Denote the set of
finitely additive probability measures on (C,B(C)) by P (C) ⊂ ba(C).

Given λ ∈ P (C), since the identity function on C and g are in B(C),
the Dunford-Schwartz integrals (Dunford and Schwartz [3], Chapter III)
m(λ) =

∫
C λ(dx)x and L(g, λ) =

∫
C λ(dx) g(x) ≥ 0 are well-defined.

Given P (C, c) = {λ ∈ P (C) | m(λ) = c}, the least expected cost of
implementing c using finitely additive distributions is

η1(c) = inf L(g1, P (C, c)) and η2(c) = inf L(g2, P (C, c)) (7)

for the first-price auction and the second-price auction respectively. As
∆(C) ⊂ P (C), we have ∆(C, c) ⊂ P (C, c). Henceforth, a statement con-
cerning η is to be understood as holding for both η1 and η2, unless η1 or η2

is specified explicitly.

Lemma 3.6 If g and η are given by Equations (4) and (7), respectively,
then

(A) for every c ∈ C, η(c) = L(g, λ) ∈ < for some λ ∈ P (C, c),

(B) η is nonnegative, bounded, and η(0) = 0,

(C) η is convex on C,

(D) η is increasing,

(E) η is continuous on [0, 1),

(F) η is subdifferentiable on (0, 1), differentiable on a co-countable subset
of (0, 1), twice differentiable Leb-a.e., and

(G) for some c0 ∈ [0, 1], η is constant over [0, c0] and strictly increasing
over [c0, 1].

Part (G) implies that, for c ∈ [c0, 1], the expected payment η(c) ensures
that the mean winning probability is exactly c.

5B(C) includes all bounded Borel measurable real-valued functions on C, and therefore
all continuous real-valued functions on C.

6ba(C) includes all Borel measures on (C,B(C))
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4 The optimal choice

Let B denote Bidder 1’s valuation of the prize. If her mean winning prob-
ability is c ∈ C, then her expected valuation is cB. Therefore, the ex-
pected payoff from implementing the mean winning probability c efficiently
is cB − η(c) (resp., cB − e(c)) if c is implemented using finitely additive
distributions from P (C) (resp., σ-additive distributions from ∆(C)). In this
section, we shall analyse Bidder 1’s problem of choosing c to maximise

V (B, c) = cB − η(c) (8)

This setting admits a discontinuous g and therefore a discontinuous G.

Lemma 4.1 Suppose B ∈ <+, and g, η, and V are given by Equations (4),
(7), and (8) respectively.

(A) 1 ∈ arg maxC V (B, .) if and only if B ≥ [η(1)− η(c)]/(1− c) for every
c ∈ [0, 1).

(B) 0 ∈ arg maxC V (B, .) if and only if B ≤ η(c)/c for every c ∈ (0, 1].

(C) If c0 > 0, then [0, c0) ∩ arg maxC V (B, .) = ∅. If η is continuous at 1,
then ∅ 6= arg maxC V (B, .) ⊂ [c0, 1]. If η is discontinuous at 1, then
1 6∈ arg maxC V (B, .).

(D) arg maxC V (B, .) is a convex set that may be empty.

(E) If c ∈ (0, 1), then c ∈ arg maxC V (B, .) if and only if B ∈ ∂η(c). If η
is differentiable at c ∈ (0, 1), then c ∈ arg maxC V (B, .) if and only if
B = Dη(c).

(F) {B ∈ <+ | c ∈ arg maxC V (B, .)} is convex for every c ∈ C and is a
singleton for every c in a co-countable subset of (0, 1).

Remark 4.2 Suppose the above problem is modified so that g given by Equa-
tion (4) is continuous, e is given by Equation (6), and

V (B, c) = cB − e(c) (9)

Then, parts (A), (B), (E), and (F) of Lemma 4.1 hold with η replaced by e,
while parts (C) and (D) are strengthened to state that arg maxC V (B, .) is a
nonempty and convex subset of [c0, 1].

In special circumstances, the winning probabilities chosen in the two
auction forms can be compared. Suppose G is strictly increasing and con-
tinuously differentiable. Then, by Lemma 3.1, b is determined by the identity
G◦b(c) = c, b is continuously differentiable, and it follows from Equation (5)
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that Dg2 ≤ Dg1. Suppose g1 and g2 are convex; let c1 and c2 be the op-
timal winning probabilities in the first-price auction and the second-price
auction respectively; and suppose g1 and g2 are differentiable at c1 and c2

respectively. By Lemma 3.4, g1 = e1 and g2 = e2, and by Remark 4.2,
Dg2(c1) ≤ Dg1(c1) = B = Dg2(c2), which implies c1 ≤ c2. So, if g1 and
g2 are convex, then it is optimal to choose winning probabilities determin-
istically, and for a given valuation, the optimal winning probability in the
second-price auction exceeds the optimal winning probability in the first-price
auction.

Finally, we investigate the variational relationship between the optimal
choice c and the valuation B. The key results are parts (C) and (E).

Theorem 4.3 Consider g, η, and V defined by Equations (4), (7), and
(8) respectively. Suppose Bv ≥ 0, Bu ≥ 0, cv ∈ arg maxC V (Bv, .), and
cu ∈ arg maxC V (Bu, .).

(A) If Bv = Bu, then arg maxC V (Bv, .) = arg maxC V (Bu, .).

(B) If Bv ≥ Bu and cu = 1, then cv = 1.

(C) If Bv > Bu, then cv ≥ cu.

(D) If Bv > Bu and e is differentiable at cu and cv, then cv > cu.

(E) If cv > cu, then Bv ≥ Bu.

Proof. Consider g, e, V , Bv, Bu, cv, and cu ex hypothesi.

(A) is obvious.

(B) Using Lemma 4.1(A), if cu = 1, then Bv ≥ Bu ≥ [η(1)− η(c)]/(1− c)
for every c ∈ [0, 1). Again using Lemma 4.1(A), cv = 1.

(C) Suppose Bv > Bu. If cv = 1, the conclusion holds trivially. If cu = 1,
then cv = 1 by (B) and the conclusion holds.

Suppose cu, cv ∈ (0, 1). By Lemma 4.1(E), Bu ∈ ∂η(cu) and Bv ∈
∂η(cv). Thus, η(cv)−η(cu) ≥ Bu(cv− cu) and η(cu)−η(cv) ≥ Bv(cu−
cv). It follows that (Bu − Bv)(cv − cu) ≤ 0. As Bv > Bu, we have
cv ≥ cu.

(D) By (C), cv ≥ cu. As e is differentiable at cu and cv, Lemma 4.1(E)
implies Bv − Dη(cv) = 0 = Bu − Dη(cu). As Bv > Bu, we have
Dη(cv) > Dη(cu). Hence, cv 6= cu. So, cv > cu.

(E) Consider cu, cv ∈ C such that cu < cv.
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Suppose cu = 0. Then, cvBu − η(cv) = V (Bu, cv) ≤ V (Bu, cu) = 0 =
V (Bv, 0) ≤ V (Bv, cv) = cvBv − η(cv). Thus, cv(Bv − Bu) ≥ 0. As
cv > 0, we have Bv ≥ Bu.

Suppose cv = 1. As cu < cv = 1, Lemma 4.1(A) implies Bv ≥ [η(1)−
η(cu)]/(1− cu). If cu = 0, then Lemma 4.1(B) implies Bv ≥ η(1)/1 ≥
Bu. If cu > 0, then cu ∈ (0, 1). Therefore, Lemma 4.1(E) implies
Bu ∈ ∂η(cu). Hence, Bv ≥ [η(1)− η(cu)]/(1− cu) ≥ Bu.

Finally, suppose cu, cv ∈ (0, 1). By Lemma 4.1(E), Bu ∈ ∂η(cu) and
Bv ∈ ∂η(cv). Thus, η(cv) − η(cu) ≥ Bu(cv − cu) and η(cu) − η(cv) ≥
Bv(cu − cv). It follows that (Bu − Bv)(cv − cu) ≤ 0. As cv > cu, we
have Bv ≥ Bu.

Remark 4.4 Suppose the problem addressed in Theorem 4.3 is modified so
that g given by Equation (4) is continuous, e is given by Equation (6), and
V is given by Equation (9). Then, it is easy to verify that the results in
Theorem 4.3 continue to hold.

Theorem 4.3 relates the ordering of cv and cu to the ordering of Bv and
Bu. Equation (11) derives Bv and Bu from distribution µ ∈ ∆(T ) and
utilities v and u respectively. The following result provides conditions on
the exogenous data v, u, and µ that predict the ordering of Bv and Bu.

Theorem 4.5 Suppose T = <n+ for some n ∈ N and µ ∈ ∆(T ). Con-
sider continuous functions v : T → < and u : T → < such that Bv =∫
T µ(dt) v(t) <∞ and Bu =

∫
T µ(dt)u(t) <∞.

(A) If v ≥ u on T , then Bv ≥ Bu.

Suppose u(0) = v(0) = 0, ¬v ≥ u on T , and ¬u ≥ v on T .

(B) Then, there exists τ ∈ T \ {0} such that v(τ)− u(τ) = 0.

