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ABSTRACT 
In a Coumot oligopoly, prior to choosing quantity, each firm has an opportunity to form pair-wise collaborative 

links with other firms. These pair-wise links lower costs of production of the firms which form a link and, if there are 
knowledge spillovers, also lower costs of other firms which are connected to them. The collection of pair-wise links defines 
a collaboration network. We characterize stable networks and compare them with efficient networks. 

We find that the complete network is stable, irrespective ofthe assumptions on spillovers across collaboration links. 
This is in contrast to some recent work on group formation in coumot oligopoly, see e.g., Bloch (1995). Our finding is also 
interesting from a welfare point ofview since, in such settings, the complete network is efficient from a social point ofview. 
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1 Introd uction 

,~ 	 Consider a S{~t of firms in an oligopolistic industry which compete in the market by setting 
i! 	 quantities. Prior to this choice of quantities, they have an opportunity to form pair-wise 

collaborative links. We allow a firm to be a member of any number of distinet pair-wise 
collaborationl>. Thus in principle networks may involv(~ intransitive collaborative relations: 
given distinct firms, i, j and k, a link between i and j /;tnd between j and k does not imply 
that i and k are also linked. The set of all pairwise collaborations defines a collaboration 
network. We study the nature of stable collaboration networks and compare them to the 
efficient networks. 

We start with an ana.lysis of the case where eollaborations have no knowledge spillover's:1 the 
lowering of costs for firms i and j from a collaboration with each other are independent of 
the number of other collaborations they individually have with other firms. We focus on the 
caSH whHf€ d(~mand is linear and a firm's marginal cost decreases linearly with the number 
of collaborative links it has with ot.her finns. We find that the complete network, i. e., a 
netwoTk in which there is a collaborative link between every pair of firms, is both the un'ique 
stable networ'k as well as the 'unique efficient network. Thus we observe no conflict between 
stability and efficiency in this framework. 

We then consider the case of perfect spillovers: when firms i and j establish a collaborative 
link, then they also benefit (in terms of cost reduction) by the same amount from t.he 
collaborat.ive links each mainta.ins with other firms. We observe first that the complete 
network continues to be stable as well as efficient. in this setting. It is, however, no longer 
the unique network to satisfy these properties. The set. of stable networks is quite large: 
a stable network is either connect,ed or has at most two components. We also find that 
any connected m~twork in which every link is non-critical is stable. In particular, we find 
networks such as the wheel, where collaborative relations are non-transitive, are stable. If a 
stable network is disconnected then we show that the two components must be of unequal 
SIze. 

We show that a network is efficient if and only if it is connected. Thus in addition to the 
complete network, structures such as the star/hub-spokes network and the line network are 
also efficient in this framework. A comparison of efficient and stable networks reveals that 
while there exist networks - such as the complete network and the wheel - which are efficient 
as well as stable, the two sets do not coincide. First, we observe that, there exist stable 

1Please refer to ~ection 2 for formal definitions. 
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networks which are not efficient. An example is a network with N (where N 2:: 5) firms in 
which N 1 firms form a complete component while a single firm is isolated. It can be shown 
that such a network is stable; however, it is inefficient since it is not a connected network. 
Second, we observe that there exist efficient networks which are not stable. One instance 
of such networks is the set of minimally connected networks.2 Since minimally connected 
networks are connected, such networks are efficient. However, since all collaborative links in 
a minimally connected network are critical, they are not stable. 

We also study the robustness of our results on stability and efficiency by allowing for general 
payoff functions, imperfect spillovers and &>ymmetric firms. In the first extension, we focus 
on the model of no-spillovers. We maintain the assumption that marginal costs are strictly 
decreasing in the number of direct collaborative link that a firm has with other firms; we do 
not require any more that the reduction in marginal cost is linear in the number of links. 
We first show that every stable graph has the transitivity p7'Operty: if firms i and firm j 
have a collaboration and firm j has a collaboration w'ith some other firm k. then it must 
be the case that firms i and k also have a collaboration. In other words. if a stable graph 
consists of more than one component, then each component is complete. We t hen examine 
the size and number of components in a stable network. We show that components in a 
stable network must be of unequal size and derive bounds on the number of components 
in a stable network. Finally, we show that the complete graph is always stable. We then 
identify a class of situations in which it is, in fact, the only stable graph. The case of linear ly 
decreasing marginal costs falls within this class. 

