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ABSTRACT

This paper explicitly considers the possibility of a mediator selecting equilibria in incomplete
information environments. We study two models of mediated communication in incomplete
information games; the first model with a disinterested mediator and second with an interested
mediator. The notion of ex post incentive compatibility (EPIC) is defined as a solution concept
for such models and its existence is shown in very general settings. The second main result
shows the existence of an optimal EPIC when optimality is defined in terms of the mediator’s
welfare. :




1. Statement of problem-

It is folk wisdom that Nash-like equilibrium concepts (including refinements of Nash

equilibrium, Bayesian equilibrium, etc.) are consistency conditions on the predicted strat-
egy choices in a game, but do not in themselves contain a theory of how players might
arrive at the predicted choices. These questions are traditionally dealt with by an appeal

to supplementary devices such as “focal points” or “common knowledge”. Such explana-
tions, however, merely beg the question. In any game, especially in games with multiple
cquilibria, neither approach can satisfactorily explain the predicted correlation of players
choices. One can identify at least three strands in the literature that attempts to deal with
this problem. ‘

The refinement approach imposes ever stronger rationality criteria in order to prune
the set of equilibria. This literature, by and large, does not stray too far from the essence
of non-cooperative game theory, though some of it skates quite close to the edge. Leav-
ing aside the controversies regarding the appropriate definition of rationality and other
foundational questions, it should be noted that the refinement program is not designed
td address the procedural problems alluded to above that make the interpretation of all
Nash-like equilibrium concepts (and their refinements) problematic. The spirit behind the
refinement approach to defending predictions is akin to the Holmesian dictum asserting
that after one has eliminated all other possibilities, whatever remains must be the truth.
Drawing the obvious parallel with our problem, the fact that a prediction survives the
f most excruciatingly demanding refinement is irrelevant as our question is not “What is the
’ truth?”, but “Why is the truth the truth?”

A second strand is the evolutionary approach that radically alters the description
4 ‘and interpretation of a non-cooperative game by, say, postulating random interaction of
large populations of genetically programmed players. Equilibrium in such models is no
longer the result of cogitation by rational players, but the stable or ergodic outcome of

a dynamical system that is driven, in a manner of speaking, by the animal spirits and

genetic hardwiring of a large population of players. In this approach, the procedural issues

1 mentioned above are either rendered trivial, as a player’s ‘genotype’ completely determines

| his behaviour, or meaningless, as behaviour is subject to capricious “genetic mutations”.
In common with the literature on evolutionary models, the third strand dispenses
with a purely non-cooperative approach to the problem, in this case by breaching the

traditionally hermetic boundary between cooperative and non-cooperative game theory.
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This is done by supplementing the deseription of the game with a disinterested ‘mediator’
who communicates with the players. This approach takes the procedural problems head-
on; while the decision problems faced by players in this approach might not demand the
recondite eductive thtonnements necessitated .by Nash equilibrium and its refinements, it
also avoids trivializing the decision problem. |

In this paper, we supplement a given Bayesian game by adding a mediator to it; in
our first model, the mediator is disinterested as his actions are not motivated by payoff
considerations, but our second model concerns games with an interested mediator. The
mediator is the hub of a communication system which allows the players to communicate
with the mediator but not directly with each other. We shall consider a communication
system in which players report their private information to the mediator and the mediator
issues instructions to the players regarding their action choice.

When a mediator is added to a complete information normal form game, the natural
solution concept is a correlated equilibrium (see Aumann, 1974, and Forges, 1986). In
this case, the mediator instructs the players to perform certain actions and the players
have to decide whether to obey the instructions. The problem for the mediator is to find
instructions that the players have an incentive to obey. If the mediator’s instructions are
issued publicly, then each player has an incentive to obey, given the obedience of the other
players, if and only if the profile of instructions is a Nash equilibrium of the given normal
form game. By randomly choosing such profiles of instructions, the mediator can induce
arbitrary probability distributions over the set of Nash equilibria. If the mediator issues
instructions privately, then the instruction received by a player becomes private informa-
tion, albeit payoff-irrelevant, for that player. As in a Bayesian equilibrium, although the
private signal is privileged information, each player has to know the mapping used by
the mediator to generate the private signals of all the players. Given the knowledge of
this mapping, the players can decide whether to obey the instruction. By converting the

given complete information game to an incomplete information game, the mediator can

induce distributions over the space of payoff profiles that cannot be induced via public

instructions.

The mediator’s problem is more complicated in an incomplete information environ-
ment. In order to provide players appropriate incentives to obey the mediator, the mediator
has to know the players’ private information. While the mediator faces a pure moral hazard
problem in a complete information game, the necessity of inducing the players to truthfully

report their private information in an incomplete information game confronts the medi-
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ator with a combined moral hazard and adverse selection problem. Various stratagems
have been used to study such games. One method of attack is to assume that a player’s
private information report is not verifiable but his action choices are alienable. Actions
being alienable means that they can be confractually determined, or that the control over
a player’s action following a recommendation by the mediator is delegated to an agent,
regulator, or machine. For instance, the alienation of a player’s control over his actions is
implicit in the definition of a direct mechanism as a mapping from the space of profiles of
players’ characteristics to the outcome space. If this alienation is by external fiat, then we

