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ABSTRACT 

This paper explicitly considers the possibility of a mediator selecting equilibria in incomplete 
information environments. We study two models of mediated communication in incomplete 
information games; the first model with a disinterested mediator and second with an interested 
mediator. The notion of ex post incentive compatibility (EPJC) is defined as a solution concept 
for such models and its existence is shown in very general settings. The second main result 
shows the existence of an optimal EPIC when optimality is defined in terms of the mediator's 
welfare. 



L Statenumi, of problern ' 

It is folk wisdom thai; Nash-Illw equilibrium concepts (including refinements of Nash 

equilibrium, Bayesian equilibrium, etc.) are consistency conditions on the predicted strat

egy choices in a garno, but do IlOt in thClllBelves contain a theory of how players might 

arrive at the predicted choices. These questions arc traditionally dealt with by an appeal 

to supplementary devices such as "focal points" or "COlIuuon knowledge". Such eXJ)lana

tions, however, merely beg the question. In any game, especially in games with multiple 

equilibria, neither approach can satisfactorily explain the predicted correlation of players 

choices. One can identify at least three strands in the literature that attempts to deal with 

this problem. 

The refinement approach imposes ever stronger rationality criteria in order to prune 

the set of equilibria. This literature, by and large, does not stray too far from the essence 

of non-cooperative game theory, though some of it skates quite close to the edge. Leav. 

ing aside the controversies regarding the appropriate definition of rationality and other 

foundational questions, it should be noted that the refinement program is not designed 

to address the procedural problems alluded to above that make the interpretation of all 

Nash-like equilibrium concepts (and their refinements) problematic. The spirit behind the 

refinement approach to defending predictions~s akin to the Holmesian dictum asserting 

that after one has eliminated all other possibilities, whatever remains must be the truth. 

Drawing the obvious parallel with our problem, the fact that a predic;tion survives the 

most excruciatingly demanding refinement is irrelevant as our question is not "What is the 

truth?", but "Why is the truth the truth?" 

A second strand is the evolutionary approach that radically alters the description 

and interpretation of a non-cooperative game by, say, postulating random interaction of 

large populations of genetically programmed players., Equilibrium in such models is no 

longer the result of cogitation by rational players, but the stable or ergodic outcome of 

a dynamical system that is driven, in a manner of speaking, by the animal spirits and 

genetic hardwiring of a large population of players. In this approach, the procedural issues 

mentioned above are either rendered trivial, as a player's 'genotype' completely determines 

his behaviour, or meaningless, as behaviour is subject to capricious "genetic mutations" . 

In common with the literature on evolutionary models, the third strand dispenses 

with a purely non-cooperative approach to the problem, in this case by breaching the 

traditionally hermetic boundary between cooperative and non-cooperative game theory. 
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This is dono by 8uppl<lmcnt;iIl{~ the descdptiioJl of the gam(l with a disinterested 'mediator' 

who comlUUllictli>t)S WiUl tho playors. This approach ta1{(~S the procedural problems head~ 

on; while tho decision probl<mls faced by play(~r8 ill this apPl'oach might not demand the 

recondite eciuctiv{) tatonncmcnts necessitated .by Nash equilibrium and its refinements, it 

also avoids triviali;ting the d(wision problem. 

In this paper, we supplement a given Bayesian game hy adding a mediator to it; ill 

our first model, the mediator is disinterested as his actions are not motivated by payoff 

con..qiderations, but our second model concerns games with an interested mediator. The 

mediator is the hub of a communication system which allows the players to communicate 

with the mediator but not directly with each other. We shall consider a communication 

system in which players report their private information to the mediator and the mediator 

issues instructions to the players regarding their action choice. 

When a mediator is added to a complete information normal form game, the natural 

solution concept is a correlated equilibrium (see Aumann, 1974, and Forges, 1986). In. 

this case, the mediator instructs the players to perform certain actions and the players 

have to decide whether to obey the instructions, The problem for the mediator is to find 

instructions that the players have an incentive to obey. If the mediator's instructions are 

issued publicly, then each player has an incentive to obey, given the obedience of the other 

players, if and only if the profile of instructions is a Nash equilibrium of the given normal 

form game. By randomly choosing such profiles of instructions, the mediator can induce 

arbitrary probability distrihutions over the set of Nash equilibria. If the mediator issues 

instructions privately, then the instruction received by a player becomes private informa

tion, albeit payoff-irrelevant, for that player. As in a Bayesian equilibrium, although the 

private signal is privileged information, each player has to know the mapping used by 

the mediator to generate the private signals of all the players. Given the knowledge of 

this mapping, the players can decide whether to obey the instruction. By converting the 

given complete information game to an incomplete information game, the mediator can 

induce distributions over the space of payoff profiles that cannot be induced via public 

instructions. 

The mediator's problem is more complicated in an incomplete information environ

ment. In order to provide players appropriate incentives to obey the mediator, the mediator 

has to know the players' private information. While the mediator faces a pure moral hazard 

problem in a complete information game, the necessity of inducing the players to truthfully 

report their private information in an incomplete information game confronts the medi
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ntor with il combined lllond. hwzard and rulvorse selection problem. Various strfl.tagcllls>r' 
have beell. used to study such games. One Inethod of attack is to aHsum0 that a playel"sd
private illfonnation rc:~port is not wlrifi.flblEl but his action choices arc alienable. Acti()1lshe 
being alienable means that they can be contractually determined, or that the cont;rol over it 
a player's action follOWIng a recommendation by the mediator is delegated to an agent, 

regulator, or machine. For instance, the alienation of a player's control over his actions isin 
implicit in the definition of a direct mechanism a..<) a mapping from the space of profiles of off 
players' characteristics to the outcOlne space. If this alienation is by external fiat, then wehe 
have a Bayesian collective choice problem; if it is by personal choice of the player, theI} weLte 
have a Bayesian bargaining problem (see Myerson, 1991, for elucidation and references).on 
In either case, the mixed problem is reduced to a pure adverse selection problem. 