We conclude with a discussion of the case of imperfect spillovers and the case of asymmetric 
firms. In the former case, the reduction in marginal costs falls exponentially as the links 
become more distant. The imperfect spillover case is difficult to characterize fully even in rel­
atively simpler models where link formation is one-sided (for instance. Bala and Goyal (1998)) 
or where link formation is not rival (for instance, Jackson and \iVolinsky (1996)). We offer 
some partial results on stable networks and demonstrate that the complete net.work continues 
to be stable. 

Our paper is a contribution to the study of group formation and cooperation in oligopolies. 
In recent years, considerable work has been done on this subject: see e.g.) Bloch (1995,1996); 
Ray and Vohra (1997), Yi (1996,1997) and Yi and Shin (1995). In this literature, group 
formation is modelled in terms of a coalition structure which is a partition of the set of firms. 
Each firm,therefore, can belong to one and only one element of the partition, referred to as 

network is said to be minimally connected if deleting a collaborative link between any two firms results 
in a network which is not connected. Minimally connected networks include the star and the line networks. 
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a coalition. Moreover, within a coalition, every firm is assumed to be symmetrically locat(~d, 
and thus avails of similar rewards from membership. Putting it differently, it is the numb(~r 
of firms in each coalition which dotermines of profits of each firm. 

In contrast, we develop a model of group formation in an oligopoly based on pair-wise links 
between firms. This framework is richer than that of coalition structures in an important 
aspect: it accommodates collaborat,ive relations that are non-transitive. The existing work 
on coalition structures basically restricts attention to collaboration structures are transitivo. 
This restriction can be motivated quite well in some cases such as cartel formation, but it 
appears to be unduely restrictive for studying the nature of resoarch and development joint 
ventures between firms. Thus, for example, in a three firm world, it is possible that firm 1 
has a pair-wise link with 2 and 3, respectively, while the latter two firms have no pair-wise 
collaboration with each other. In this network, if the spillovers across pair-wise links are 
imperfect or absent, then the profit of firm 1 on the one hand, and firms 2 and 3 on the1 

It other hand, will be different. 
h Our approach is inspired by the recent work on strategic models of network formation; see 
? e.g., Bala and Goyal (1998), Goyal (1993), Jackson and 'Wolinsky (1996), and Krannert. and 

Minehart (1998). In the context of this literature. the primary contribution of the present
l,s paper is to show how ideas and concepts of network formation can be applied to a concrete 
~n problem in the theory of industrial organization. In particular, in our model, the formation of 
ly collaborative links generates benefits which are 'rival: when firms i and j form a collaborative 

link, they lower their marginal costs which in turn always lowers the profits of those firms 
who are not directly or indirectly linked t.o i and j3. Thus we study an example of network 

.k8 
~ic 

formation characterized by negative extemalities. To the best of our knowledgE: this is the 
cl- first paper to examine the architecture of collaboration networks in such a setting. 
3)) We now contrast our results with those in the existing literature. Bloch (1995,1996) develops
Ier a sequential coalition unanimity game in which firms propose coalitions and a coalition is 
,le8 

formed only if every member of a proposed coalition agrees to become a member. Each 
firm's marginal cost is linearly declining in the size of the coalition of which it is a member. 

ies. After coalitions are formed, the firms compete as Cournot oligopolists in a market wit.h linear 
)6), homogeneous demand. Bloch demonstrates that there is a unique stable coalition structure, 
oup in which firms are divided into two unequal groups. In particular, with N firms, the number 
ms. of firms in the larger coalition is the integer closest to 3(N + 1)/4. The efficient coalition 
:)a5 structure, however, is the grand coalition which cannot be achieved as a stable outcome of 

3In the presence of spillovers, the profits of firms linked directly or indirectly (through a chain of inter­
orks. 
suits 

mediate Jinks) to i and j may also increase. 
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the game. By contrast, we find in the context of the linear model that, if spillovers are 
ab.'Jent, then the complete network/grand coalition is the unique stable as well as the unique 
efficient network. In the presence of perfect spillovers, we find that the complete network is 
still stable and efficient. However, other networks also arise in this case. In particular, we 
find that if the stable network is diconnected then it consists of two components of unequal 
size. This last result is similar to the findings of Bloch. 

Yi and Shin (1995) propose a simultaneous open membership game in which all players 
announce their decision to form coalitions at the same time and non-members cannot be 
excluded from joining a coalition. They obtain the grand coalition as the stable outcome of 
the open membership game. Their approach is akin to a game in which the decision to join 
a coalition is one-sided. In such a game, and in the presence of perfect spillovers, a member 
of a smaller group always has an incentive t.o join a larger group. In our paper, by contrast, 
link formation is based on pair-wise incentive compatibility, and it is t.herefore interesting to 
ob::;erve that a grand coalition can be obtained in this setting also. Thus our result provides 
an alternative exphination as to how a grand coalition may emerge. 