wte have a Bayesian collective choice problem; if it is by personal choice of the player, then we
on have a Bayesian bargaining problem (see Myerson, 1991, for elucidation and references).
o In either case, the mixed problem is reduced to a pure ad\{erse selection problem.
If a player’s private information report is verifiable but his action choices are inalien-
ral able, then we have. a moral hazard problem modified by private information. In Section 2,
In we define a solution concept for such problems when the mediator is disinterested, and in
ersé Section 3, we show the existence of such equilibria in very general circuamstances. In Sec-
nd tion 4 we show the existence of an optimal mediation plan when the mediator is interested.
e Some lemmata have been stated and proved in the Appendix.
nz 2. Moral hazard modified By private information
[:ce There are many examples of moral hazard problems modified by private information.
aes For instance, negotiations mediated by an “honest broker”_ often involve parties with pri-
aa- vate information which can be verified by the mediator. The outcomes in such situations
the often take the form of publicly announced “agreements” that specify the actions to be
by performed by the various negotiating parties. Such situations include: (a) international
\ of negotiations involving a third country or an international agency acting as a mediator,
the verifier and/or monitor, (b) labor/trade disputes mediated by the courts or some other
-an mediating organization, (c) financial and commercial negotiations or disputes mediated by
Slic the courts or some other agency, (d) marriage counselling. In all these cases, the medi-
ator typically has access to private information: e.g. the size and quality of a country’s
on- nuclear/chemical/biological arsenal, economic data for a country that may not be pub-
tor licly available, financial records of a negotiating firm, the market projections of a firm, a
ara spouse’s peccadilloes. Another class of examples results from the problem faced by a prin-
ally cipal who has to coordinate ther efforts of many agents working on a project. Each agent
Sdi- could have private information that the principal can verify but which, for various reasons
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(such as competition for priority in publication, patents, promotions, etc.), is not shared
by all agents. Such problems are routine for coordinators of scientific research projects
that involve multi-tasking and managers of large diversified firms who have {o control the
activities of the managers of the firms various constituent units.

 An important feature of such problems is that the mediator’s recommended action for
a given player can rely on information that was hitherto unavailable to that player. It can
be argued that the desire to exploit these potential information spillovers is the principal
reason for introducing a mediator in the examples cited above. The general hybrid case
in which information is not verifiable and actions are not alienable raises very difficult
conceptual problems. Attempts to study such problems have been made in very special
models (see Forges, 1986, and Myerson, 1991), but we are unaware of any general method
of attack,

We begin by setting up the standard incomplete information framework; some nota-
tional conventions are stated in Section 3. Let (T, 7, 1) be a probability space, where 7
is a o-algebra on state space T, and p is a probability measure on (T,T). N is the set of
players. (T3, 7;) is a measurable space, where T is the space of signals sent by Nature to
player ¢ € N and 7; is a o-algebraon T. #; : T — T; is the measurable surjective mapping
that generates player ¢’s signal. Let o(6;) be the o-algebra generated on T" by 6;. We refer

to o(0;) as player i’s information. Let @ : T — [];c T: be given by 0(t) = (6:(t))ien- In

the language of the canonical incomplete information model, T; is player 4’s type space;
given T' = [,y T5, 0; is the projection from T to T;; p is the common prior.

A; is player i’s action space, A =[], N A; is the space of action profiles, and A_; =
[en—giy Ai- Player #’s utility function is u; : T'x A — R. Collecting the above data, we
have a Bayesian game ’

= <(T3 T; 3‘1'): N7 ((Ti> 7;)36?1) Aia ui)i€N>' (21)

We assume that I" is common knowledge. Let M{(X) denote the set of probability measures
on a measurable space (X,X). Given (T,T,pn), (T;,7;) and 6;, player i’s conditional
distribution on (T,7) is given by A; : T; X T — [0,1], where A;(t;) € M(T) for every
t; € T; and Ay(E) : Ty — [0,1] is 7;/B([0,1]) measurable for every E € 7. Let AT be the
space of measurable functions from T to A. Given a € AT, let a_; : T — A_; be defined
by a—i(t) = (a(t))—:. Suppose player i’s information in state ¢ is I;(t) = (8;,0:(t), a); i.e.
he knows the mappings §; and a, and the realization 6;(¢). The expected utility function
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conditional on I;(t) is U; : T'x AT x A; — R, given by the formula
Ui(t, a,b) = f Ai(0i(1), ds)ui(s, a—i(s),b),
31‘

for (t,a,b) €T x AT x A Alternatively, suppose 4's information in state ¢ is Jg(t) = |
0;,0;(¢), a(t)); i.e. he knows the mapping 6, and the realizations 6;(¢) and a(t). The
expected utility function conditional on J;(t) is vy : T'x A — R, given by the formula

——

vi(t,a) = / A (0:(t), ds)ui(s, a), (2.2)
T
for (t,a) € T x A.

Definition 2.3. A Bayesian Equilibrium (BE) for I is a mapping a : T — A such t}zai,
for every i € N

(a) the component mapping a; : T' — A; is 0(6;)/B(A:) measurable, and

(b) Ui(t,a,a:(t)) = U;(t,a,b) for every (¢,b) € T' x A;.

Condition (a) ensures that player #’s strategy a; respects the private information
»;; structure defined above, i.e. knowing a;(t) in state ¢ yields player 7 no more information
~ about the true state than he can deduce from the signal 6;(t). Condition (b) guarantees
/ that in every state ¢ that player ¢ can distinguish using his private information, player 7 is
. implementing the best possible action.
Suppose we add to I' a mediator. The mediator knows the functions (8;);eny and
1 recommends actions to the players using a mediation plan a : T — A. His information
~ about the state is derived from observing the profile of signals (6;(£));c &} We assume that
~ the players report their signals to the mediator who can verify them with perfect accuracy.
Thus, we are assuming away the adverse selection problerh. The game now is played in
four steps:
(a) Nature picks state t € T and sends private information 6;(t) to player 4.
| (b) Player i reports 0;(t) to the mediator. Seeing (0;(t));cn and knowing (6;);en, the
1 mediator’s information is the join of all the players’ private informations, represented by
1| the o-algebra Vicno(6:). |
(¢) The mediator recommends action a;(t) to player i.
(d) Given a;(t), player i decides whether to obey or to deviate. A strategy for player
i specifies the choice of an action in A; for every signal-recommendation pair (6;(t), a;(t)).