~or 

If a player's private information report is verifiable but his action choices are inalien~ 

able, then we have a moral hazard problem modified by private information. In Section 2,ral 
we define a solution concept for such problem.s when the mediator is disinterested, and illIn 

ers Section 3, we show the existence of such equilibria in very general circum.stances. In Sec

tion 4 we show the existence of an optimal mediation plan when the mediator is interested. nd 

ne Some lemmata have been stated and proved in the Appendix. 

2. Moral hazard modified by private information 
nal 

There are many examples of moral hazard problem.s modified by private information. Ice 
For instance, negotiations mediated by an "honest broker" often involve parties with priIles 

na- vate information which can be verified by the mediator. The outcomes in such situations 

often take the form of publicly announced "agreements" that specify the actions to bethe 
performed by the various negotiating parties. Such situations include: (a) international by 
negotiations involving a third country or an international agency acting as a mediator, lof 
verifier and/or monitor, (b) labor/trade disputes mediated by the courts or some other the 

:an mediating organization, (c) financial and commercial negotiations or disputes mediated by 

the courts or some other agency, (d) marriage counselling. In all these cases, the medi

ator typically has access to private information: e.g. the size and quality of a country's 

on- nuclear/chemical/biological arsenal, economic data for a country that may not be pub

licly available, financial records of a negotiating firm, the market projections of a firm, a Ltor 
spouse's peccadilloes. Another class of examples results from the problem faced by a prinard 
cipal who has to coordinate the efforts of many agents working on a project. Each agent Illy 

~di-
could have private information that the principal can verify but which, for various reasons 
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(such as competition for priority in pllblication, l>atents, promotions, (31;C.), is not shared 

by all agents. Snch problem."J are routine· for coordinators of scientific research proje<et;s 

that involve multi-tasking and managers of large diversified firms who have to control t~he 

activities of the managers of the firms various constituent units. 

An impoxtant feature of such problems L~ that the mediator's reconunended action for 

a givel) player can rely on information that was hitherto unavailable to that player. It ca.n 

be argued that the desire to exploit these potential information spillovers L'3 the principal 

reason for introducing a mediator in the examples cited above. The general hybrid case 

in which information is not verifiable and actions are not alienable raises very difficult 

conceptual problems. Attempts to study such problems have been made in very special 

models (see Forges, 1986, and Myerson, 1991), but we are unaware of any general method 

of attack 

We begin by setting up the standard incomplete information framework; some nota

tional conventions are stated in Section 3. Let (T, T, It) be a probability space, where T 

is a a-algebra on state space T, and It is a probability measure on (T, T). N is the set of 

players. (7i, 'Ii) is a measurable space, where 7i is the space of signals sent by Nature to 

player i E N and 'Ii is a a-algebra on 1£. (}i : T -t 7i is the measurable surjective mapping 

that generates player i's signaL Let a«(}i) be the a-algebra generated on T by (Ji. We refer 

to a«(}i) as player i's information. Let (}: T -t niENTi be given by (J(t) = «(Ji(t))iEN- In 

the language of the canonical incomplete information model, Ti is player i's type space; 

given T = OiEN T i , (}i is the projection from T to Ti; It is the 'common prior. 

Ai is player i's action space, A = niEN Ai is the space of action profiles, and A_i = 

njEN-{i} Aj • Player i's utility function is Ui : T x A --t m". Collecting the above data, we 

have a Bayesian game 

(2.1) 

We assume that r is common knowledge. Let M(X) denote the set of probability measures 

on a measurable space (X, X). Given (T, T, It), (Ti ,1i) and (Ji, player i's conditional 

distribution on (T, T) is given by Ai : Ti X T -t [0,1], where Ai(ti) E M(T) for every 

ti E 7i and Ai(E) : Ti --t [0,1] is 'Ii/B([a, 1]) measurable for every E ET. Let AT be the 

space of measurable functions from T to A. Given a E AT, let a_i : T -t A-i be defined 

bya-i(t) (a(t))-i. Suppose player i's information in state t is Ii(t) = «(Ji,(Ji(t), a); i.e. 

he knows the mappings (}i and a, and the realization (}i(t). The expected utility function 
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conditional on l'i(t) is Ui : T x A.T' X Ai --4 ac; givon by tIle formula 

Ui(I;;a,lJ) 1,Ai (Oi(1;),ds)'Ui(S,a._i(8),b), 

for (t, a, b) ET X AT X Ai. Alternatively, suppose i's informfl.tion in state t is Ji(t) 

((}i, (Ji(t), aCt)); i.e. he knows the mapping Oi and the realizations (}i(t) and aCt). 'rho 

expected utility function conditional on Ji (t) is Vi : T X A --l> 3t, given by the formula 

(2.2) 

for (t,a) E T x A. 

Definition 2.3. A Bayesian Equilibrium (BE) for r is a mapping a : T --4 A such tllat, 

for every i E N 

(a) the component mapping ai : T ---t Ai is a((}i)/B(Ai ) measurable, and 

(b) Ui(t,a,ai(t));:: Ui(t,a,b) forevel'Y (t,b) E T xA i . 

Condition (a) ensures that player i's strategy ai respects the private information 

structure defined above, Le. knowing ai (t) in state t yields player i no more information 

about the true state than he can deduce from the signal (}i(t). Condition (b) guarantees 

that in every state t that player i can distinguish using his private information, player i is 

implementing the best possible action. 

Suppose we add to r a mediator. The mediator knows the functions «(}i)iEN and 

recommends actions to the players using a mediation plan a : T --l> A. His information 

about the state is derived from observing the profile of signals «(}i(t»iEN; we assume that 

the players report thell' signals to the mediator who can verify them with perfect accuracy. 

Thus, we are assuming away the adverse selection problem. The game now is played in 

four steps: 

(a) Nature picks state t E T and sends private information (}i(t) to player i. 