Ray and Vohra (1997) propose a sequential equilibrium binding agreements game, in which 
a sub-coalition is permitted to block a given strategy vector, thereby making the coalition 
structure finer. However, the blocking coalition does not naively t.ake the st.rat.egy of the 
complement as given. Rat. her , it looks forward to an equilibrium t.hat will be induced as 
the complementary members of the coalition structure react to its blocking. An equilibrium 
binding agreement is one which cannot be blocked by any coalition in a given coalition 
structure. Ray and Vohra apply this idea to a Cournot oligopoly with linear homogeneous 
demand and constant marginal cost. In t.heir framework, marginal costs are not affected 
by coalition formation (the focus is on collusion in the quantity game). Considering just 
aggregate profits. they show that the grand coalition is efficient. They then demonstrate a 
cyclical pattern of stability as the number of players increase. In particular,while t.he grand 
coalition can be supported by an equilibrium binding agreement for very low and very high 
values of N, it is not immune to blocking by some coalition for intermediat.e values of. N. 
In contrast, in a model where marginal costs are sensitive to link formation, we obtain the 
complete network as the unique stable and efficient network, independent of the value of N. 

The model is presented in section 2; the analysis with no spillovers is presented in section 3 
while the analysis with perfect spillovers is presented in section 4. Section 5 present an 
extension to general marginal costs with no spillovers. Section 6 concludes with a discussion 
of the imperfect spillover case and the case of asymmetric firms. 
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Basic Model 

\Ve consider e, set.ting in which a set. of firms first choose their collaboration links with 
other ilrms. These collaboration agreement.s ate pair~wi8() and help lower marginal costs of 
production. The firms then compete in a ma,rket by choosing quantities. We are interested 
in the network of collaboration t.hat emerges in this setting. We now develop the required 
terminology and provide some definitions. 

2.1 Preliminaries 

Let N = {I, 2, ... , N} denote a finite set of firms. To avoid trivialities, we shall assume that 
N ;;: 3. For any i, j EN, the pair-wise relationship betw(~en the two firms is captured by a 
binary variable, gij E {O, I}; gij = 1 means that a direct link (joint venture) is established 
between firms i and .i while gij 0 means that no direct link is formed. By definition, 
gii :::::; 1 '\Ii E N. A ne.twork, 9 = {(glj kiEN} , is a formal description of the pair-wis(' 
collaboration relationships that exist between the firms in N. We let g denote the set of all 
networks. Two special cases are the complete network, ge, in which gij = 1 '\Ii, j E N, and 
the empty network, ge, in which gij = 0 '\Ii,j EN, i f= j. Let 9 + gij denote the network 
obtained by replacing gij 0 in network 9 by 9ij = 1. Similarly, let 9 - 9ij denote the 
network obtained by replacing gij = 1 in network 9 by gij = O. 

Let N(g) {i EN: ::Ij =1= i S.t. gij = I}. Each firm in N(g) has at least one direct 
link to another distinct firm in the network g. Therefore, N(gC) = Nand N(ge) 0. We 
will let IN(g)1 denote the cardinality of N(g). There exists a path between firms i and 
j) either if gi,j = 1 or if there exist,s a distinct set of finns {i1 : ... , in} C N (g) such that 
gii] = 9iliz gizia ginj = 1. Given any two firms i and j, let dij(g) denote the 
number of links in the shortest path between i and j in the network g. We shall use the 
convention that dij (g) 00 if there exists no path between i and j in g. We refer to dij (g) &<; 

the geodesic distance between firms i and} in g. For instance, dij(gC) = 1 and dij(ge) 00 

'\Ii,j EN. 