Given 6; and a, this amounts to selecting a mapping d; : T — A;.
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Given the communication system described above, consider how a mediator can ixn-
plement a BE a for the game I".' Before the game begins, the players are publicly informed
that mediation plan a will be used; recall that @ is required to be common knowledge in
the standard interpretation of BE. The game is played as specified above. On getting the
players’ reports, the mediator privately recommends action a;(t) to player 4. Thus, when
selecting an action, player i knows the mappings (6;,a) and the signal-recommendation
pair (0;(t), a:(t)). Knowledge of (a, a;(t)) does not reveal to player i any information about
the state beyond what can be deduced from (6;, 8;(t)) because, by the definition of a BE,
a; is measurable with respect to player 7’s private information. Therefore, player 4’s distri-
bution on (T, 7), conditional on his information, is A;(6;(t)). If all the other players are
always obedient and player i chooses action d;(t) in state ¢, then his conditional expected
utility is Ui(t, a,d;(t)). As a is a BE, we have Uj(t,a,a;(t)) > Ui(t,a,b) for all i € N,
t €T, and b € A;. Thus, every player will be obedient in every state, assuming other
players are always obedient. '

In the above-described implementation of a BE by a mediator, the mediator does

not fully use the available information. More precisely, the mediator uses the profile
(6:(£))ien to correlate the implementation of a particular BE, but does not correlate the

players actions in a way that allows private information ‘spillovers’, i.e. by recommending

actions that are not measurable with respect to their private informations. The distribution

induced by a BE a on the space of action profiles A is [;cn 1 © @i ', where each a; is
required to be measurable with respect to player #’s private information. As in the case of
a correlated equilibrium, the mediator in an incomplete information setting may attempt
to expand the set of possible distributions on A by choosing recommendations a; that are
not necessarily measurable with respect to player i’s private information. We proceed to
such a model.

Let a : T — A be a V,eno(6:)/B(A) measurable mapping. Unlike in the case of a
BE, thercomponent mappings a; are not required to be o(6;)/B(A;) measurable. Suppose
a is the publicly announced mediation plan. Let steﬁs (a) and (b) of the game be exactly
as described above. Consider player #’s decision problem after getting the signal 6;(t) but

before hearing the mediator’s recommendation. If all players are obedient and player ¢

1 Although the standard definition of a Bayesian equilibrium does not involve a mediator, the poﬁiqn
of a mediator is a useful interpretational construct in order to explain how a particular equilibrium is
selected out of a set of Bayesian equilibria and how this selection becomes common knowledge.
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ses strategy dy, then #’s conditional expected wutility is [, A;(0:(t), ds)u (s, a—i(s), dy(s)).
hus, in order to induce ex ante obedience from all players in all states 7, o must satisfy
he condition: for every ¢ € N and (f,dy) € 7' x AT

/ A(6:(2), ds)us(s, als)) > / As(0s(8), dsYus(s, ai(s), di(s)). (2.4)
T JT

We call (2.4) an ez ante incentive condition because it induces obedience before the medi-

tor’s advice is received. However, the relevant question is whether a induces obedience

after the mediator’s recommendations are sent. (2.4) does not guarantee this. Once the

ediator’s advice is seen, each players will invert this message by using his knowledge

of the mediation plan a. Consequently, player ¢’s conditional distribution on (T, 7") after

etting the mediator’s advice will be A;(6;(¢), a;(t)). This problem does not arise for a BE,
in that case the mediator’s advice is measurable with respect to the player’s private

information, i.e. Ai(6i(t)) = Ai(0i(t), ai(1))-

Clearly, if player i knows (a) the mediation plan @, (b) the signal-recommendation
pair (6;(t),ai(t)), and (c) a; is not o(6;)/B(A;) measurable, then i’s private information

o(0;,a;) is finer than o(6;), which creates the sequential rationality problem. This implies

a basic conflict between (a) and (c). Therefore, one route out of this dilemma is to drop
(c) by making a; o(6;)/B(A;) measurable, in which case we are back to BE. The other
resolution is to drop (a) by making the mediator inscrutable, i.e. the players do not know
the mediation plan a. If the mediator wishes to go beyond BE, then the second route is
the one to choose.

Let a: T — A be aV;eno(6;)/B(A) measurable mapping and suppose the mediator is
inscrutable. We alter the mediation process as follows. Let steps (a) and (b) of the game be
exactly as described above. Step (c), however, is different: the mediator publicly announces
a(t) with player ¢ advised to implement a;(t). Knowing 6;(t) and a(t), player  decides
whether to obey the mediator. In the two earlier cases, as a was common knowledge, the
players could use a to generate a belief about the other players actions. When the players

do not know a, it is necessary to specify the players beliefs about each others actions in

- another way. The simplest alternative is to specify that the mediator’s recommendations

i profile a(t) is common knowledge. As player i does not know a, his conditional distribution

on (T,7) is A;(8:(t)). If the other players are assumed to be obedient, then #’s expected

1 utility from implementing action b € A; in state ¢, conditional on seeing (6;(t), a(t)) and

knowing 6;, is v;(t,a—;(t),b). Thus, we have the following solution concept.
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Definition 2.5. An ex post incentive compatible equilibrium (EPIC) for I' is a mapping
a:T - A such that

(a) a is Vieno(0;)/B(A) measurable, and

(b) vilt, a(t)) > vi(t, a_;(t),b), for every i € N and (t,b) € T' x A;.