(b) Player i reports (}i(t) to the mediator. Seeing «(}i(t»iEN and knowing «(}i)iEN, the 

mediator's information is the join of all the players' private informations, represented by 

the a-algebra ViENa(Dd. 

(c) The mediator recommends action ai(t) to player i. 

(d) Given at(t), player i decides whether to obey or to deviate. A strategy for player 

i specifies the choice of anaction in Ai for every signal-recommendation pair (Di(t), ai(t». 

Given Di and a, this amounts to selecting a mapping di : T ---t Ai. 
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Giv~m. tho cOlmnunicatioll system described above, consider how a mediator can ml~ 

plemellt a BE Q, for the garllo rJ Before tht) game begius, tIlt! players are publicly illformed 

that nlediatioll pIau a will be used; recall thut a is required to be common knowledge in 

the standard illterpretatiol1 of BE. The game is played as specified ,above. On getting the 

players' reports, the mediator privately recommends action Q,t(t) to player i. Thus, when 

selecting an actioll, player i knows the mappings (Oil a) and the signal-recommendatiOll 

pair (Oi(t), ai{t». Knowledge of (a, ai(t» does not reveal to player i any information about 

the state beyond what can be deduced from (Oi,Oi(t» because, by the definition of a BE, 

ai is measurable with respect to pluyer i's private information. Therefore, player i's distri

bution on (T, T), conditional on his information, is Ai{Oi(t». If all the other players are 

always obedient and player i chooses action di(t) in state t, then his conditional expected 

utility is Ui(t,a,di(t». As a is a BE, we have Ui(t,a,ai(t» Ui(t,a,b) for all i E N, 

t E T, and b E Ai. Thus, every player will be obedient in every state, assuming other 

players are always obedient. 

In the above-described implementation of a BE by a mediator, the mediator does 

not fully use the available information. More precisely, the mediator uses the profile 

(Oi(t»iEN to correlate the implementation of a particular BE, but does not correlate the 

players actions in a way that allows private information 'spillovers', i.e. by recommending 

actions that are not measurable with respect to their private informations. The distribution 

induced by a BE a on the space of action profiles A is niEN fL 0 ail, where each ai is 

required to be measurable with respect to player i's private information. As in the case of 

a correlated equilibrium, the mediator in an incomplete information setting may attempt 

to expand the set of possible distributions on A by choosing recommendations ai that are 

not necessarily measurable with respect to player i's private information. We proceed to 

such a model. 

Let a : T -7 A be a ViENU(Oi)/B(A) measurable mapping. Unlike in the case of a 

BE, the component mappings ai are not required to be u(Oi)/B(Ai ) measurable. Suppose 

a is the publicly announced mediation plan. Let steps (a) and (b) of the game be exactly 

as described above. Consider player i's decision problem after getting the signal Oi(t) but 

before hearing the mediator's recommendation. If all players are obedient and player i 

I Although the standard definition of a Bayesian equilibrium does not involve a mediator, the notion 
of a mediator is a useful interpretational construct in order to explain how a particular equilibrium is 
selected out of a set of Bayesian equilibria and how this selection becomes common knowledge. 
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stra,tegy d'i, then i's conditional expected utility is f1' Ai(Oi (t), ds )V'i(.'J, a_i (.9), d i (8)), 
in ord.er to induce ex ante obedkmcf} fl'OIll all players in all states t, a must satisfy 

(1011dition: for every 'i E Nand (t, (h) E 11 x AT 

(2.4) 

We call (2.4) an ex ante incentive condition because it induces obedience before the medi

ator's advice is received. However, the relevant question is whether a induces obedience 

after the mediator's recommendations are sent. (2.4) does not guarantee this. Once the 

mediator's advice is seen, each players will invert this message by using his knowledge 

of the mediation plan a. Consequently, player 1,'s conditional distribution on (T, T) after 

getting the mediator's advice will be Ai (Oi(t), ai(t)). This problem does not arise for a BE, 

as in that case the mediator's advice is measurable with respect to the player's private 

information, i.e. Ai(Oi(t)) = A.i(Oi(t), ai(i;)). 

Clearly, if player i knows (a) the mediation plan a, (b) the signal-recommendation 

pair (Oi(t),ai(t)), and (c) ai is not u(Oi)/13(Ai) measurable, then i's private information 

u(fh, ai) is finer than U(Oi), which creates the sequential rationality problem. This implies 

a basic conflict between (a) and (c). Therefore, one route out of this dilemma is to drop 

(c) by making ai u(Oi)/13(Ai) measurable, in which case we are back to BE. The other 

resolution is to drop (a) by making the mediator inscrutable, i.e. the players do not know 

the mediation plan a. If the mediator wishes to go beyond BE, then the second route is 

the one to choose. 

Let a : T -+ A be a ViENu(Oi)/B(A) measurable mapping and suppo..'Se the mediator is 

inscrutable. We alter the mediation process as follows. Let steps (a) and (b) of the game be 

exactly as described above. Step (c), however, is different: the mediator publicly announces 

a(t) with player i advised to implement ai(t). Knowing Oi(t) and a(t), player i decides 

whether to obey the mediator .. In the two earlier cases, as a was common knowledge, the 

players could use a to generate a belief about the other players actions. When the players 

do not know a, it is necessary to specify the players beliefs about each others actions in 

another way. The simplest alternative is to specify that the mediator's recommendations 

profile a(t) is common knowledge. As player i does not know a, his conditional distribution 

on (T, T) is Ai(Oi(t)). If the other players are assumed to be obedient, then i's expected 

utility from implementing action b E Ai in state t, conditional on seeing (Oi (t), a(t)) and 

knowing Oi, is Vi(t, a-i(t), b). Thus, we have the following solution concept. 
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(a~ 

De£111itiol1 2,5. An e~c post incent;iV(;; compa,tible equilibrium (EPIC) for r is a mappiuS; 

a. : T A slJcll tluJ,t 

(a) a is ViEN(J(()i)/B(A) mea.surable, and 

(b) 'Vi(t,a.(t)) flJi(t,a_i(t),b), for everyi E N and (t,b) E T X Ai. 