(C) Suppose u and v are risk averse and strictly increasing. If u is more
risk averse than v and Bv ≥ v(τ), then Bv ≥ Bu.

Proof. Consider µ, u, v, Bu, and Bv ex hypothesi.

(A) follows immediately from the definitions.

(B) As ¬v ≥ u and ¬u ≥ v, there exist a, b ∈ T \{0} such that v(a)−u(a) <
0 and v(b)−u(b) > 0 respectively. As v and u are continuous, so is v−u.
Hence, there is some convex combination of a and b, say τ ∈ T \ {0},
such that v(τ)− u(τ) = 0.
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(C) As u is more risk averse than v, there is an increasing concave function
f : v(T ) → < such that u = f ◦ v. It follows that f(0) = 0 and
y 7→ f(y)/y is decreasing over v(T ). As τ ∈ T \ {0} and v is strictly
increasing, f ◦ v(τ) = u(τ) = v(τ) > 0.

Since Bv ≥ v(τ), we have f(Bv)/Bv ≤ f ◦ v(τ)/v(τ) = 1. So, Bu =
Bf◦v =

∫
T µ(dy) f ◦ v(y) =

∫
< µ ◦ v

−1(dy) f(y) ≤ f(
∫
< µ ◦ v

−1(dy) y) =
f(
∫
T µ(dy) v(y)) = f(Bv) ≤ Bv.

Given u, v, and τ , satisfaction of the condition Bv ≥ v(τ) depends on
µ ◦ v−1([v(τ),∞)). For instance, consider µ = αδτ ′ + (1 − α)δ0, where
α ∈ (0, 1) and τ ′ ∈ T such that τ ′ ≥ τ . Then, Bv = αv(τ ′) + (1− α)v(0) =
αv(τ ′). If µ ◦ v−1([v(τ),∞)) = µ({τ ′}) = α ≥ v(τ)/v(τ ′), then Bv ≥ v(τ).

5 Duality

We shall consider three models of Bidder 1’s problem: the indirect, the
intermediate, and the direct model. The analysis thus far has concerned the
first model. In this section, we show dualities between the solutions of these
models thereby rationalising the indirect model.

We start by using the Bayesian game generated by a sealed bid auction
to derive the parameters G and B. Suppose I is the finite set of Bidder 1’s
rivals, Ti is Bidder i’s type space, µi is the prior distribution over Ti, and
Bidder i’s bidding strategy is the probability transition kernel fi : Ti ×
B([0, β1]) → [0, 1].7 Hence, Bidder 1’s belief about Bidder i’s bid is the
distribution

∫
Ti
µi(dti) fi(ti, .) ∈ ∆([0, β1]) with distribution function Gi. As

the rivals’ bidding strategies are independent, the rival distribution function
G is given by

G(x) =
∏
i∈I

Gi(x) (10)

for x ∈ <, which corresponds to the distribution of the highest bid amongst
Bidder 1’s rivals.

If Bidder 1’s type is t1 ∈ T1 and the profile of rival bidders’ types is
t ∈ T :=

∏
i∈I Ti, then let Bidder 1’s gross utility be u(t1, t) if she wins the

prize, and 0 otherwise. Therefore, at the interim stage, Bidder 1’s (expected)
valuation of the prize, contingent on her type t1, is

B(t1) =

∫
T
µ(dt)u(t1, t) (11)

where µ =
∏
i∈I µi is the prior joint distribution of the rivals’ types; we shall

suppress t1 henceforth and denote B(t1) by B.

7This means fi(., E) : Ti → [0, 1] is measurable for every E ∈ B([0, β1]) and fi(ti, .) ∈
∆([0, β1]) for every ti ∈ Ti. The interpretation of fi is that, knowing her type ti ∈ Ti,
Bidder i will randomise her bids as per fi(ti, .).
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Given G and B, we specify various versions of each model, parametrised
by the auction form and the setting.

1. Indirect model. In the σ-additive setting, with e1 and e2 given
by (6), Bidder 1’s expected payoffs in the first-price and second-price
auctions are

V1(B, c) = cB − e1(c) and V2(B, c) = cB − e2(c) (12)

respectively. In the finitely additive setting, with η1 and η2 given
by (7), Bidder 1’s expected payoffs in the first-price and second-price
auctions are

V1(B, c) = cB − η1(c) and V2(B, c) = cB − η2(c) (13)

respectively.

Bidder 1’s problem in the indirect model of the first-price (resp.,
second-price) auction is to choose c ∈ C to maximise V1(B, .) (resp.,
V2(B, .)), which is given by (12) or (13) as per the setting.

Bidder 1’s objective function, given variously by (8), (9), (12), and
(13), is easily justified. For instance, if c ∈ C and λ ∈ ∆(C, c), then
m(λ) = c and

∫
C λ(dy) [yB − g(y)] = cB −

∫
C λ(dy) g(y) ≤ cB −

e(c). Thus, Bidder 1 can do no better than to choose a mean winning
probability c that maximises cB − e(c) and is implemented by some
λ ∈ ∆(C, c).

2. Intermediate model. Given a distribution λ over C, Bidder 1’s
mean winning probability for both auction forms is

m(λ) =

∫
C
λ(dc) c (14)

the expected payment in the first-price auction is

Ĉ1(λ) =

∫
C
λ(dc) b(c)G ◦ b(c) (15)

the expected payment in the second-price auction is

Ĉ2(λ) =

∫
C
λ(dc)

∫
[0,b(c)]

x dG(x) (16)

and the expected payoffs in the first-price and second-price auctions
are

Û1(λ) = m(λ)B − Ĉ1(λ) and Û2(λ) = m(λ)B − Ĉ2(λ) (17)
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respectively. The integrals in (14)-(16) are understood to be Lebesgue-
Stieltjes integrals when λ ∈ ∆(C) in the σ-additive setting and Dunford-
Schwartz integrals when λ ∈ P (C) in the finitely additive setting.

Bidder 1’s problem in the intermediate model of the first-price (resp.,
second-price) auction is to choose λ to maximise Û1 (resp., Û2), where
λ is chosen from ∆(C) or P (C) as per the setting.

3. Direct model. Let Hν be the distribution function corresponding
to the bid distribution ν ∈ ∆([0, β1]). Given ν, the mean winning
probability for both auction forms is

P (ν) =

∫
[0,β1]

G(x) dHν(x) (18)

the expected payment in the first-price auction is

C1(ν) =

∫
[0,β1]

[∫
[x,β1]

z dHν(z)

]
dG(x) (19)

the expected payment in the second-price auction is

C2(ν) =

∫
[0,β1]

x[1−Hν(x)] dG(x) (20)

and the expected utilities are

U1(ν) = P (ν)B − C1(ν) and U2(ν) = P (ν)B − C2(ν) (21)

for the first-price and second-price auctions respectively.

Bidder 1’s problem in the direct model of the first-price (resp., second-
price) auction is to maximise U1 (resp., U2) over ∆([0, β1]). Since P ,
C1, and C2 are affine functions, so are U1 and U2. Therefore, the set
of maximisers of U1 (resp., U2) is convex.

The direct model is considered in the σ-additive setting only since we
do not have a dual characterisation of it in the finitely additive setting.

For a given setting and a given auction form, a duality between two of
the above three models is a function from the choice space of one model in
the pair to the other model’s choice space such that, for every admissible
rival distribution G and Bidder 1’s valuation B ∈ <+,

1. the image of a solution of Bidder 1’s problem in the first model solves
Bidder 1’s problem in the second model, and

2. a solution of Bidder 1’s problem in the second model has a pre-image
that solves Bidder 1’s problem in the first model.
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The other duality results are demonstrated for the σ-additive model and
require some enabling assumptions. The second duality result, Theorem 5.6,
provides an equivalence mapping between the choice variables in Problems 2
and 3, namely distributions over winning probabilities and bids respectively.
The third duality result, Theorem 5.8, shows that equivalent choice variables
in the two auction forms lead to the same mean winning probabilities, ex-
pected payments, and expected utilities for Bidder 1. The key corollary of
Theorem 5.8 is that the equivalence mapping preserves Bidder 1’s preference
ordering. The final duality result, Corollary 5.10, shows that a distribution
over winning probabilities solves Problem 2 if and only if the equivalent bid
distribution solves Problem 3.

5.1 Indirect and intermediate model dualities

We first show a duality between the indirect and intermediate models of the
first-price auction in the finitely additive setting.

Theorem 5.1 Consider B ≥ 0, and G, η1, V1, m, Ĉ1, and Û1 as per
Equations (1), (7), (13), (14), (15), and (17), respectively.

(A) If λ ∈ arg maxP (C) Û1(.), then m(λ) ∈ arg maxC V1(B, .) and Ĉ1(λ) =
η1 ◦m(λ).

(B) If c∗ ∈ arg maxC V1(B, .), then there exists λ∗ ∈ P (C, c∗) such that
λ∗ ∈ arg maxP (C) Û1(.).

Proof. Consider B, G, η1, V1, m, Ĉ1, and Û1 ex hypothesi. Clearly, m is
surjective.