3. Existence of an EPIC

We begin by stating some conventions. F' : X=Y will denote a mapping with domain
X and values in 2¥. ® is given the Euclidean metric topology. For a topological space X,
the relevant o-algebra is the Borel o-algebra, denoted B(X). Subsets of topological (resp.
measurable) spaces are given the subspace topology (resp. trace o-algebra). Products of
topological (resp. measurable) spaces are given the product topology (resp. o-algebra).
As long as the involved spaces are separable, there is no conflict among these conventions.
If {X; | ¢ € I} is a family of o-algebras on a set X, then V;c;X; denotes the o-algebra
generated by User A If (X, X) is a measurable space and Y is a topological space, then
F : X=Y is called measurable (resp. weakly measurable) with respect to & if {z € X |
F(z)NE # 0} € X for every E closed (resp. open) in Y. If X is a measurable space, then
M(X) denotes the space of probability measures on X; if X is topological, then M (X)
will be given the weak® topology. ‘We start with the following lemma.

Lemma 3.1. Givenu : T x A = R, let U : M(T) x A — R be defined by U(r,a) =
Jr Mdt)u(t,a) for (M, a) € M(T) x A.

(a) If T and A are compact metric, and u continuous, then U is continuous.

(b) If u(t,a—s,.) : A; — R is concave for every (t,a—;) € T x A_;, then U(X\,a—;,.) :
A; — R is concave for every (\,a_;) € M(T) x A_;.

Proof. Part (a) follows from Lemma II.6.1 in Parthasarathy (1967) and Lemma A.1. Part
(b) is routine.

The following result pm'vides sufficient conditions for the existence of an EPIC.

Theorem 3.2. Consider F = (T, B(T), ), N, (T3, B(T3)), Bt,A@,uz)teN) Suppose
(a) T is compact metric,

(b) N is countable, and
foreveryi € N,
(c) (T3, B(I3)) is a separable standard Borel space,

(d) A; is a nonempty, convex, compact and metrizable subset of a locally convex linear
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(e) Ui : M(T") x A - R, defined by Uy(M,a) == [ A(dt)u;(t,a) for (A, a) € M(T) x A,
continuous and U; (A, a..;) 1 Ay ~ R is quasi-concave for all (M a—;) € M(T) x A_;.
Then there exists an EPIC for 1.

Pxoof Define V; : M(T") x A — 3R by Vi(A\ a) = ma;x{U (A, a__z,b) | b e A;} for (@) €
M(T)x A. V; is continuous (Berge, 1963, Theorems VI.3.1 and V1.3.2). Define B;: M (I")x
| A=A by Bi(A a) = {b € 4; | Ui(\, a~i,b)~V;(),a) 2 0} for (A, a) € M(T)x A. AsU; and
V, are continuous, Gr B; = {(A,q,b) € M(T)x AxA; | U;(A, a-i,b)—V;i( ), a) > 0} is closed.

‘fConsequently, B; is u.s.c. (Berge, 1963, Theorem VI.1.7). Moreover, B; has nonempty,

f gconvex and compact values. Define B : M(T)N x A=A by B(A\a) = [Ty Bi(Ni, 0)
for (\,a) € M(T)Y x A. B is us.c. (Fan, 1952, Lemma A.4), with nonempty, convex
and compact values. Define & : M(T)V=>A by E(\) = {a € A | @ € B(\,a)} for A €
aM (T)N. = has nonempty values (Browder, 1968, Theorem 4). By Lemma A.7, there is
‘a B(M(T)N)/B(A) measurable function ¢ : M(T)N — A such that 5()\) € E(A) for every
| re M)V, |
1 As T is compaci; metric, (T, B(T)) is a separable standard Borel space. Thus, by
‘Lemma A.2, for every ¢ € N, there exists A; : T; X B(T) [0,1] that satisfies the
properties listed in Lemma A.2(A). By Lemma A.2(B), A; : T; — M(T), defined by
As(t:) () = Ailts, .), is B(T:)/B(M(T)) measurable. As ; is o(é?.i)/B(Ti) measurable, A;08;
{is 0(6;)/B(M(T)) measurable. Therefore, A; 0 8; is Vieno(0:)/B(M(T)) measurable for
every i € N. Define A : T — M(T)N by A(t) = (As06;(t))ien- A is Vieno(0:)/BOLT))Y
1 measurable, where B(M(T))V is the product o-algebra on M (T)N. As M(T) is compact
1 metric, it is separable. Therefore, B(M(T))Y = B(M(T)") (Parthasarathy, 1967, Theo-
{ rem 1.1.10). Thus, a = £ o A is V;en0(0;)/B(A) measurable. It is easy to confirm that a
is an EPIC. | | I
i Remark. Lemma 3.1 provides sufficient conditions on I' for condition (e) of Theorem 3.2
4 to hold. '

Theorem 3.2 requires compactness of 7' and continuity of u;. In Theorem 3.4, (a)

1 7 is not required to be compact, and (b) utility functions are Caratheodory rather than
continuous. HoWever, some weaker topological structure on 7" is retained in order to
i guarantee the existence of regular conditional distributions for the players.