3. Existence of an EPIC 

We begin by stating some conventions. F; X::::}Y will denote a mapping with domain 

X and values in 2Y'. ~ is given the Euclidean metric topology. For a topological space X, 

the relevant a-algebra is the Borel u-algebra, denoted 8(X). Subsets of topological (resp. 

measurable) spaces are given the subspace topology (resp. trace u-algebra). Products of 

topological (resp. measurable) spaces are given the product topology (resp. a-algebra). 

As long 8..') the involved spaces are separable, there is no conflict among these conventions. 

If {Xi liE I} is a family of u-algebras on a set X, then ViE/Xi denotes the u-algebra 

generated by UiE/Xi , If (X, X) is a measurable space and Y is a topological space, then 

F : X::::}Y is called measurable (resp. weakly measurable) with respect to X if {x E X I 
F(x) nE::/= 0} E X for every. E closed (resp. open) in Y. If X is a measurable space, then 

M(X) denotes the space of probability measures on X; if X is topological, then M(X) 

will be given the weak* topology. We start with the following lemma. 

Lemma 3.1. Given u : T x A ~ ~, let U : M(T) x A ~ ~ be defined by U(A, a) = 
iT A(dt)u(t, a) for (A, a) E M(T) x A. 

(a) 1fT and A are compact metric, and u continuous, then U is continuous. 

(b) Ifu(t,a_i,.) : Ai ~ ~ is concave for every (t,a-i) E T x A-i' then U(A,a-i,.) : 

Ai ~ ~ is concave for every (A, a-i) E M(T) x A-i. 

Proof. Part (a) follows from Lemma 11.6.1 in Parthasarathy (1967) and Lemma A.L Part 

(b) is routine. 

The following result provides sufficient conditions for the existence of an EPIC. 

Theorem 3.2. Consider r = «(T, B(T), /1), N, ((n, B(Ti », (h, Ai, Ui)iEN). Suppose 

(a) T is compact metric, 

(b) N is countable, and 


for every i E N, 


(c) (Ti ,8(n)) is a separable standard Borel space, 

(d) Ai is a nonempty, convex, compact and metrizable subset ofa locally convex linear 
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(e) Ui : MCT) x A -t ~R, defined by Ui CA, (1) j~, A(dt )'/),£ (1;, a) for (A, a) E M (T) X A, 

is continuolls and Ut ().., a~~i) : Ai -+ fR is ql1[JSi~concave for [tll (Al a-i) E M(T) x A-i~ 

'l'hen tIlere exists an BPIO fOJ' 1". 

Proof. Define Vi : M(T) x A -. ~R by Vi(A, a) :max{U.i(A, a_i, b) I b E Ai} for ().., (L) E 

M(T) x A. Vi is continuouB (Borge, 1963, Theorems VI.3.1and VI.3.2). DefineBi : M(T) x 

A=}Ai by Bi(A,a) = {b E Ai IUi(A,a-i,b)-Vi(A,a) O} for (A, a) E M(T)xA. ABUi and 

Vi are continuous, Gr Bi = {(A, a, b) E M(T)xAxAi IUi(,x, a_i, b)-Vi(A, a) 2: O} is closed. 

Consequently, Bi is U.S.c. (Berge, 1963, Theorem VLl.7). Moreover, Bi has nonempty, 

convex and compact values. Define B : M(T)N x A=}A by B().., a) = OiEN Bi(Ai, a) 

for (A, a) E M(T)N x A. B is U.S.c. (Fan, 1952, LelIllIla A.4), with nonempty, convex 

and compact values. Define S : M(T)N=}A by SeA) = {a E A I a E B(A, a)} for A E 

M(T)N. S has nOllompty values (Browder, 1968, Theorem 4). By LelIllIla A.7, there is 

a T3(M(T)N)/T3(A) measurable function e : M(T)N ~ A such that e(,x) E S(A) for every 

AE M(T)N. 

As T is compact metric, (T, T3(T)) is a separable standard Borel space. Thus, by 

LelIllIla A.2, for every i E N, there exists Ai : Ti x T3(T) ~ [0,1] that satisfies the 

properties listed in Lemma A.2(A). By LelIllIla A.2(B), Ai : Ti ~ M(T), defined by 

A.i(ti)(') Ai(ti, .), is T3(Ti)/T3(M(T)) mea..')urable. As (}i is a«(}i)/T3(Ti) measurable, Aio(}i 

. is a«(}i)/T3(M(T)) measurable. Therefore, Ai 0 (}j is ViENa«(}i)/T3(M(T)) measurable for 

every i E N. Define A : T -+ M(T)N by A(t) = (Aio(}i(t))iEN. A isViENa«(}i)/B(M(T))N 

measurable, where T3(M(T))N is the product a-algebra on M(T)N. As M(T) is compact 

metric, it is separable. Therefore, T3(M(T))lY T3(M(T)N) (Parthasarathy, 1967, Theo

rem 1.1.10). Thus, a = eo A is ViENa«(}i)/T3(A) measurable. It is easy to confirm that a 

is an EPIC. 

Remark. LelIllIla 3.1 provides sufficient conditions on r for condition (e) of Theorem 3.2 

to hold. 

Theorem 3.2 requires compactness of T and continuity of Ui. In Theorem 3.4, (a) 

T is not required to be compact, and (b) utility functions are Caratheodory rather than 

continuous. However, some weaker topological structure on T is retained in order to 

guarantee the existence of regular conditional distributions for the players. 

Lemma 3.3. Oonsider r (T, T,M),N, «Ti, 'li),(}i,Ai,Ui)iEN). Suppose 

(a) (T, T,M) is a probability space, 
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(b) N 1s cot111t;ab.l0, l:tnd 

for every i EN, 

(c) (Til 'Ii) is II I1lfUJsul'able space, 

(d) Oi : l' -; 11 i.s a measul'able sUljection and (T, VUENU(Oi» is complete with respect 

(;0 p, 

(e) Ai is a llonempty; convex and compact subset of a Banach space, and 

(f) Vi : l' x A -; m, defined by (2.2), is sllch that (i) Vi(t) : A ---t mis continuous 

for every t E T, Oi) 'lJi(a) : 7'---t ~ is O"(Oi)/B(~) measurable [vr every a E A, and (iii) 

'Vi(t, a_i) : Ai -; lR is quasi-concave. 