(A) Consider λ ∈ arg maxP (C) Û1(.). Suppose Ĉ1(λ) 6= η1 ◦ m(λ). Since

λ ∈ P (C,m(λ)), we have Ĉ1(λ) ≥ η1◦m(λ). Hence, Ĉ1(λ) > η1◦m(λ).
So, Ĉ1(λ) > Ĉ1(λ′) for some λ′ ∈ P (C,m(λ)). Then, m(λ′) = m(λ)
and Û1(λ′) = m(λ′)B − Ĉ1(λ′) > m(λ)B − Ĉ1(λ) = Û1(λ), which is a
contradiction. So, Ĉ1(λ) = η1 ◦m(λ).

Consider c ∈ C. Lemma 3.6 implies η1(c) = Ĉ1(λc) for some λc ∈
P (C, c). Hence, m(λc) = c and V1(B,m(λ)) = m(λ)B − η1 ◦m(λ) =
m(λ)B− Ĉ1(λ) = Û1(λ) ≥ Û1(λc) = m(λc)B− Ĉ1(λc) = cB− η1(c) =
V1(B, c). So, m(λ) ∈ arg maxC V1(B, .).

(B) Consider c∗ ∈ arg maxC V1(B, .). Lemma 3.6 implies η1(c∗) = Ĉ1(λ∗)
for some λ∗ ∈ P (C, c∗). Consider λ ∈ P (C). Then, η1 ◦ m(λ) ≤
Ĉ1(λ) and Û1(λ∗) = m(λ∗)B − Ĉ1(λ∗) = c∗B − η1(c∗) = V1(B, c∗) ≥
V1(B,m(λ)) = m(λ)B − η1 ◦ m(λ) ≥ m(λ)B − Ĉ1(λ) = Û1(λ). So,
λ∗ ∈ arg maxP (C) Û1(.).
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By analogous arguments, we have this duality in the σ-additive setting.

Theorem 5.2 Consider B ≥ 0, and G, e1, V1, m, Ĉ1, and Û1 as per
Equations (1), (6), (12), (14), (15), and (17), respectively. Suppose G is
continuous and strictly increasing.

(A) If λ ∈ arg max∆(C) Û1(.), then m(λ) ∈ arg maxC V1(B, .) and Ĉ1(λ) =
e1 ◦m(λ).

(B) If c∗ ∈ arg maxC V1(B, .), then there exists λ∗ ∈ ∆(C, c∗) such that
λ∗ ∈ arg max∆(C) Û1(.).

Remark 5.3 By analogous arguments, the above two results also hold for
the second-price auction, with e1, η1, Ĉ1, V1, and Û1 replaced by e2, η2, Ĉ2,
V2, and Û2 respectively. The analogue of Theorem 5.2 for the second-price
auction requires G to be only continuous.

The conditions on G in Theorem 5.2 (resp., Remark 5.3) ensure that g1

(resp., g2) is continuous as per Lemma 3.3. This continuity is required in
the proofs for the application of Lemma 3.5 in place of Lemma 3.6.

The following argument demonstrates the canonicity of the indirect for-
mulation by showing that the choice of an equivalence class of distribu-
tions in the intermediate formulation is generally reducible to an elementary
choice of a probability in the unit interval.

Remark 5.4 Let C ′ = arg maxC V1(B, .) in Theorem 5.1’s setting. By
Theorem 5.1(B), for every c ∈ C ′, there exists λc ∈ P (C, c) such that
λc ∈ arg maxP (C) Û1(.). Hence, Û1 is constant over {λc | c ∈ C ′}. More

generally, Û1 is constant over A := ∪c∈C′{λ ∈ P (C) | Û1(λc) = Û1(λ)}.
Consequently, A is an equivalence class and A ⊂ arg maxP (C) Û1(.).

Conversely, consider λ ∈ arg maxP (C) Û1(.). By Theorem 5.1(A), m(λ) ∈
arg maxC V1(B, .) = C ′. Hence, λm(λ) ∈ arg maxP (C) Û1(.). As Û1(λm(λ)) =

Û1(λ) and m(λ) ∈ C ′, we have λ ∈ A. Hence, A = arg maxP (C) Û1(.).
Thus, C ′ is interpretable as the canonical representation of the equiva-

lence class ∪c∈C′{λ ∈ P (C) | Û1(λc) = Û1(λ)}.

5.2 Intermediate and direct model dualities

We now turn to the dualities between models involving the intermediate and
the direct formulations in the σ-additive setting. Unlike the above dualities,
this will require some extra regularity constraints on G and the choices
available to Bidder 1 in these models.

The first step shows that, if G is continuous, then the search for optimal
bid distributions may be restricted to ∆(b(C)) without loss of generality.
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Lemma 5.5 If G is continuous and ν ∈ ∆([0, β1]) \ ∆(b(C)), then there
exists ν ′ ∈ ∆(b(C)) such that U1(ν ′) > U1(ν) and U2(ν ′) > U2(ν).

The second result provides the candidate for the duality mapping. Let
Γ(λ) = λ ◦ b−1 for λ ∈ ∆(C); clearly, Γ(λ) ∈ ∆(b(C)).

Lemma 5.6 Suppose G is continuous. Then,

(A) Γ : ∆(C)→ ∆(b(C)) is a bijection with function inverse Γ−1, and

(B) if G is also strictly increasing, then Γ is a homeomorphism from ∆(C)
to ∆([0, β1]), with ∆(C) and ∆([0, β1]) given their weak* topologies.

The following lemma provides the key technical tool for relating Bid-
der 1’s expected payoffs from the pairs of distributions (λ,Γ(λ)). Henceforth,
Fλ and Hν denote the distribution functions corresponding to λ ∈ ∆(C)
and ν ∈ ∆([0, β1]) respectively. Given HΓ(λ), define hΓ(λ) : [0, β1] → < by
hΓ(λ)(x) = xHΓ(λ)(x).

Lemma 5.7 Consider G and λ ∈ ∆(C). If

(a) G and Fλ are continuous, and

(b) G has a bounded derivative on [0, β1]\M and Fλ has a bounded deriva-
tive on C \ L, where M and L are countable,

then G, Fλ, HΓ(λ), and hΓ(λ) are absolutely continuous.

As G and Fλ are distribution functions, they are right-continuous and
increasing, and therefore, differentiable Leb-a.e. Hypothesis (a) strengthens
right-continuity to continuity and hypothesis (b) strengthens Leb-a.e. dif-
ferentiability to bounded differentiability on co-countable sets.8 Applying
this result, we show that Γ preserves mean winning probabilities, expected
payments, and expected payoffs.

Theorem 5.8 If G and λ ∈ ∆(C) meet the hypotheses of Lemma 5.7, then

(A) Ĉ1(λ) = C1(Γ(λ)) and Ĉ2(λ) = C2(Γ(λ)),

(B) m(λ) = P (Γ(λ)), and

(C) Û1(λ) = U1(Γ(λ)) and Û2(λ) = U2(Γ(λ)).

It follows immediately that Γ is order-preserving on ∆(C).

8Distribution functions ruled out by hypothesis (b) include the Cantor function. While
it meets hypothesis (a), it does not satisfy hypothesis (b) as it is non-differentiable on the
entire Cantor set, which is uncountable.
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Corollary 5.9 If G and λ1, λ2 ∈ ∆(C) meet the hypotheses of Lemma 5.7,
then Û1(λ1) ≥ Û1(λ2) if and only if U1(Γ(λ1)) ≥ U1(Γ(λ2)), and Û2(λ1) ≥
Û2(λ2) if and only if U2(Γ(λ1)) ≥ U2(Γ(λ2)).

We finally have the duality between the solutions of Bidder 1’s problem in
the intermediate and direct models of the first-price auction in the σ-additive
setting. Let ∆(C)0 be the set of λ ∈ ∆(C) that satisfy the hypotheses
of Lemma 5.7. Let ∆([0, β1])0 = Γ(∆(C)0). Using Lemma 5.6, if G is
continuous, then Γ is a bijection from ∆(C)0 to ∆([0, β1])0.

Corollary 5.10 Consider the first-price auction. If G and λ meet the hy-
potheses of Lemma 5.7, then Û1(λ) ≥ Û1(λ′) for every λ′ ∈ ∆(C)0 if and
only if U1(Γ(λ)) ≥ U1(ν) for every ν ∈ ∆([0, β1])0.

The analogous result holds for the second-price auction with Û2, U2, and
Ĉ2 replacing Û1, U1, and Ĉ1 respectively.

6 Concluding remarks

We have analysed models of bidding behaviour in first-price and second-price
sealed bid auctions of a prize wherein, given the rivals’ bid distributions, a
bidder chooses a mean winning probability that is generated by a distribu-
tion over winning probabilities or equivalently – as shown by our duality
results – by a bid distribution. The mean winning probabilities chosen in
these models increase – indicating greater aggression – if and only if the
bidder’s valuation of the prize increases.

This formulation of bidding behaviour has obvious advantages. First,
bidding behaviour is represented simply by just the first moment of a dis-
tribution over winning probabilities, i.e., a single number from the unit
interval, instead of an entire distribution. Consequently, an optimal choice
has an elementary characterisation. Secondly, the variational analysis and
result are simplified and sharpened by the properties of the usual ordering
on <. A similar analysis of chosen distributions would have to rely on partial
stochastic orders.