| Lemma 3.3. ConsiderI' = ((T, T, ), N, (T3, 7:), 0, Ai, ui)ien) - Suppose

(a) (T, T, ) is a probability space,




(b) N is countable, and
for everyi € N,

(¢) (T3, T;) is a measurable space,

(d) 8, : T - 1T; is a measurable surjection and (T, Ve no(6;)) is complete with respect
to p, '

(e) A; is a nonempty, convex and compact subset of a Banach space, and

(f) v; : T'x A — R, defined by (2.2), is such that (i) v(t) : A —» R is continuous
for every t € T, (i) vi(a) : T — R is o(6;)/B(R) measurable for every a € A, and (iii)
vi(t,a;) : A; — R is quasi-concave.
Then there exists a mapping ¢ : T x A=A such that

(A) ¢ has nonempty, compact and convex values,

(B) ¢ is measurable with respect toVeno(0;) ® B(A),

(C) ¢(t) : A=A is us.c. for every t €T, and

(D)a:T — A is an EPIC iff. a is Vieno(0;)/B(A) measurable and a(t) € ¢(t,a())
for everyt € T.

Proof. Until step (5), fixi € N.

(1) Define V; : T' x A x A; — R by Vi(t, a,b) = 'u,(t a—i,b) — v;(t,a) for (¢,a,b) €
T x Ax A;. It follows from (f) that: (i) Vi(t) : Ax A; — R is continuous for every ¢ € T, (ii)
Vi(t,b): A— Ris continuous for every (t,b) € T x A;, (iii) Vi(t,a) : A; - R is continuous
for every (t,a) € Tx A, and (w) Vi(a,b) : T — Ris 0(0;)/B(R) measurable for every (a,b) €
A x A;. (i) and (iv) imply that V; is o(6;) ® B(A x A;)/B(R) measurable (Himmelberg,
1975, Theorem 6.1). Analogously, (ii) and (iv) imply that V;(b) is 0(6;) ® B(A)/B(R)
measurable for every b € A;. '

(2) Define F; : T x A=>A; by Fi(t,a) = {b € A; | Vi(t,a,b) > 0}. 1t follows from (f)
that F; has convex values. Step (1) and Lemma A.3 imply that Fi(t) : A=A, is lower
semicontinuous for every ¢t € T. We show that F; is weakly measurable with respect to
o(0;) ® B(A). As A; is compact metric, it is separable. Let C be a countable set that is
dense in A;. Let E be open in A;. Then,

{(t,a) e Tx A|F(t,a) NE# 0} ={(t,a) eTx A|Fb€ E: Vi(t,a,b) > 0}
={(t,a) eTx A|FIbe ENC: Vi(t,a,b) >0}
= Usepnc{(t, @) € T x A| V;(t,a,b) > 0}.
By (1), {(t,a) € T x A | Vi(t,a,b) > 0} € o(6:) ® B(A) for every b € E N C. Thus,
{(t,a) € T x A| Fi(t,a) N E # 8} € 0(6;) ® B(A).
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(3) Lot D; = {(t,a) € T'x A | Fy(l,a) # 0}. As I is weakly measurable with
respect to o(0;) ® B(A), D = {(t,a) € T x A| Fi(t,a) N A; 0} € o(6;) ® B(4). Define
Di={a€ Al (ta) € D} for t € T Clearly, D} = Uea,{a € A | Vi(t,a,b) > 0}. Using
step (1), {a € A | }/’i(t, a,b) > 0} is open in A for every (£,b) € T' x A;. Thus, D! is open
in A for every t € T'. ‘
. Let D¢ = {t € T| (t,a) € D;} for a € A. Clearly, D¢ = {t € T | F,(t,a) % ¢} =
uous {teT |3 e A Vit,a,b) > 0}. As Vi(t,a) is continuous by step (1), D¢ = {t €
1 (i) T|3eC: Vilt,a,b) > 0} = Uec{t € T | Vilt,a,b) > 0}. As Vi(a,b) is o(6;)/B(R)
- measurable by step (1), {t € T | V;i(¢,a,b) > 0} € 0(8;) for every (a,b) € Ax A;. Therefore,
- D¢ € o(6;) for every a € A. Given (t,a) € T'x A, .Vi(1,a) : A; — R is continuous by step
~(1). Therefore, for (t,a) € D;, F;(t,a) is nonempty and open in A;. It follows from
" Theorem 3.2 in Kim, Prikry and Yannelis (1987) that there exists f; : D; — A; such that
(i) fi(t,a) € Fi(t,a) for every (t,a) € D, (i) fi(t) : Dt — A, is continuous for every ¢ € T,
a(t)) ~and (ifi) fi(a) : D¢ — A; is (0(6;) N D¥)/B(A;) measurable for every a € A.
(4) Define the map ¢; : T X A= A; by the formula '

spect

$i(t,a) = {4{4{?@’ o)}, if (t,a) € D;

,b) € if (t,a) € (T"x A) — D;.

r, (i) ;;/By Lemma A4, ¢;(t) : A=A; is us.c. for every t € T By Lemma A.5, ¢; is weakly
m;;)ous § measurable with respect to o(8;) ® B(A), and therefore with respect to Viena(6;) ® B(A).
’ € 1 ‘

l,b ) Moreover, ¢; has nonempty, convex and compact values.