Tllen there exists a mapping <J> : T x A:::}A such that 

(A) <J> has nonempty; compact and convex values, 

(B) <J> is measurable with respect toViENa(Oi) ® B(A), 

(C) <J>(t) : A=>A is u.S.c. for every t E T, and 

(D) a: T -+ A is an EPIC iff. a is ViENU«()i)/B(A) measurable and a(t) E ¢(t,a(t» 

for everyt E T. 

Proof. Until step (5), flx i E N. 

(1) Define Vi : T x A X Ai ---t mby Vi(t, a, b) = vi(t,a_i,b) - vi(t,a) for (t,a,b) E 

T x A X Ai. It follows from (f) that: (i) Vi(t) : A X Ai ---t ~ is continuous for every t E T, (ii) 

Vi (t, b) : A ---t lR is continuous for every ( t, b) E T X Ai, (iii) Vi (t, a) : Ai ---t mis continuous 

for every (t, a) E T x A, and (iv) Vi (a, b) : T ---t lR is 0"(()i) / B(lR) measurable for every (a, b) E 

A X Ai. (i) and (iv) imply that Vi is O"«()i) ® B(A x Ai)/B(lR) measurable (Himmelberg, 

1975, Theorem 6.1). Analogously, (ii) and (iv) imply that Vi(b) is O"«()i) ® B(A)/B(!R) 

measurable for every b E~. 

(2) Define Fi : T X A:::}Ai by Fi(t,a) = {b E Ai IVi(t, a, b) > O}. It follows from (f) 

that Fi has convex values. Step (1) and Lemma A.3 imply that Fi(t) : A=?Ai is lower 

semicontinuous for every t E T. We show that Fi is weakly measurable with respect to 

O"(Oi) ® B(A). As Ai is compact metric, it is separable. Let e be a countable set that is 

dense in Ai. Let E be open in~. Then, 

((t,a) E T x A IFi(t,a) nE 0} = ((t,a) E T x A 13b E E: Vi(t, a, b) > O} 

= ((t,a) E T x A 13b E Ene: Vi(t,a,b) > O} 

UbEEnc{(t,a) E T x A IVi(t,a,b) > O}. 

By (1), {(t,a) E T x A I Vi(t,a,b) > O} E U(()i) ® B(A) for every bEE n e. Thus, 

{(t, a) E T x A IFi(t, a) n E 0} E O"(Bi) ® B(A). 
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(3) Lt~t Di {(t,a) E tJ' X A I l41(t,a) 0/:: 0}. As Pi is weakly Irl()a.'3U1'al)l<~ with 

respect tC)(:r(t1i) ® B(A), Di {(t, a) E ~C x A 11<i(t, a) n Ai # 0} E a(t1i) ® 8(A). Defi:ne 

D;, {o, E A I (t,lL) E D'/J for t E T. Cklarly, Di UbEA,, {a E A I Vi(/;,a,b) a}. Using 

step (1), {a E A I.Vi(t, lL, b) > O} is open in A for every (t;, lJ) E T X A.i. Thus, Df is open 

in A for (WGry t E T. 

Let Df = {t E T I (t,a) E Di } for a E A. Clearly, Df = {t E T I Fi(t,a) ::f:. 0} 
{t E '1' I 31> E Ai : Vi(t, a, b) > a}. As Vi(t, a) is continuous by step (1), Df= {t E 

T I 3b E C: Vi(t,a,b) > O} = UbEC{t E T I Vi(t,a,b) > O}. As Vi(a,b) is a«(h)/B(~) 

measurable by step (1), {t E T IVi(t, a, b) > O} E O'(fh) for every (a, lJ) E AxAi . Therefore, 

Di E O'(Oi) for every a E A. Given (t, a) E T x A"Vi(t, a) : Ai --+ ~ is continuous by step 

(1). Therefore, for (t,a) E Di , Fi(t,a) is nonempty and open in Ai. It follows from 

Theorem 3.2 in Kim, Prikry and Yannelis (1987) that there exists li : Di -r Ai such that 

(i) fi(t, a) E Fi(t, a) for every (t, a) E Di, (ii) fi(t) : Df --+ Ai is continuous for every t E T, 

and (iii) fi(a) : Df --+ Ai is (O'(Oi) n Df)/B(Ai) measurable for every a E A. 

(4) Define the map ¢i : T x A=:}Ai by the formula 

By Lemma A.4, ¢i(t) : A=:}Ai is u.s.c. for every t E T. By Lemma A.5, ¢i is weakly 

measurable with respect to O'(Oi) ® B(A), and therefore with respect to ViENa(Oi) ® B(A). 

Moreover, ¢i has nonempty, convex and compact values. 

(5) Define ¢ : T x A:::}A by the formula ¢(t,a) = niEN ¢i(t, a). We now confirm our 

claims. (A) ¢ has non empty and convex values. As ¢i has compact values for every i E N, ¢ 

has compact values. (B) By step (4) and Lemma A.B, ¢ is weakly measurable with respect 

. to ViENO'(Oi) ® B(A); consequently, ¢ is measurable with respect to ViENO'(Oi) ® 8(A) 

(Himmelberg, 1975, Theorem 3.5(ii)). (C) Given that ¢i(t) is u.s.c. for every i E N, and 

is countable, ¢(t) : A=:}A is u.s.c. for every t E T (Fan, 1952, Lemma A.4). (D) Suppose 

: T -r A is a ViENO'(Oi)/B(A) measurable function such that a(t) E ¢(t,a(t») for every 

E T. Fix t E T and i E N. By construction, ai(t)E ¢i(t, a(t)). If (t,a(t)) E Di, then 

(t) = fi(t,a(t») E Fi(t, a(t)). This implies Vi(t,a(t), ai(t)) > 0, which is a contradiction. 