It is natural to ask if bidding behaviour in terms of bid distributions
or distributions over winning probabilities bears any relation to the model
of bidding behaviour in terms of mean winning probabilities. Given some
regularity conditions, we have shown that these three models of bidding
behaviour are equivalent if attention is restricted to σ-additive distributions
over winning probabilities and σ-additive bid distributions. Moreover, it is
shown in great generality that the models of bidding behaviour in terms
of distributions over winning probabilities and mean winning probabilities
are equivalent for finitely additive and σ-additive distributions over winning
probabilities.
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An obvious complementary question for future investigation is the effect
of variations in the rival distribution function G on bidding behaviour.

Appendix

Proof of Lemma 3.1 Consider b and G ex hypothesi.

(A) Clearly, b is bounded and nonnegative.

If c1, c2 ∈ C and c1 < c2, then G−1([c2, 1]) ⊂ G−1([c1, 1]). Conse-
quently, b(c1) ≤ b(c2), i.e., b is increasing and therefore measurable.

If α < 0, then b−1((α,∞)) = C, which is open in C. Consider α ≥ 0.
If b−1((α,∞)) = ∅, then b−1((α,∞)) is open in C. Suppose there
exists c ∈ b−1((α,∞)). Then, c ∈ (0, 1] and inf G−1([c, 1]) = b(c) > α.
Consequently, G(α) < c. Thus, b−1((α,∞)) ⊂ (0, 1] ∩ (G(α),∞).
Conversely, suppose c ∈ (0, 1] ∩ (G(α),∞). As G(b(c)) ≥ c, we have
G(α) < G(b(c)). As G is increasing, α < b(c). Thus, b−1((α,∞)) ⊃
(0, 1]∩ (G(α),∞). So, b−1((α,∞)) = (0, 1]∩ (G(α),∞), which is open
in C. Therefore, b is left-continuous.

(B) SupposeG is not strictly increasing on [0, β1]. Then, there exist b1, b2 ∈
[0, β1] such that b1 < b2 and G(b1) = G(b2) = c. As b1 < b2 ≤ β1 =
inf G−1({1}), we have c = G(b1) < 1. So, there exists N ∈ N such that
c + 1/N < 1. For every n ≥ N , we have b(c + 1/n) ≥ b2 > b1 ≥ b(c).
Thus, b(c+) ≥ b2 > b(c), i.e., b is not continuous.

Conversely, suppose b is not continuous. As b is increasing and left-
continuous, there exists c ∈ [0, 1) and α1, α2 ∈ < such that b(c) <
α1 < α2 < b(c+) ≤ b(c+ 1/n) for every n ∈ N such that c+ 1/n ≤ 1.
As G is increasing, we have c ≤ G(α1) ≤ G(α2) < c+ 1/n. It follows
that G(α1) = c = G(α2). Thus, G is not strictly increasing.

Suppose b is not strictly increasing. Then, there exist c1, c2 ∈ C such
that c1 < c2 and b(c1) = b(c2). Then, G(b(c1)) = G(b(c2)) ≥ c2 > c1.
If c1 = 0, then G(0) = G(b(0)) > 0 = G(0−), i.e., G is not continuous.
If c1 > 0, then G(b(c1) − 1/n) < c1 for every n ∈ N , which implies
G(b(c1)) > c1 ≥ G(b(c1)−), i.e., G is not continuous.

Conversely, suppose G is not continuous. As G is increasing and right-
continuous, there exists α ∈ (0, β1] and c1, c2 ∈ (0, 1) such that G(α) >
c2 > c1 > G(α−). As G is increasing, [α,∞) ⊂ G−1([c1, 1]). If
β < α, then G(β) ≤ G(α−) < c1, which means β 6∈ G−1([c1, 1]).
So, [α,∞) ⊃ G−1([c1, 1]). Thus, G−1([c1, 1]) = [α,∞). Similarly,
G−1([c2, 1]) = [α,∞). By definition, b(c1) = α = b(c2). Thus, b is not
strictly increasing.
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(C) By definition, there exists an increasing sequence (cn) ⊂ b−1({b(c)})
converging to c̄. As b is left-continuous by (A) and b(cn) = b(c) for
every cn, we have b(c̄) = limn b(cn) = b(c).

(D) Consider c ∈ C. Then, c̄ ∈ C. As G is right-continuous, b(c̄) ∈
G−1([G ◦ b(c̄), 1]) ∩ [0, β1]. Therefore, b(c̄) ≥ inf[G−1([G ◦ b(c̄), 1]) ∩
[0, β1]] = b ◦ G ◦ b(c̄) ≥ b(c̄) as G ◦ b(c) ≥ c for every c ∈ C and b is
increasing by (A). So,

b(c̄) = b ◦G ◦ b(c̄) (22)

Suppose there exists c′ ∈ C such that c′ > c̄. As b is increasing by
(A), b(c′) ≥ b(c̄). Suppose b(c′) = b(c̄). As b(c̄) = b(c) by (C), we
have b(c′) = b(c). Hence, c′ ∈ b−1({b(c)}). This implies c′ > c̄ =
sup b−1({b(c)}) ≥ c′, which is a contradiction. Hence, b(c′) > b(c̄).

Since c̄ ∈ C and G ◦ b(c) ≥ c for every c ∈ C, we have G ◦ b(c̄) ≥ c̄.
If G ◦ b(c̄) > c̄, then b ◦ G ◦ b(c̄) > b(c̄), which contradicts (11). So,
c̄ = G ◦ b(c̄) ∈ G([0, β1]).

(E) Combining (C) and (D), c < c̄ implies c < c̄ = G ◦ b(c̄) = G ◦ b(c).

(F) It follows from (D) that G([0, β1]) ⊃ {c ∈ C | c = c̄}.
Conversely, consider c ∈ G([0, β1]). Then, G−1({c}) ∩ [0, β1] 6= ∅.
If |G−1({c}) ∩ [0, β1]| = 1, then there is a unique β ∈ [0, β1] such
that G(β) = c. As G is increasing, b(c) = inf[G−1([c, 1]) ∩ [0, β1]] =
inf[β, β1] = β. So, c ∈ b−1({β}) = b−1({b(c)}). Suppose there ex-
ists c′ ∈ C such that c′ > c and c′ ∈ b−1({b(c)}). Then, b(c′) =
β 6∈ G−1([c′, 1]) since G(β) = c < c′. As G is right-continuous,
β < inf G−1([c′, 1]). So, b(c′) = inf[G−1([c′, 1]) ∩ [0, β1]] > β, a contra-
diction. It follows that c = sup b−1({b(c)}) = c̄.

Suppose |G−1({c}) ∩ [0, β1]| > 1. As G(0) = 0 and G(b) > 0 for
b > 0, we have |G−1({0}) ∩ [0, β1]| = 1. So, c > 0 and b(c) =
inf[G−1([c, 1]) ∩ [0, β1]] = inf G−1([c, 1]). The right-continuity of G
implies the existence of β

¯
, β̄ ∈ [0, β1] such that β

¯
< β̄ and G−1({c}) =

[β
¯
, β̄). As G is increasing, b(c) = inf G−1([c, 1]) = inf[β

¯
, β1] = β

¯
. So,

c ∈ b−1({β
¯
}) = b−1({b(c)}). Suppose there exists c′ ∈ C such that

c′ > c and c′ ∈ b−1({b(c)}). Then, c′ > 0 and b(c′) = b(c) = β
¯
6∈

G−1([c′, 1]) since G(β
¯

) = c. Therefore, b(c) = b(c′) = inf[G−1([c′, 1]) ∩
[0, β1]] = inf G−1([c′, 1]) > β

¯
, which is a contradiction. It follows that

c = sup b−1({b(c)}) = c̄. Hence, G([0, β1]) ⊂ {c ∈ C | c = c̄}.
In addition, consider β ∈ [0, β1]. Then, G(β) ∈ G([0, β1]). Conse-
quently, G(β) = G(β). Therefore, G ◦ b ◦ G(β) = G ◦ b(G(β)) =
G(β) = G(β).
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(G) Consider c ∈ b−1([0, x]). Then, b(c) ∈ [0, x]. By (B), b is strictly
increasing. So, c = c̄. Using (D), c = G ◦ b(c̄) = G ◦ b(c) ∈ G([0, x]).
Conversely, consider c ∈ G([0, x]). Then, c = G(y) for some y ∈ [0, x].
Using (2), b(c) ∈ [0, y] ⊂ [0, x]. So, c ∈ b−1([0, x]).

Proof of Lemma 3.2 Consider either auction form. As b is nonnegative
and G is a distribution function, g is nonnegative. As b(0) = 0, we have
g(0) = 0. As b is bounded and G is a distribution function, g is bounded.
As b and G are increasing, so is g. As g is increasing and bounded, it is
integrable.

Proof of Lemma 3.3 Consider G, b, g1, and g2 ex hypothesi.

(A) As G is strictly increasing, it is injective. As b is strictly increasing,
c = c̄ for every c ∈ C. By Lemma 3.1, G is surjective and G (resp., b)
is the function inverse of b (resp., G). G is continuous by assumption
and b is continuous by Lemma 3.1.