’BT;; (5) Define ¢ : T' x A=A by the formula ¢(¢,a) = [];cn #:(t, a). We now confirm our

‘claims. (A) ¢ has nonempty and convex values. As ¢; has compact values for everyi € N, ¢
(0 ‘has compact values. (B) By step (4) and Lemma A 8, ¢ is weakly measurable with respect

m :

‘to Vieno(6;) ® B(A); consequently, ¢ is measurable with respect to Vieno(0;) ® B(A)

lower @

¢ to (Himmelberg, 1975, Theorem 3.5(ii)). (C) Given that ¢;(t) is u.s.c. for every 2 € N, and
2C
hat is gN is countable, ¢(t) : A=A is u.s.c. for every t € T' (Fan, 1952, Lemma A.4). (D) Suppose

a:T — Ais a Vieno(6;)/B(A) measurable function such that a(t) € ¢(t,a(t)) for every
teT. Fixte Tandie N. By construction, Vai(t)e ¢i(t,a(t)). If (¢,a(t)) € D;, then
(1) = fi(t,a(t)) € Fi(t, a(t)). This implies V;(t,a(t), a;(t)) > 0, which is a contradiction.
)} o, (t,a(t)) € (T x A) — D;. This implies F;(t,a(t)) = 0. As this holds for every t € T
nd i € N, a is an EPIC. Conversely, suppose a : T —. A is an EPIC. By definition,

Thus, is Vieno(0;)/B(A) measurable. Consider t € T and i € N. If (,a(t)) € D;, then
| F;(t,a(t)) # 0. Thus, there exists b € A; such that v;(¢,a—;(t),b) > v;(t,a(t)), which




contradicts the fact that a is an EPIC. So, (f,a(t)) € (T' x A) - D, for every ¢t € T and

it € N. By the definition of ¢;, this implies a;(t) € A; = ¢;(t, a(t)). Thus, a(t) € ¢(t,a(1))
for every t ¢ T, ‘

2

We immediately have the following existence result.

Theorem 8.4. SupposeI' = (T, B(T'), u), N, (T3, B(T})), 0, As,ui)ien) satisfies assumap-
tions (a) to (e) of Lemma 3.3. In addition, suppose

(f) (T, B(T)) is a separable standard Borel space, and
for every i € N,
(8) (T3, B(1})) is a separable standard Borel space, and
(h) u; : T x A — R is such that (i) us(t) : A — R is continuous for every t € T, (ii)

ui(a) : T — R is B(T)/B(R) measurable for every a' € A, and (iii) ui(t,a—;) : A; — R is
concave.

Then there exists an EPIC for I,

Proof. If I" satisfies assumptions (a) to (f) of Lemma 3.3, then there exists ¢ : T' x A=>A
with properties (A) to (D) listed in Lemma 3.3. Lemma A.6 implies the existence of a
Vieno(0;)/ B(A) measurable function a : 7' — A such that a(i) € (¢, a(t)) for every t € T,
which implies the existence of an EPIC by Lemma 3.3(D).

We check that assumption (f) of Lemma 3.3 is satisfied. For every t € T, continuity
of u;(t) implies that of v;(t). Since u;(t,a—;) : A; — R is concave, v;(t,a—;) : A; — R is
concave. Fix a € A. There exists a regular conditional distribution on (T, B(T')) given 6;,
denoted by A; : T} x B(T) — [0,1] (Parthasarathy, 1967, Theorem V.8.1). By the non-

_Cartesian version of the Fubini-Stone theorem (Rao, 1987, Exercise 6.2.3), the mapping
ti = [ As(ti, dt)ui(t, @) is B(T)/B(R) measurable. Since 6; is o(6;)/B(T;) measurable,
composing these two mappings implies that v;(a) is o(6;)/B(R) measurable. S

4. Existence of an optimal EPIC

Suppose the mediator has a welfare function w : T'x A — R. In this case, given a
game I', the mediator may wish to implement an optimal EPIC, i.e. an EPIC a such that,

for every EPIC o’ and state t, w(t, a(t)) > w(t,a’(t)). We show that this is possible very
generally in the following result.

Theorem 4.1. Consider I' = (T, T, u), N, (T3, T3), 0:, As, us)ien). IfT satisfies assump-
tions (a) to (f) of Lemma 3.3, and w : T x A — R is such that w(t) : A — R is continuous
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every L € 1" and w(a) : T' — M is Vieno(0:)/BR) measurable for every a € A, then
ere exists an EPIC a such that, for every EPIC o/ and state t, w(t, a(t)) > w(t,a’'(1)).

roof. By Lemma 3.3, there exists a mapping ¢ : 7' x A=+ A with properties (A) to (D)
ted in Lemma 3.3. Define & : T=A by (1) = {a € A | ¢ € $(t,a)} and & ;: T=>N by
p(t) = w({t} x ®(¢)), for t € T. Define $: T — R by $(t) = sup &(t). Suppose there
éxistaa an EPIC a such that ¢(t) = w(t,a(t)) for every t € T Let o' be an EPIC. Fix
lier. By Lemma 3.3(D), a/(t) € ®(t). Counsequently, w(t,a’(t)) € $(t), and therefore,
t,a'(t)) < ¢(t) = w(t,a(t)). Thus, it is sufficient to show the existence of an EPIC a
ch that ¢(t) = w(t,a(t)) for every t € T.