(t, a(t») E (T x A) - D i . This implies Fi(t, a(t») = 0. As this holds for every t E T 

i E N, a is an EPIC. Conversely, suppose a : T --+ A is an EPIC. By definition, 

is ViENO'(Oi)/B(A) measurable. Consider t E T and i E N. If (t, a(t)) E Di , then 

i(t,a(t)) =1= 0. Thus, there exists b E Ai such that Vi(t, a-i(t), b) > vi(t,a(t)), which 
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c(mtradicts the fact that a is an EPIC. So, (I;, aU;)) E (T x A) - Di for i;wery t; E T and 

i E N. By the definition of 4>i, this implies ai(t) E Ai = 4>i(t,a(i;)). Thus, a(t) E 4>(t,a(t)) 
for every t E T. 

W(~ immediately have the following exis1;ellce result. 

Theorem 3.4. Suppose r = ((T,B(T), p,), N, ((Ti,B(Ti», Oi, Ai,Ui)iEN) satisfies assurrlp~ 

tions (a) to (e) of Lemma 3.3. In addition, suppose 

(f) (T, B(T» is a separable standard Borel space, and 


for every i E N, 


(g) (Ti,B(Ti ) is a separable standard Borel space, and 

(11) Ui : T x A -t ?R is sucll t11at (i) Ui(t) : A -t ?R is continuous for every t E T, Oi) 

ui(a) : T -t ?R is B(T)/B(?R) measurable for every a' E A, and (iii) Ui(t, a-d : Ai -t ~ is 

concave. 


Tllen tllere exists an EPIC for r. 


Proof. If r satisfies assumptions (a) to (f) of Lemma 3.3, then there exists 4> : T x A~A 

with properties (A) to (D) listed in Lemma 3.3. Lemma'A.6 implies the existence of a 

ViENU(Oi)/B(A) measurable function a: T -t A such that a(t) E 4>(t,a(t)) for every t E T, 

which implies the existence of an EPIC by Lemma 3.3(D). 

We check that assumption (f) of Lemma 3.3 is satisfied. For every t E T, continuity 

of Ui(t) implies that of Vi(t). Since Ui(t, a-i) : Ai -t ?R is concave, Vi(t, a-i) : Ai ~ ~ is 


concave. Fix a E A. There exists a regular conditional distribution on (T, B(T» given Oi, 


denoted by Ai : Ti x B(T) -t [0,1] (Parthasarathy, 1967, Theorem V.8.1). By the non

, Cartesian version of the Fubini-Stone theorem (Rao, 1987, Exercise 6.2.3), the mapping 


ti t-i- IT Ai (ti' dt)Ui(t, a) is B(Ti)/B(?R) measurable. Since Oi is a(Oi)/B(Ti ) measurable, 


composing these two mappings implies that vi(a) is u(Oi)/B(?R) measurable. 

4. Existence of an optimal EPIC 

Suppose the mediator has a welfare function w : T x A -t?R. In this case, given a 

game r, the mediator may wish to implement an optimal EPIC, i.e. an EPIC a such that, 

for every EPIC a' and state t, w(t,a(t» > w(t, a' (t)). We show that this is possible very 

generally in the following result. 

Theorem 4.1. Consider r «(T, T, p,), N, ((]i, 'Ii), Oi, Ai, Ui)iEN). Ifr satisfies assump~ 

tions (a) to (f) of Lemma 3.3, and w : T x A -t ~ is such that wet) : A -t ~ is continuoUS 

for 01 

tllfJre 

Proof 

listed 

4}(t) 

exists 

t E T. 

wet, a' 

such tl 

Bj 

weakly 
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1 

evelY i! E 'I' ilIAd w(a) : l' -+ ~ is Vi(iENU{()i)/J3(~) JTWfu:Hu,ltble for every a E A, t;luUl
and 

.. exist;B an EPIC l:t 8uell t;lul-t, for (wary EPIC 0,' and st£tt;{) t:, 'w(t,a(t» 2: '(u(t,a.'(t».
aCt)) 

By Lemma 3.3, 1;here (~xists a mapping q) : T x A:=>A with properties (A) to (D)'" 
in LOlXulla 3,3. Define .p : T=>A by 4>(t):= {a E A I a E ¢(t, an and <I> : T=>m by 

= w({t} x ti)(t», fOf t E T. Define ¢ : T -~ fR by ¢(t) = sup <)(t). Suppose th(~l'e 
ump-

",nv,,,,,..,,, an EPIC a such that ¢(t) = wet, aCt»~ for every t E T. Let a' be an EPIC. Fix 

E T. By LamIl1a 3.3(D), a'(t) E <1>(t). Consequently, wet, (l(1;)) E <I>(t) , and therefore, 

,a'(t) :s; ¢(t) =w(t, aCt;»~. Thus, it is sufficient to show the existence of an EPIC a 
that ¢(t):= w(t,a(t» for every t E T. 

By Lemma A.6, .p is measurable, with nonempty compact values. Therefore, c) is 
, (ii) 

measurable with respect to ViENU(()i) (Himmelberg, 1975, Theorems 6.5), with 
fa is 

1ll011lempty compact values; indeed, <) is measurable as fR is a-compact (Himmelberg, 1975, 

tlr.rtlrtl 3.5(ii». It follows that ¢ is measurable (Himmelberg, 1975, Theorem 6.6); more

, as <i> has compact values, J>(t) E to({t} x <1>(t» for every t E T. It follows that 

l==>A exists a ViENa«()i)/t3(A) measurable function a : T ....... A such that aCt) E .p(t) and 

of a =wet, aCt»~ for every t E T (Himmelberg, 1975, Theorem 7.1). 