(B) If G is continuous and strictly increasing, then so is b by Lemma 3.1.
Hence, g1 is continuous. The converse is proved as follows.

(a) Suppose G is discontinuous at β ∈ (0, β1) with G(β) = c. Then,
G(β−) = c < c = G(β). As b = β on (c, c], we have G ◦ b(c′) =
G(β) for c′ ∈ (c, c]. Hence, b(c+) = β, G ◦ b(c+) = G(β), and
g1(c+) = b(c+)G ◦ b(c+) = βG(β). As b is left-continuous by
Lemma 3.1, b(c−) = b(c) ≤ β.

Let b(c) < β. Then, G ◦ b(c−) ≤ G(β−) and g1(c+) = βG(β) >
b(c−)G(β−) ≥ b(c−)G ◦ b(c−) = g1(c−).

Let b(c) = β. Consider n ∈ N . By the definition of c, we
have b(c − 1/n) < b(c) = β. So, there exists δ > 0 such that
b(c − 1/n) < β − δ and G ◦ b(c − 1/n) ≤ G(β − δ) ≤ G(β−).
Hence, G ◦ b(c−) ≤ G(β−). It follows that g1(c+) = βG(β) >
b(c−)G(β−) ≥ b(c−)G ◦ b(c−) = g1(c−).

So, g1 is discontinuous at c in both cases.

(b) Suppose G is not strictly increasing on [0, β1]. Then, there exists
c ∈ (0, 1) and β ∈ (0, β1) such that b(c) < β and G(β) = c. As b
is left-continuous by Lemma 3.1, b(c−) = b(c). If G is continuous
at b(c), then g1(c−) = b(c−)G ◦ b(c−) = b(c)G ◦ b(c). If G is
discontinuous at b(c), then c < c and b = b(c) on (c, c]. So,
g1(c−) = b(c−)G ◦ b(c−) = b(c)G ◦ b(c). Also, b(c+) ≥ β > b(c)
and g1(c+) = b(c+)G ◦ b(c+) > b(c)G ◦ b(c) = g1(c−). Hence, g1

is discontinuous at c.

(C) Suppose G is continuous. Consider c ∈ C. As b is left-continuous
by Lemma 3.1, b(c+) ≥ b(c) = b(c−). Applying the monotone con-
vergence theorem (Bruckner et al. [2], Theorem 5.8) to (5), we have
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g2(c+) = b(c+)G ◦ b(c+) −
∫

[0,b(c+)] dy G(y) and g2(c−) = b(c)G ◦
b(c)−

∫
[0,b(c)] dy G(y). As G is continuous, b is strictly increasing, and

so b(c+) = maxG−1({c}). Therefore, G ◦ b(c+) = c. By Lemma 3.1,
as b is strictly increasing, c = c̄ and G ◦ b(c) = G ◦ b(c̄) = c̄ = c.
So, g2(c+)− g2(c−) = [b(c+)− b(c)]c−

∫
(b(c),b(c+)] dy G(y) = [b(c+)−

b(c)]c− [b(c+)− b(c)]c = 0, i.e., g2 is continuous at c.

Conversely, suppose G is discontinuous at some β ∈ [0, β1]. By (1),
β ∈ (0, β1). Let c := G(β) > G(β−). By (1) and (3), c̄ > c > 0
and β = b(c′) ≥ b(c) for every c′ ∈ (c, c̄]. Consider n ∈ N such
that c − 1/n, c + 1/n ∈ [0, c̄]. By (3), b(c − 1/n) < b(c) and b(c +
1/n) = β. As b is left-continuous by Lemma 3.1, limn b(c − 1/n) =
b(c). So, 1[0,b(c+1/n)] − 1[0,b(c−1/n)] = 1(b(c−1/n),β], and by (4), g2(c +
1/n)− g2(c− 1/n) =

∫
< y1(b(c−1/n),β](y) dG(y). As limn 1(b(c−1/n),β] =

1[b(c),β], the monotone convergence theorem implies g2(c+)−g2(c−) =
limn

∫
< y1(b(c−1/n),β](y) dG(y) =

∫
< y limn 1(b(c−1/n),β](y) dG(y), which

equals
∫
< y1[b(c),β](y) dG(y) ≥

∫
< y1{β}(y) dG(y) = β[G(β)−G(β−)] >

0, i.e., g2 is discontinuous at c.

Proof of Lemma 3.4 Consider g ex hypothesi.

(A) Consider c ∈ C and λ ∈ ∆(C, c). So, δc ∈ ∆(C, c). As g is con-
vex, g(c) = g(

∫
C λ(dx)x) ≤

∫
C λ(dx) g(x). Hence, g(c) = L(g, δc) =

min{L(g, λ) | λ ∈ ∆(C, c)} = e(c).

(B) follows from (A) and Lemma 3.2.

(C) As g is convex, g is continuous on (0, 1) (Aliprantis and Border [1],
Theorem 7.22). As g is increasing, g(0) ≤ inf g((0, 1]). As g is convex,
g(0) ≥ inf g((0, 1]). Thus, g(0) = inf g((0, 1]) and g is continuous at 0.
So, g is continuous on [0, 1).

(D) As g is convex, it is subdifferentiable on (0, 1) (Aliprantis and Bor-
der [1], Theorem 7.23) and differentiable on (0, 1)\E where E is count-
able (Aliprantis and Border [1], Theorem 7.22). By the Busemann-
Feller theorem, it is twice differentiable Leb-a.e. on (0, 1).

(E) follows from (B) and (C).

Proof of Lemma 3.5 Consider g ex hypothesi.

(A) Give ∆(C) its weak* topology. It follows that ∆(C) is a compact met-
ric space (Parthasarathy [6], Theorem II.6.4) and L(g, .) is continuous.

Let λ ∈ ∆(C) be an accumulation point of ∆(C, c). Then, there is a se-
quence (λn) ⊂ ∆(C, c) converging to λ. As the identity mapping on C
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is continuous, m(λ) =
∫
C λ(dx)x = limn

∫
C λn(dx)x = limnm(λn) =

c. So, λ ∈ ∆(C, c). Hence, ∆(C, c) is closed.

Therefore, ∆(C, c) is compact and there exists λc ∈ ∆(C, c) such that
L(g, λc) = min{L(g, λ) | λ ∈ ∆(C, c)}.

(B) As L(g, .) is bounded and nonnegative, so is e. As δ0 ∈ ∆(C, 0), we
have 0 ≤ e(0) ≤ L(g, δ0) = g(0) = 0. Hence, e(0) = 0.

(C) Consider c1, c2 ∈ C, t ∈ (0, 1), and c = tc1 + (1 − t)c2. By (1), there
exists λ1 ∈ ∆(C, c1) and λ2 ∈ ∆(C, c2) such that e(c1) = L(g, λ1) and
e(c2) = L(g, λ2). Set λ = tλ1 + (1 − t)λ2. Then, λ ∈ ∆(C, c) as λ ∈
∆(C) and m(λ) = tm(λ1)+(1−t)m(λ2) = tc1+(1−t)c2 = c. It follows
that e(c) ≤ L(g, λ) = tL(g, λ1)+(1− t)L(g, λ2) = te(c1)+(1− t)e(c2).

(D) For every c ∈ C, since ∆(C, c) ⊂ {λ ∈ ∆(C) | m(λ) ≥ c}, we have
e(c) = inf{L(g, λ) | λ ∈ ∆(C, c)} ≥ inf{L(g, λ) | λ ∈ ∆(C) ∧ m(λ) ≥
c}.
Consider λ ∈ ∆(C) with m(λ) > c ≥ 0. As c/m(λ) < 1, h(x) =
xc/m(λ) yields the function h : C → C. It follows that λ ◦ h−1 ∈
∆(C) and

∫
C λ ◦ h

−1(dy) y =
∫
C λ(dx)h(x) = c. Thus, λ ◦ h−1 ∈

∆(C, c) and L(g, λ ◦ h−1) =
∫
C λ ◦ h

−1(dy) g(y) =
∫
C λ(dx) g ◦ h(x) ≤∫

C λ(dx) g(x) = L(g, λ) as g is increasing and h(x) ≤ x for every
x ∈ C.

So, for every λ0 ∈ {λ ∈ ∆(C) | m(λ) ≥ c}, there exists λ1 ∈ ∆(C, c)
such that L(g, λ1) ≤ L(g, λ0). It follows that e(c) = inf{L(g, λ) | λ ∈
∆(C, c)} ≤ inf{L(g, λ) | λ ∈ ∆(C) ∧ m(λ) ≥ c}. Consequently,
e(c) = inf{L(g, λ) | λ ∈ ∆(C) ∧ m(λ) ≥ c}.
If c1, c2 ∈ C and c1 < c2, then {λ ∈ ∆(C) | m(λ) ≥ c2} ⊂ {λ ∈ ∆(C) |
m(λ) ≥ c1}. Consequently, e(c2) = inf{L(g, λ) | λ ∈ ∆(C) ∧ m(λ) ≥
c2} ≥ inf{L(g, λ) | λ ∈ ∆(C) ∧ m(λ) ≥ c1} = e(c1).