By Lemma A.6, ® is measurable, with nonempty compéct values. Therefore, ® is
weakly measurable with respect to Vigno(6;) (Himmelberg, 1975, Theorems 6.5), with
onempty compact values; indeed, & is measurable as R is o-compact (Himmelberg, 1975,
Theorem 3.5(ii)). It follows that ¢ is measurable (Himmelberg, 1975, Theorem 6.6); more-
ver, as ® has compact values, ¢(t) € w({t} x ®(t)) for every t € T. It follows that
there exists a V;en0(6;)/B(A) measurable function @ : T — A such that a(t) € ®(t) and
F;S(t) = w(t, a(t)) for every ¢ € T' (Himmelberg, 1975, Theorem 7.1). :

Note that this result does not merely maximize expected welfare but does so state-by-
i

ate. Consequently, optimality does not depend .on the mediator’s belief about the true
ate.
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Appendix

Lemma A.1. Suppose

(a) X and Y are separable metric spaces, and

(b)u: X xY — R is bounded and continuous. «
Then, U : M(X) x M(Y') — R, defined by U(p, A) = [,y i X Mdz, dy)u(z,y), is contin-
uous. .

¢

Proof. Let V : M(X xY) — R be defined by V(v) = [y, v(d2)u(2). Asu is bounded and
continuous, it is v-integrable for every v € M(X xY). Let f: M(X)xM(Y) —» M(X xY)
be defined by f(iu,A) = px X\ AsU = V o f, it is sufficient to show the continuity of V'
and f. Continuity of V follows from the definition of a weak™ topology. As X and Y are
separable metric, so is X x V. Therefore, M (X Y, M(Y) and M(X xY) are metrizable
and separable (Parthasarathy, 1967, Theorem I1.6.2). Consider sequences (u,) C M(X)
and (\,) C M(Y) converging to 4 € M(X) and A € M(Y) respectively. Continuity of
f follows if limyjeo ftn X Ay = X A. This follows from Lemma III.1.1 in Parthasarathy
(1967). |

Lemma A.2. Suppose

(a) X and Y are metric spaces, )

"(b) (X, B(X)) and (Y, B(Y')) are separable standard Borel spaces, with Q a probability
measure on (X, B(X)), and

(¢c) ©: X — Y is a measurable surjection.
(A) Then there exists a function P : Y x B(X) — [0,1] and N € B(Y) such that (i)
Qon (N) =0, (ii) Ply, 7' ({y})) = 1 for every y € Y — N, and (iii) Q(E) = [, Qo
7~ (dy)P(y, E) for every E € B(X). A
(B) If, in addition to (a)-(c), X is compact, then P:Y — M(X), defined by P(y)(.) =
P(y,.), is B(Y)/B(M(X)) measurable. |

Proof. (A) This follows from Theorem V.8.1 in Parthasarathy (1967).

(B) The space [~1, 1]X of continuous functions g : X — [—1, 1] with the compact-open
topology is separable (Kuratowski, 1966, Theorem IL.22.II1). Let {f; | ¢ € I} be a countable
dense subset of [~1,1]¥. Define F' : M(X) — [1,1)F by F(u) = (fy ,u(da:)f;(:z:))z‘,:_lr As
{fi | ¢ € I} is dense in [-1,1]%, F is injective. By the definition of the weak™ topology,
F is continuous. As M(X) is compact (Parthasérathy, 1967, Theorem I1.6.4), F' imbeds
M(X) in [-1,1}f. As the Borel o-algebras on M(X) and [—1,1){ are generated by their
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gpective topologies, it follows that 12 ¢ M (X) is measurable iff. F(E) ¢ [-1, 1)
?‘easumble, Thus, P is measurable iff. F' o P is measurable.
Also, I o P is measurable iff. F; o P:Y — [~1,1] is measurable for every i € 1. By

Fio P(y) = /X P(y) (do) fila) = /X Py, dz) fi(=).

easurability of F; o P follows from the non-Cartesian version of the Fubini-Stone theorem
Rao, 1987, Exercise 6.2.3). ’

emma A.3. Suppose X and Y are topological spaces, X x Y is given the product
pology, and g : X x Y — R is continuous. Then G : X=Y, defined by G(z) = {y € Y|

@,y) > 0}, has an open graph, and consequently, G is lower semicontinuous.

roof. GrG = {(z,y) € X xY |y € G(z)} = {(z,y) € X xY | g(z,y) > 0}, which is
en in X X Y as g is continuous. |
To establish lower semicontinuity of G, fix z € X. Let V C Y be open in Y and

~ VﬂG(a:) # 0. Let y € V N G(z). Therefore, (z,y) € (X x V)NGrG. As GrG is open
*m XxY,(X xV)NGrG is open in X x Y. Therefore, we can find E open in X and
F open in Y such that (z,9) € Ex Fand Ex F C (X xV)NGrG. If z € E, then

(z,y) € (X xV)NGrG, ie. y € VNG(2). Thus, VNG(z)#0 for every z € E. b

Lemima A.4. Suppose

(2) X and Y are topological spaces,
(b) D C X isopen in X, and
(c) g : D — Y is continuous with respect to the subspace topology.

{IfT': X=Y is defined by

: _ [ H{g(=)}, ifzeD,
F(“')“{Y, ifzeX -D,

then T is ws.c.

Proof. Suppose x € D. Then I'(z) = {g(x)}. Let E be an open neighborhood of g(z).

Given (c), there exists U open in X such that z € U, and y € U N D implies g(y) € E. As

D isopenin X, UN D is open in X, and y € U N D implies ['(y) = {9(y)} C E. Thus,
["is ws.c. at . Suppose z € X — D. ThenI'(z) =Y. Asy € X implies ['(y) C Y, I' is

u.s.c. at x. : ‘ &
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Lemma A.5. Suppose

(a) (2, F) is a measurable space,

(b) X andY are metric spaces with X separable,

(c) D e F®B(X),

(d) Dy ={we Q| (w,z) €D} eF foreveryz e X,

(e) D, ={x € X | (w,z) € D} is open in X forevery w-€ 2, and

(f) 9: D =Y is such that g(z) : D, —» Y is (F N D,)/B(Y) measurable for every
z € X and g(w) : D, — Y is continuous for every w € 2.
IfT: 2 x X=Y is defined by

w,x)}, i
Mw,z) = {if’( ) iﬁii"? ; gz’ X X)—D

then I' is weakly measurable with iespect to F ® B(X).