ET, Note that this result does not merely maximize expected welfare but does so state-by

Consequently, optimality does not depend on the mediator~s belief about the true 

luity 

fa is 

llon
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Appendix 

Lemma A.I. Suppose 

(a) X .aIld Yare separable metric spaces, and 

(b) 'U : X x Y -t mis bounded and continuous. 

Tilen, U: M(X) x M(Y) -t m, defined byU(Jl.,A) = JXXYJl.X A(dx,dy)u(x,y), iscontin

uous. 

Proof. Let V : M(X xY) -t mbe defined by V(v) = JXXY v(dz)u(z). As u is bounded and 

continuous, it is v-integrable for every v E M(X x Y). Let f: M(X) xM(Y) -t M{X xY) 

be defined by f(Jl.,A) = Jl. x A. As U = V 0 f, it is sufficient to show the continuity of V 

and f. Continuity of V follows from the definition of a weak*' topology. As X and Yare 

separable metric, so is X x Y. Therefore, M(X), M(Y) and M(X x Y) are metrizable 

and separable (Parthasarathy, 1967, Theorem 11.6.2). Consider sequences (Jl.n) C M(X) 

and (An) C M(Y) converging to Jl. E M(X) and A E M(Y) respectively. Continuity of 

f follows if limntoo Jl.n x An = Jl. x A. This follows from Lemma IILl.1 in Parthasarathy 

(1967). 

Lemma A.2. Suppose 

(a) X and Y are metric spaces, 

. (b) (X, 8(X)) and (Y, B(Y» are separable standard Borel spaces, with Q a probability 

measure on (X, B(X», and 

(c) 1r : X ~ Y is a measurable surjection. 

(A) Then there exists a function P : Y x B(X) ~ [0,1] and N E B(Y) such that (i) 

Q o1r-1 (N) 0, (i1) P(y,1r-1 ({y}» = 1 for every y E Y N, and (iii) Q(E) = Jy Q 0 

1r-1(dy)P(y, E) for every E E B(X). 

(B) If, in addition to (a)-(c), X is compact, then P : Y ~ M(X), defined by P(y)(.) = 
P(y, .), is 8(Y)/B(M(X» measurable. 

Proof. (A) This follows from Theorem V.8.1 in Parthasarathy (1967). 

(B) The space [-I, I]X of continuous functions 9 : X ~ [-1,1] with the compact-open 

topology is separable (Kuratowski, 1966, Theorem II.22.II1). Let {fi liE I} be a countable 

dense subset of [-I, l]x. Define F: M(X) ~ (-1,1]1 by F(Jl.) =(Jx Jl.(dX)!i(x))iEI' As 

{fi liE I} is dense in [-1, :L]x, F is injective. By the definition of the weak* topology, 

F is continuous. As M(X) is compact (Parthasarathy, 1967, Theorem 11.6.4), F imbeds 

M(X) in [-1, IV. As the Borel u-algebras on M(X) and [-1,1]1 are generated by their 
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ALso, .11' 0 

A.3. 
tity of V 

ldYare 

etrizable 

: M(X) 

nuityof 

~arathy 

bability 

v)(.) = 

t-open 

ntable 

:I',As 
ology, 

nbeds 

, their 

vc topologies, it follows that; M(X) is measurable iff. F(B) c [-I, lYiR 

Ie. Thus, P is mea.surable iff. F () P is measurable. 

P is mea.'3l1rable iff. l!i 0 j:, : Y -? [-1,1] is measurable for every i E L By 

Pi () P(y) = lx' P(Y)(dx)h(x) == Ix P(y,dx)fi(X). 

l.le8SlUUUJllllj of Fi () P follows from the non~Cartesian version of the Fubini-Stone theorem 

1987, Exercise 6.2.3). 

.1I';?J,.!'o;;;u ...........  Suppose X Bnd Yare topological spaces, X x Y is given the product 

and 9 : X x Y -t ~ is continuous. Then G ;.X=}Y, defined by G(x) = {y E Y I 
y) > O}, has an open graph, Bnd consequently, G is lower semicontinuous. 

GrG = {(x,y) E X x Y lyE G(x)};::: ((x,y) E X x Y Ig(x,y) > O}, which is 

in X x Y as 9 is continuous. 

To establish lower semicontinuity of G, fix x E X. Let V c Y be open in Y and 

V n G(x) f:. 0. Let y E V n G(x). Therefore, (x, y) E (X x V) n Gr G. As Gr G is open 

in X x Y, (X x V) n GrG is open in X x Y. Therefore, we can find E open in X and 

F open in Y such that (x,y) E Ex F and Ex Fe (X x V) nGrG. If Z E E, then 

(z, y) E (X x V) n GrG, Le. y E V n G(z). Thus, V n G(z) f:. 0 for every z E E. 

.Lemma A.4. Suppose 

(a) X Bnd Yare topological spaces, 

(b) Dc X is open in X, Bnd 

(c) 9 : P -? Y is continuous with respect to the subspace topology. 

If r : X=} Y is defined by 

if x E D,r(x) ;::: { {g(x)},
Y, itx E X -D, 

then r.is U.S.c. 

Proof. Suppose xED. Then r(x) = {g(x)}. Let E be an open neighborhood of g(x). 

Given (c), there exists U open in X such that x E U, and y E Un D implies g(y) E E. As 

D is open in X, un D is open in X, and y E Un D implies r(y) = {g(y)} c E. Thus, 

r is U.s.c. at x. Suppose x E X-D. Then r(x) Y. As y E X implies r(y) c Y, r is 

u.s.c. at x. 

15 



LemnUl A.5. Suppose 

(a) (r2, F) is a measurable spacC1, 

(b) X aIul Yare metric spaces with X sepl1fable, 

(c) D E F ® B,(X), 

(d) Da; {w E n I (w, x) ED} E:F for every x E X, 

(e) Dw = {x E X I (w,x) ED} is open inX !oreverywEn, and 

(f) 9 : D ~ Y is such that g(x) : Dx ~ Y is (F n Dx)/B(Y) measurable for every 

x E X and g(w) : Dw ~ Y is continuous for every wEn. 