(E) We first show that ∆(C, .) : C → 2∆(C) is upper hemicontinuous.
As ∆(C) is compact, it suffices to show that Gr ∆(C, .) is closed in
C × ∆(C). Consider a sequence (cn, λn) ⊂ Gr ∆(C, .) converging to
(c, λ). It follows that λn ∈ ∆(C, cn), i.e.,

∫
C λn(dx)x = cn, for every

n. It follows that
∫
C λ(dx)x = limn

∫
C λn(dx)x = limn cn = c. This

means (c, λ) ∈ Gr ∆(C, .). Hence, Gr ∆(C, .) is closed in C ×∆(C).

Next we show that ∆(C, .) is lower hemicontinuous at c ∈ C. Consider
λ ∈ ∆(C, c) and a sequence (cn) ⊂ C \ {c} converging to c. It suffices
to construct a sequence (λn) ⊂ ∆(C) converging to λ such that λn ∈
∆(C, cn) for every n. For n ∈ N , if cn < c, then let tn = (c − cn)/c
and λn = tnδ0 + (1 − tn)λ; if cn > c, then tn = (cn − c)/(1 − c)
and λn = tnδ1 + (1 − tn)λ. Then,

∫
C λn(dx)x = cn for every n, i.e.,
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λn ∈ ∆(C, cn) for every n. In order to check that limn λn = λ, consider
f ∈ C(C). Then,∫

C
λn(dx) f(x) =

{
tnf(0) + (1− tn)

∫
C λ(dx) f(x), if cn < c

tnf(1) + (1− tn)
∫
C λ(dx) f(x), if cn > c

As limn tn = 0, limn

∫
C λn(dx) f(x) =

∫
C λ(dx) f(x). Thus, (λn) con-

verges to λ.

It follows from the above arguments that ∆(C, .) is continuous. As
∆(C) is metrisable, it is a Hausdorff space. Moreover, as Gr ∆(C, .) is
closed in C ×∆(C), ∆(C, .) has closed images. As ∆(C) is compact,
the images are compact. As L(g, .) is continuous, Berge’s theorem of
the maximum implies that e is continuous.

(F) This follows from (C) by copying the argument for Lemma 3.4(D).

(G) This follows from (C), (D), and (E).

Proof of Lemma 3.6 Consider g as per definition.

(A) Equip ba(C) with its weak* topology. As g ∈ B(C), L(g, .) is con-
tinuous. By Alaoglu’s theorem (Dunford and Schwartz [3], Theorem
V.4.2), the closed unit sphere of ba(C) is compact. As P (C, c) is a
subset of this sphere, if it is closed, then it is compact and the desired
result follows immediately.

To verify that P (C, c) is closed, consider λ ∈ ba(C) that is an accu-
mulation point of P (C, c). Then, there exists a net (λn) ⊂ P (C, c)
converging to λ. By definition, limn λn(E) = limn

∫
C λn(dx) 1E(x) =∫

C λ(dx) 1E(x) = λ(E) for every E ∈ B(C). Consequently, λ(∅) = 0,
λ(C) = 1 and λ ≥ 0. Consider pairwise disjoint sets E1, . . . , Ek ∈
B(C). Then, E = ∪ki=1Ei ∈ B(C). As each λn is finitely additive, we

have λ(E) = limn λn(E) = limn
∑k

i=1 λn(Ei) =
∑k

i=1 limn λn(Ei) =∑k
i=1 λ(Ei). So, λ is finitely additive. As the identity map on C

is bounded and measurable, it belongs to B(C). Therefore, c =
limn

∫
C λn(dx)x =

∫
C λ(dx)x. Thus, λ ∈ P (C, c). It follows that

P (C, c) is closed.

(B) Note that δ0 ∈ P (C, 0) and copy the argument for Lemma 3.5(B).

(C) Copy the argument for Lemma 3.5(C).

(D) For every c ∈ C, as P (C, c) ⊂ {λ ∈ P (C) | m(λ) ≥ c}, we have e(c) =
inf{L(g, λ) | λ ∈ P (C, c)} ≥ inf{L(g, λ) | λ ∈ P (C) ∧ m(λ) ≥ c}.
Consider λ ∈ P (C) with m(λ) > c ≥ 0. As c/m(λ) < 1, h(x) =
xc/m(λ) yields the function h : C → C. It follows that λ ◦ h−1 ∈
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P (C) and
∫
C λ ◦ h

−1(dy) y =
∫
C λ(dx)h(x) = c. Thus, λ ◦ h−1 ∈

P (C, c) and L(g, λ ◦ h−1) =
∫
C λ ◦ h

−1(dy) g(y) =
∫
C λ(dx) g ◦ h(x) ≤∫

C λ(dx) g(x) = L(g, λ) as g is increasing and h(x) ≤ x for every
x ∈ C.

So, for every λ0 ∈ {λ ∈ P (C) | m(λ) ≥ c}, there exists λ1 ∈ P (C, c)
such that L(g, λ1) ≤ L(g, λ0). It follows that e(c) = inf{L(g, λ) | λ ∈
P (C, c)} ≤ inf{L(g, λ) | λ ∈ P (C) ∧ m(λ) ≥ c}. Consequently,
e(c) = inf{L(g, λ) | λ ∈ P (C) ∧ m(λ) ≥ c}.
If c1, c2 ∈ C and c1 < c2, then {λ ∈ P (C) | m(λ) ≥ c2} ⊂ {λ ∈ P (C) |
m(λ) ≥ c1}. Consequently, e(c2) = inf{L(g, λ) | λ ∈ P (C) ∧ m(λ) ≥
c2} ≥ inf{L(g, λ) | λ ∈ P (C) ∧ m(λ) ≥ c1} = e(c1).

(E) Copy the proof of Lemma 3.5(E).

(F) Copy the proof of Lemma 3.5(F).

(G) This follows from (C), (D), and (E).

Proof of Lemma 4.1 Consider B, g, η, and V ex hypothesi.

(A) 1 ∈ arg maxC V (B, .) if and only if B − η(1) = V (B, 1) ≥ V (B, c) =
cB − η(c), i.e., B ≥ [η(1)− η(c)]/(1− c), for every c ∈ [0, 1).

(B) Using Lemma 3.6(B), 0 ∈ arg maxC V (B, .) if and only if 0 = V (B, 0) ≥
V (B, c) = cB − η(c), i.e., B ≤ η(c)/c for every c ∈ (0, 1].

(C) If c0 > 0 and c ∈ [0, c0), then Lemma 3.6(F) implies V (B, c + ε) =
(c + ε)B − η(c + ε) = (c + ε)B − η(c) > cB − η(c) = V (B, c) for
ε ∈ (0, c0 − c). So, c 6∈ arg maxC V (B, .).

If η is continuous at 1, then Lemma 3.6(E) implies that η, and there-
fore V (B, .), is continuous on C. As C is nonempty and compact,
Weierstrass’ theorem implies that arg maxC V (B, .) 6= ∅. As [0, c0) ∩
arg maxC V (B, .) = ∅ if c0 > 0, we have arg maxC V (B, .) ⊂ [c0, 1].

If η is discontinuous at 1, then Lemma 3.6(D) implies that η(1) −
η(1−) = ε > 0. Consider δ ∈ (0, 1) such that δB < ε. Then, V (B, 1)−
V (B, 1− δ) = B− (1− δ)B− [η(1)−η(1− δ)] ≤ δB− [η(1)−η(1−)] =
δB − ε < 0. Hence, 1 6∈ arg maxC V (B, .).

(D) If arg maxC V (B, .) = ∅, then it is trivially convex. Otherwise, sup-
pose c1, c2 ∈ arg maxC V (B, .). Let t ∈ (0, 1). Since η is convex by
Lemma 3.6(C), V (B, .) is concave. Hence, V (B, tc1 + (1 − t)c2) ≥
tV (B, c1) + (1− t)V (B, c2) ≥ tV (B, c) + (1− t)V (B, c) = V (B, c) for
every c ∈ C. So, tc1 + (1− t)c2 ∈ arg maxC V (B, .).

In general, arg maxC V (B, .) may be empty. Consider e = 1{1} on C
and B = 1/2. As V (1/2, .) is strictly increasing on [0, 1), we have
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[0, 1) ∩ arg maxC V (1/2, .) = ∅. Moreover, as 1/2 < 1 < 1/(1 − c) =
[η(1)−η(c)]/(1−c) for every c ∈ [0, 1), (B) implies 1 6∈ arg maxC V (1/2, .).
So, e = 1{1} implies arg maxC V (1/2, .) = ∅.

(E) By Lemma 3.6(C), −V (B, .) is convex on (0, 1). By Lemma 7.23
in Aliprantis and Border [1], −V (B, .) is subdifferentiable on (0, 1).
Consider c ∈ (0, 1). Clearly, c ∈ arg maxC V (B, .) if and only if
c ∈ arg min−V (B, .). By Lemma 7.10 in Aliprantis and Border [1],
c ∈ arg min−V (B, .) if and only if 0 ∈ −∂V (B, c) = ∂η(c)−B. Thus,
c ∈ arg maxC V (B, .) if and only if B ∈ ∂η(c).