Proof. Using the hypotheses, g is [(F ® B(X)) N D]/B(Y) measurable (Kim, Prikry and
Yannelis, 1987, Lemma. 4.12). Let E be an open subset of Y. Then |

{(w,2) € Ax X |T(w,2) NE # @} = [(Q X X)— D]iU {{(w,z) € D| g(w,z) € E}.

Given the measurability property of g, {(w,z) € D | g(w,z) € E} = C n D, where
C € FOB(X). As D € F®B(X), we have CND € FRB(X). As [(2xX)—D] € FRB(X),
we have {(w,z) € @ x X | T'(t,x) N E # 0} € F ® B(X), which proves that I is weakly
measurable with respect to F ® B(X).

In the following two results, given I': Q@ x X=>X , the mapping ® : {}=>X is defined by
Pw)={z€X |z €T (w,z)} for w € 2 If Q and X are measurable, then ¢ ~ & denotes
that ¢ : £ — X is a measurable function with ¢(w) € ®(w) for every w € .
Lemma A.6. Suppose

(a) (&, F) is a complete measurable space,

(b) X is a nonempty, convex, compact and metrizable subset of a locally convex linear
topological space, ‘

() T': Q2 x X=X is weakly measurable with respect to F @ B(X), and

(d) for every w € Q, T'(w) : X=X is u.s.c., with nonempty, convex and closed values.
Then, »

(A) ® has nonempty closed values, and
(B) ® is measurable and there exists ¢ ~ ®.

Proof. (A) Fix w € . Using (b) and (d), and applying Theorem 4 in Browder (1968) to
I'(w), it follows that ®(w) # 0.
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We show that ${w) is closed in X. Suppose z € X —~ #(w). We have to find an open
eighborhood V of @ such that V ¢ X —®(w). Asz € X ~ $(w), wehave z € X —I" (w, ).
3y assumption, I'(w, ) is closed in X. By (b), X is regular; thus, there exist. open
cighborhoods Uy of z and Uz of T'(w, ), such that Uy NU; = 0. As I'w) is uns.c,
here exists an open neighborhood Uz of z such that y € Us implies I'(w,y) C Usq. Set
=UyNU;. Ify €V, then I'(w,y) C Us. Since Us NV = §, this means 1; € X —IMNw,y),
e. ¥y € X — P(w). Thus, V C X - (w).

(B) As I" and the projection (w,x) — x are weakly measurable with respect to 7 @
(X), the mapping (w, ) = I'(w, z) N {z} is weakly measurable with respect to F & B(X)
Himmelberg, 1975, Theorem 4.1). Thus, Gr® = {(w,z) € Qx X | z € I‘(w, x)} =
(w,z) € Ax X | Tw,z)N{z}NX # B} € .’F®B(X) Therefore, ® is measurable
' (Himmelberg, 1975, Theorem 3.5(iii)). It follows that there exists ¢ ~ @ (Himmelberg,
1970, Theorem 5.1). -

i Lemma A.7. Suppose
(a)  is compact Hausdorff and X is compact metric,
(b) T' : @ x X=>X has a closed graph, and
(¢) ® has nonempty values.

Then, ® is measurable and there exists ¢ ~ ®.

Proof. Define f: 2 x X — Q x diagX? by f(w,x) = (w,z,z). As f is continuous and
Gr® = f~YGrT'N (2 x diag X2)), it follows that Gr® is closed. As @ x X is compact,
Gr & is compact. Consequently, ® has compact values. :

Let E be closed in X. Given the projection 7 : (w,z) — w, {w € Q| P(W)NE # 0} =
7(Gr @N(Qx E)). As Gr @N(Qx E) is compact and = is continuous, {w € Q | &(w)NE # B}
is compact. As (2 is Hausdorff, {w € Q2 | ®(w)NE # B} is closed, and therefore, measurable.
Since this holds for every F closed in X, ® is measurable, and therefore, weakly measurable
with respect to B(£2) (Himmelberg, 1975, Theorem 3.5(i)). The existence of ¢ ~ ® follows
(Himmelberg, 1975, Theorem 5.1).

Lemma A.8. Suppose
(a) (2, F) is a measurable space,
(b) {X; |1 € I} is a countable family of second-countable tépological spaces, and
(c) for every i € I, I'; : Q=X is weakly measurable with respect to F.
Then, I' : Q=X is weakly measurable with respect to F, where X = [],.; X; and I'(w) =

Hiel [i(w).
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Proof. It follows from (b) that X is second-countable. Thus, if I is open in X, they
B = Uje By for some collection {E; | j € J} drawn from the basis for X. It is easily seen
that {w € @ | (W) NE % 0} = Ujes{w € | T(w) N E; # 0}. It follows from this formuls
and the countability of J that it is sufficient to show that {w € | N(w)NE # 6} € F for
every E in the basis for X. 4 |

If E is in the basis for X, then E = [Licr Ei, where E; is open in X; for every i € I.
It is easy to check that {w € Q | T'(w) N E # 0} = Nier{w € Q | Ti(w) N E; 5 0}. As each
I'; is weakly measurable with respect to F, {w € Q | I;(w) N E; 5 0} € F for everyi € I.
As I is countable, this implies {w € Q | T'(w)NE # 0} € F. S
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