Ifr : n x X=>Y is defined by 

f( 	 ) = {{g(w,x)}, if (w,x) E D, 
w,x Y, if (w,x) E (n x X) - D, 

then f is weakly measurable with respect to F ® B(X). 

Proof. Using the hypotheses, 9 is [(:F ® B(X» n D]/B(Y) measurable (Kim, Prikry and 

Yannelis, 1987, Lemma 4.12). Let E be an open subset of Y. Then 

((w,-x) E n x X I f(w,x) n E::I 0}:::;: [(n x X) - D] U ((w,x) ED Ig(w, x) E E}. 

Given the measurability property of g, {(w, x) E D I g(w, x) E E} = C n D, where 

C E F®B(X). As D E F®B(X), we have CnD E F®B(X). As [(nxX)-D] E F®B(X), 

we have {(w, x) E n x X I f(t, x) n E ::I 0} E F ® B(X), which proves that r is weakly 

measurable with respect to F ® B(X). 

In the following two results, given r : n xX=>X, the mapping <I> : n=>X is defined by 

<I>(w) = {x E X Ix E f(w, x)} for wEn. If n and X are measurable, then ¢ rv <I> denotes. 

that ¢ : n ~ X is a meas.urable function with¢(w) E <I>(w) for every wEn. 

Lemma A.6. Suppose 

(a) (n,F) is a complete measurable space, 

(b) X is a nonempty, convex, compact and metrizable subset ofa locally convex linear 

topological space, 

(c) f: n x X=>X is weakly measurable with respect to F ® B(X), and 

'(d) for every wEn, f(w) : X=>X is u.s.c., with nonempty, convex and closed values. 

Then, 

(A) <I> has nonempty closed values, and 

(B) <I> is measurable and there exists ¢ rv <I>. 

Proof. (A) Fix wEn. Using (b) and (d), and applying Theorem 4 in Browder (1968) to 

f(w); it follows that 4>(w) 0. 
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We show that <P(w) is closed in X. Suppose a: E X .- <P(w}. We have to find a:tlopml 

mH"'M",.",.. hood V of x such that V X <I> (w). As 3; E X - <I> (w ), we hl;we x E X - r (w, x:). 

assumption, r(w,x) is closed in X. By (b), X is regular; thus, there exist. open 

borhoods VI of x and U2 of r(w,x), such that VI n V2 = 0. As r(w) is u.s.c.,
• 

exists an open neigbborhood Va of :1: such that y E Va implies r(w, y) c U2. Set 

=V1 n U3. If Y E V, then f(w, y) c U2. Since U2 n V =0, this means y E X - r(wdJ), 

- <I>(w). Thus, V c X - <P(w). 

(B) As r and the projection (w, x) 1-+ ;,l; are weakly measurable with respect to :F ® 

, the mapping (w, x) H r(,+" x) n { x} is weakly measurable with respect to :F ® B(X) 

(Himmelberg, 1975, Theorem 4.1). Thus, Gr<P = ((w,x) E f2 x X I x E r(w, x)} = 
{(w, x) E f2 x X I r(w, x) n {x} n X -::J 0} E :F ® SeX). Therefore, <I> is measurable 

(Himmelberg, 1975, Theorem 3.5(iii)). It follows that there exists 1> <I> (Himm.{~lberg,rv 

1975, Theorem 5.1). 

Lemma A.7. Suppose 

(a) f2 is compact Hausdorff and X is compact metric, 

(b) r : f2 xX=>X has a closed graph, and 

(c) <I> has nonempty values. 

Then, <I> is measurable and there exists 1> rv <I>. 

Proof. Define f : f2 x X -7 n x diagX2 by f(w,x) = (w,x,x). As f is continuous and 

Gr<I> = f-l(Grrn (f2 x diagX2)), it follows that Gr<I> is closed. As n x X is compact, 

Gr <I> is compact. Consequently, <I> has compact values. 

Let E be closed in X. Given the projection w : (w,x) 1-+ W, {w E f2 I<I>(w) nE -::J 0} = 

w(Gr <I>n(f2xE)). As Gr<I>n(f2xE) is compact and w is continuous, {w E f2 I<I>(w)nE -::J 0} 

is compact. As f2 is Hausdorff, {w E f2 I<I>(w)nE -::J 0} is closed, and therefore, measurable. 

Since this holds for every E closed in X, <I> is measurable, and therefore, weakly measurable 

with respect to B(n) (Himmelberg, 1975, Theorem 3.5(i)). The existence of 1> rv cp follows 

(Himmelberg, 1975, Theorem 5.1). 

Lemma A.8. Suppose 

(a) (n,:F) is a measurable space, 

(b) {Xi liE I} is a countable family of second-countable topological spaces, and 

(c) for every i E I, ri : f2=>Xi is weakly measurable with respect to :F. 

Then, r : n=> X is weakly measurable with respect to:F, where X = niEI Xi and r(w) 

niEl ri(W). 
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Proof. It follows from (b) that X is second-countable. Thus, if E is open in X, then 

l!J LJ,iEJE.i for some collection {E,i U E J} drawn from the basis for X. It is easily seen 

that {w E n I r(w) nE:F 0} UjEJ{W En I r(w) n Ej :F 0}. It follows from this formuJa 

aud the countability of J that it is sufficient to show that {w En I r(w) n E:F 0} E :F for 

every E in the ba..'3is for X. 

r

If E is in the basis for X, then E = iliEIEi' where Ei is open in Xi for every i E l. 

It is easy to check that {w E n I r(w) n E #- 0} = niEI{W E n I ri(W) nEi #- 0}. As each 

i is weakly measurable with respect to F, {w En, ri(W) n Ei :F 0} EF for every i EI. 

As I is countable, this implies {w E n I r(w) n E:F 0} E P. t: 
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(, then 

ily seen 

formula 

E :F fot 

y i E I. 

A.s each 

y i E I. 
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