If η is differentiable at c ∈ (0, 1), then Theorem 7.25 in Aliprantis and
Border [1] implies ∂η(c) = {Dη(c)}.

(F) Consider c = 1. By (A), we have {B ∈ <+ | 1 ∈ arg maxC V (B, .)} =
∩c∈[0,1){B ∈ <+ | B ≥ [η(1)− η(c)]/(1− c)}, which is a convex set.

Consider c = 0. By (B), we have {B ∈ <+ | 0 ∈ arg maxC V (B, .)} =
∩c∈(0,1]{B ∈ <+ | B ≤ η(c)/c}, which is a convex set.

Consider c ∈ (0, 1). SupposeB1, B2 ∈ {B ∈ <+ | c ∈ arg maxC V (B, .)},
i.e., c ∈ arg maxC V (B1, .) ∩ arg maxC V (B2, .). By (E), B1, B2 ∈
∂η(c). Consider t ∈ (0, 1) and c′ ∈ (0, 1). Then, η(c′)−η(c) ≥ B1(c′−c)
and η(c′) − η(c) ≥ B2(c′ − c). Since η(c′) − η(c) ≥ tB1(c′ − c) + (1 −
t)B2(c′ − c) = (tB1 + (1 − t)B2)(c′ − c) for every c′ ∈ (0, 1), we have
tB1+(1−t)B2 ∈ ∂η(c). By part (E), c ∈ arg maxC V (tB1+(1−t)B2, .).
So, {B ∈ <+ | c ∈ arg maxC V (B, .)} is a convex set.

By Lemma 3.6(E), there is a countable set E such that η, and there-
fore V (B, .), is differentiable at every c ∈ (0, 1) \ E. Consider c ∈
(0, 1) \ E. Then, Dη(c) ∈ <+ and B(c) := Dη(c) ∈ ∂η(c). By
(E), c ∈ arg maxC V (B(c), .), and therefore, B(c) ∈ {B ∈ <+ | c ∈
arg maxC V (B, .)}. Consider B ∈ <+ such that c ∈ arg maxC V (B, .).
By (E), B ∈ ∂η(c). As η is differentiable at c, we have B = Dη(c) =
B(c). Hence, {B ∈ <+ | c ∈ arg maxC V (B, .)} is a singleton.

Proof of Lemma 5.5 Consider ν ∈ ∆([0, β1]) \∆(b(C)). Then, ν([0, β1] \
b(C)) > 0, i.e., ν(G−1({c}) \ {b(c)}) > 0 for some c ∈ Φ(G). Hence,
a(c) = maxG−1({c}) > b(c) and Hν(a(c)) − Hν(b(c)) = ν((b(c), a(c)]) =
ν(G−1({c}) \ {b(c)}) > 0. Define t : [b(c), a(c)] → < and Hν′ : < → < by
t(x) = (a(c)− x)/(a(c)− b(c)) and

Hν′(x) =

{
Hν(a(c)) + t(x)[Hν(x)−Hν(a(c))], if x ∈ G−1({c})
Hν(x), if x ∈ < \G−1({c})

respectively. It follows thatHν′(b(c)) = Hν(b(c)), Hν′(a(c)) = Hν(a(c)), and
Hν < Hν′ on (b(c), a(c)). It follows that

∫
[x,β1] z dHν′(z) = β1 − xHν′(x) −
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∫
[x,β1] dz Hν′(z) ≤ β1 − xHν(x)−

∫
[x,β1] dz Hν(z) =

∫
[x,β1] z dHν(z) for every

x ∈ [0, β1], with the inequality strict for x ∈ (b(c), a(c)), which implies
C1(ν ′) < C1(ν). Similarly, C2(ν ′) =

∫
[0,β1] x[1−Hν′(x)] dG(x) <

∫
[0,β1] x[1−

Hν(x)] dG(x) = C2(ν).
Clearly,

∫
[0,β1][Hν′(x)−Hν(x)] dG(x) =

∫
[0,b(c)][Hν′(x)−Hν(x)] dG(x) +∫

(b(c),a(c))[Hν′(x) − Hν(x)] dG(x) +
∫

[a(c),β1][Hν′(x) − Hν(x)] dG(x) = 0 as

Hν′ = Hν on [0, b(c)] ∪ [τ, β1] and G is constant on (b(c), a(c)). So, P (ν ′) =∫
[0,β1]G(x) dHν′(x) = 1 −

∫
[0,β1]Hν′(x) dG(x) = 1 −

∫
[0,β1]Hν(x) dG(x) =∫

[0,β1]G(x) dHν(x) = P (ν).

Therefore, U1(ν ′) > U1(ν) and U2(ν ′) > U2(ν).

Proof of Lemma 5.6 Consider G and Γ ex hypothesi.

(A) Consider λ1, λ2 ∈ ∆(C) with λ1 ◦ b−1 = Γ(λ1) = Γ(λ2) = λ2 ◦ b−1.

Consider c ∈ C and x ∈ b−1 ◦G−1([0, c]). As b is strictly increasing by
Lemma 3.1, x = x̄. By Lemma 3.1, x = x̄ = G◦b(x̄) = G◦b(x) ∈ [0, c].
So, b−1 ◦G−1([0, c]) ⊂ [0, c].

Consider c ∈ C and x ∈ [0, c]. As x ≤ c = c̄, Lemma 3.1 implies
G ◦ b(x) ≤ G ◦ b(c) = G ◦ b(c̄) = c̄ = c. Hence, x ∈ b−1 ◦ G−1([0, c]).
So, b−1 ◦G−1([0, c]) ⊃ [0, c].

As b−1 ◦ G−1([0, c]) = [0, c] for every c ∈ C, we have λ1 = λ1 ◦ b−1 ◦
G−1 = λ2 ◦ b−1 ◦G−1 = λ2. So, Γ is injective.

Consider ν ∈ ∆(b(C)). Since b ◦ G(x) = x for x ∈ b(C), we have
ν ◦G−1 ∈ ∆(C) and Γ(ν ◦G−1) = ν ◦G−1 ◦ b−1 = ν ◦ (b ◦G)−1 = ν.
Thus, Γ is a surjection to ∆(b(C)).

(B) Evidently, b(C) ⊂ [0, β1]. As G is strictly increasing, Lemma 3.1
implies that b is continuous. As b(0) = 0, b(1) = β1, and b is contin-
uous, we have b(C) ⊃ [0, β1]. Hence, b(C) = [0, β1] and ∆(b(C)) =
∆([0, β1]). Using (A), Γ is a bijection from ∆(C) to ∆([0, β1]).

∆(C) and ∆([0, β1]) are compact metric spaces (Parthasarathy [6],
Theorem II.6.4). Consider a sequence (λn) ⊂ ∆(C) converging to
λ ∈ ∆(C). If h : [0, β1] → < is continuous, then the continuity of
b implies

∫
[0,β1] λn ◦ b

−1(dx)h(x) =
∫
C λn(dc)h ◦ b(c) →

∫
C λ(dc)h ◦

b(c) =
∫

[0,β1] λ ◦ b
−1(dx)h(x). So, the sequence (λn ◦ b−1) ⊂ ∆([0, β1])

converges to λ ◦ b−1 ∈ ∆([0, β1]). Hence, Γ is continuous.

Consider a closed set E ⊂ ∆(C). As ∆(C) is compact, E is compact.
As Γ is continuous, Γ(E) is compact. As ∆([0, β1]) is metric, it is
Hausdorff, and therefore Γ(E) is closed. Hence, Γ’s function inverse is
continuous. So, Γ is a homeomorphism.

Proof of Lemma 5.7 We start with a preliminary lemma:
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Suppose f : [a, b] → < is measurable. If f has a bounded derivative on
[a, b] \ E with E countable, then f has the Luzin property, i.e., f(N) ∈ L
and Leb(f(N)) = 0 for every N ⊂ [a, b] such that N ∈ L and Leb(N) = 0.

Proof. Consider f and E ex hypothesi and N ⊂ [a, b] such that N ∈ L and
Leb(N) = 0. Then, N ∩ E ∈ L, N \ E ∈ L and Leb(N \ E) = 0. As N ∩ E
is countable, so is f(N ∩E). Hence, f(N ∩E) ∈ L and Leb(f(N ∩E)) = 0.

As f is differentiable on N \E, Leb∗(f(N \E)) ≤
∫
N\E Leb(dx) |Df(x)|

(Bruckner et al. [2], Lemma 7.13). Since Df is bounded on N \ E and
Leb(N \ E) = 0, we have Leb∗(f(N \ E)) = 0.

Consider T ∈ 2<. As Leb∗ is subadditive, Leb∗(T ∩f(N \E))+Leb∗(T \
f(N \ E)) ≥ Leb∗(T ). As Leb∗(T ∩ f(N \ E)) ≤ Leb∗(f(N \ E)) = 0 and
Leb∗(T \ f(N \ E)) ≤ Leb∗(T ), we have Leb∗(T ∩ f(N \ E)) + Leb∗(T \
f(N \ E)) = Leb∗(T ). Consequently, f(N \ E) ∈ L by the Caratheodory
characterisation of L and Leb(f(N \ E)) = Leb∗(f(N \ E)) = 0.

Hence, f(N) = f(N ∩ E) ∪ f(N \ E) ∈ L and Leb(f(N)) ≤ Leb(f(N ∩
E)) + Leb(f(N \ E)) = 0. So, Leb(f(N)) = 0.

Consider G and λ ex hypothesi.

1. By hypothesis, G is continuous and therefore Borel measurable. As
it is increasing, it has bounded variation. Consider N ∈ L such that
Leb(N) = 0.

Then, N \ [0, β1] ∈ L and Leb(N \ [0, β1]) = 0. As G(N \ [0, β1]) ⊂
{0, 1}, we have G(N \ [0, β1]) ∈ L and Leb(G(N \ [0, β1])) = 0.

Also, N ∩ [0, β1] ∈ L and Leb(N ∩ [0, β1]) = 0. Using (b) and the
preliminary lemma, G(N ∩ [0, β1]) ∈ L and Leb(G(N ∩ [0, β1])) = 0.

So, G(N) = G(N \ [0, β1])∪G(N ∩ [0, β1]) ∈ L and 0 ≤ Leb(G(N)) ≤
Leb(G(N \ [0, β1])) + Leb(G(N ∩ [0, β1])) = 0. Hence, G satisfies the
Luzin property. The Banach-Zarecki theorem (Bruckner et al. [2],
Theorem 7.14) implies that G is absolutely continuous.

2. Fλ is absolutely continuous by an analogous argument.

3. Let B0 = b(C). Since B0 is a countable union of disjoint intervals,
B0 ∈ B([0, β1]).

Since G is continuous, c̄ = c for every c ∈ C. Consider b1, b2 ∈ B0 such
that b1 < b2. Then, there exist c1, c2 ∈ C such that b(c1) = b1 < b2 =
b(c2), i.e., c1 < c2. Using Lemma 3.1, G(b1) = G ◦ b(c1) = c1 < c2 =
G ◦ b(c2) = G(b2). Therefore, G is strictly increasing on B0. So, G’s
restriction to B0 is continuous and injective, with function inverse b.

As Fλ is absolutely continuous by step 2, so is λ (Bruckner et al. [2],
Theorem 5.28). Consider E ∈ B([0, β1]) such that Leb(E) = 0. As
B0 ∈ B([0, β1]), we have E ∩B0 ∈ B([0, β1]) and Leb(E ∩B0) = 0. As
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G satisfies the Luzin property (see step 1), Leb(G(E ∩B0)) = 0. As λ
is absolutely continuous, Γ(λ)(E) = λ ◦ b−1(E) = λ ◦ b−1(E ∩ B0) =
λ(G(E ∩B0)) = 0. So, Γ(λ) is absolutely continuous.

If x ∈ [0, β1], then Lemma 3.1 and the continuity ofG implyHΓ(λ)(x) =
Γ(λ)([0, x]) = λ ◦ b−1([0, x]) = λ(G([0, x])) = λ([0, G(x)]) = Fλ ◦G(x).

As G and Fλ are continuous, so is HΓ(λ). As Γ(λ) is absolutely con-
tinuous and HΓ(λ) is increasing and continuous, HΓ(λ) is absolutely
continuous (Bruckner et al. [2], Theorem 5.28).

4. As B0 is measurable, so is B1 := [0, β1] \ B0 = ∪c∈Φ(G)[G
−1({c}) \

{b(c)}]. Clearly, b−1(B1) = ∅ and A := {maxG−1({c}) | c ∈ Φ(G)} ∪
b(Φ(G)) is countable.

Consider x ∈ B1 \ A. Then, there exists ε > 0 such that (x − ε, x +
ε) ⊂ G−1({G(x)}). Hence, DG = 0 on B1 \ A and therefore DG is
continuous on B1 \ A. Since b−1(B1) = ∅, we have Γ(λ)(B1) = λ ◦
b−1(B1) = 0, and therefore HΓ(λ) = HΓ(λ)(b(c)) on G−1({c}) for every
c ∈ Φ(G). Hence, HΓ(λ) is differentiable on B1 \ A and DHΓ(λ) = 0
on B1 \ A. So, DHΓ(λ) exists and is continuous and bounded on the
co-countable subset B1 \A of B1.

As G is strictly increasing on B0, B0 ∩ G−1(L) is countable. Hence,
B0 ∩ [M ∪ G−1(L)] is countable. If x ∈ B0 \ [M ∪ G−1(L)], then
G is differentiable at x, G(x) ∈ C \ L, and Fλ is differentiable at
G(x). So, HΓ(λ) = Fλ ◦ G is differentiable on B0 \ [M ∪ G−1(L)]
with DHΓ(λ)(.) = DFλ(G(.))DG(.). Using (b), DHΓ(λ) is defined,
continuous, and bounded on the co-countable subset B0\[M∪G−1(L)]
of B0.

So, DHΓ(λ) is defined, continuous, and bounded on B0\[M∪G−1(L)]∪
B1 \A ⊂ [0, β1], which is a co-countable subset of [0, β1].

5. As HΓ(λ) is continuous, so is hΓ(λ). As HΓ(λ) increasing, so is hΓ(λ);
therefore, hΓ(λ) has bounded variation. Using step 4, hΓ(λ) is differ-
entiable on the co-countable subset B0 \ [M ∪ G−1(L)] ∪ B1 \ A of
[0, β1] and DhΓ(λ) is bounded on this set. The preliminary lemma
implies that hΓ(λ) satisfies the Luzin property. Hence, hΓ(λ) is abso-
lutely continuous by the Banach-Zarecki theorem (Bruckner et al. [2],
Theorem 7.14).

Proof of Lemma 5.8 Consider λ ∈ ∆(C) and suppose the hypotheses of
Lemma 5.7 are satisfied.

(A) By (19), C1(Γ(λ)) =
∫

[0,β1][
∫

[x,β1] z dHΓ(λ)(z)] dG(x). Since HΓ(λ) is

continuous by Lemma 5.7, we have
∫

[x,β1] z dHΓ(λ)(z) = β1−hΓ(λ)(x)−
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∫
[x,β1] dz HΓ(λ)(z). Therefore, C1(Γ(λ)) = β1−

∫
[0,β1] hΓ(λ)(x) dG(x)−∫

[0,β1][
∫

[x,β1] dz HΓ(λ)(z)] dG(x).

It follows from Lemma 5.7 that G and hΓ(λ) are absolutely continu-
ous. Applying Theorem 7.32 in Wheeden and Zygmund [7], we have∫

[0,β1] hΓ(λ)(x) dG(x) = β1 −
∫

[0,β1] G(x) dhΓ(λ)(x) and∫
[0,β1]

G(x) dhΓ(λ)(x) =

∫
[0,β1]

Leb(dx)G(x)DhΓ(λ)(x)

=

∫
[0,β1]

Leb(dx)G(x)
[
xDHΓ(λ)(x) +HΓ(λ)(x)

]
Since G and HΓ(λ) are continuous,

∫
[0,β1][

∫
[x,β1] dz HΓ(λ)(z)] dG(x) =∫

[0,β1] dxG(x)HΓ(λ)(x) =
∫

[0,β1] Leb(dx)G(x)HΓ(λ)(x) by Lebesgue’s

theorem (Bruckner et al. [2], Theorem 5.20).

Combining terms and then applying Theorem 7.32 in Wheeden and
Zygmund [7], we have C1(Γ(λ)) =

∫
[0,β1] Leb(dx)G(x)xDHΓ(λ)(x) =∫

[0,β1]G(x)x dHΓ(λ)(x) as HΓ(λ) is absolutely continuous by Lemma 5.7

and x 7→ xG(x) is continuous. It follows from (15) that C1(Γ(λ)) =∫
[0,β1] Γ(λ)(dx)G(x)x =

∫
[0,β1] λ ◦ b

−1(dx)G(x)x =
∫
C λ(dc) b(c)G ◦

b(c) = Ĉ1(λ).

Consider the second-price auction. Using (16) and changing variables,
Ĉ2(λ) =

∫
C λ(dc)

∫
[0,b(c)] x dG(x) =

∫
[0,β1] Γ(λ)(dy)

∫
[0,y] x dG(x) =∫

[0,β1][
∫

[0,y] x dG(x)] dHΓ(λ)(y). Integrating by parts and copying the

above arguments, Ĉ2(λ) =
∫

[0,β1] y dG(y) −
∫

[0,β1]HΓ(λ)(y)y dG(y) =∫
[0,β1][1−HΓ(λ)(y)]y dG(y) = C2(Γ(λ)) by (20).

(B) By Lemma 3.1, as G is continuous, b is strictly increasing, c = c̄ for
every c ∈ C, and G ◦ b(c) = c for every c ∈ C. Using (14) and (18),
m(λ) =

∫
C λ(dc) c =

∫
C λ(dc)G ◦ b(c) =

∫
[0,β1] λ ◦ b

−1(dx)G(x) =∫
[0,β1] Γ(λ)(dx)G(x) = P (Γ(λ)).

(C) follows from (A), (B), (14), and (21).
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