A network, g' C g, is a com.ponent of 9 if for all i, j E N (g'), i =1= .i, there exists a path in g' 
connecting i and j, and for all i E N (g') and j E N (g) 1 gij = 1 implies gij E 9'. Generally, in 
a component g' with three or more agents, there will exist agents i and j such that dij (g') ;;: 2. 
We shall say that a component g' egis com.plete if gij = 1 for all i, j E N (g'). 
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2.2 Payoffs 

Given a network g, a firm i'8 cost function is specified as follows: 

Ci(qi,g) = Ci(g)qil i EN (1 ) 

where qi denotes the output of firm i. We suppose that a firm's marginal cost is decreasing in 
the number of direct collaboration links it has. It is possible that a firm's costs be influenced 
by the collaboration links of other firms; this depends on the nature of spillovers across links. 
We consider two cases: no spillovers and perfect spillovers. Let fJi (g I 1) be the number of 
firms who have a direct link with firm i, in network g; likewise, let fJi(g, k) be the number of 
firms for which dij = k in network g. We focus on the case of linearly decreasing costS.4 We 
first state t.he no spillovers case: 

TO - TfJi (g, 1) , TO > NT> 0, i E N (A.l) 

We next present t.he case of perfect spillovers; 

N-l 1
Ci(g) C(T/i(g)) = 'Yo -,' [ ,tiTli(9, k) ,TO> NT > 0, i EN (A.I') 

The two expressions above are natural interpretations in the network framework of the 
specification used in Bloch (1995), where marginal cost of firm i decreases linearly in the 
number of firms belonging to the same coalition as i. Bloch (1995) provides a number of 
examples which generate the above linear specification for marginal cost. The last equality 
sign in (A.1 )-(A.1') reflects the assumption that the firms are symmetric, in an ex-ante sense. 

In the second stage, the firms engage in Cournot competition in a homogeneous product 
market where they face a linear inverse demand function given by: 

(2) 

Given any network 9 from the first stage, the second stage Cournot competition between 
firms yields the following equilibrium output: 

(3) 

4The more general case of cost reduction as well as imperfect spillovers are considered in section 5. 
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Aggrc:)gate Cournot output, givlm l}; is: 

Q(g) (4) 

The second stage Cournot profits for a firm, given g, are: 

(5) 

In our study of stable networks, we will find it convenient to use a positive monotonic 
transformation of the firm's profits to write the payoff as follows: 

1ri(g) = 0: - NCi(g) +L Cj(g) ) 'i EN (f» 
Hi 

We assume some restrictions 011 the parameters to ensure that each firm produces a positive 
quantity in the Cournot game. 

o< Ci(g) ~ C< 00, Vi E N, Vg E 9; . (l' >3Nc. (A.2) 

2.3 Stable and Efficient Networks 

We employ a relatively weak notion of stability which is based on the idea that while links 
are formed bilat.erally, they can be severed unilat.erally.5 Formally, the net.work 9 is stable if 
for all i, j EN: 

(i) 7I"i(g) ;:::: 7I"i(g - 9ij) and 7I"j(g) ;:::: 7I"j(g gij) 

(ii) if 1ri(g + gij) > 7I"i(g), then 7I"j(g + gij) < 7I"j(g) 

In words, in a stable net.work any firm that. is direct.ly linked t.o anot.her has no incentive 
to sever the link and any t.wo firms that are not directly linked have n'o incentive t.o form a 
direct link with each other. 

5We have borrowed this concept from Jackson and Wolinsky (1996). 
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In order to study efficient networks, we need to consider aggregate welfare. For any network 
g, this is defined as the sum of consumer surplus and aggregate profits of the N firms: 

(7) r 
I, 
pWe shall say that a network g* is efficient if W(g*) 2: W(g), for all 9 E Q 

The Case of No Spillovers 

In this section we consider the case where the marginal costs of a firm decrease in the number 
of firms with which it is directly linked, but are unaffected by indirect links. 

Proposition 3.1 Suppose {A.l}-{A.2} hold. Then the complete network, ge, is the unique 
stable network. 

The intuition behind this result is as follows: if two firms form a link then given (A.1) the 
costs of all other firms are unaffected. The cost advantage to both firms is the same under 
(A.1). An inspection of the profit expression in (6) reveals that the positive effects on the 
profits of a firm i from a link with another firm j is given by N" while the negative effects 
are given by f. Thus link formation is clearly profit enhancing. This argument shows that 
any network other than the complete network cannot be stable. To see why the complete 
network is stable note that no further links can be added, while the deletion of a link by a 
firm i, with (say) firm j only increases the costs of firm i and j but leaves the costs of all 
other firms unaffected, lowering profits of firm i by (N 1)1. Thus it is not profitable to 
delete links either. This completes the argument. 

Proposition 3.2 Suppose that {A.l}-{A.2} hold. Then the complete network, ge, 1,8 the 
unique effic1:ent network. 

We use a general result on Cournot quantities in proving this result. This is stated as 
Lemma 3.1. 
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Lemma a.l Suppose A.l and A.2 hold. Let g' be any component of a network g. Then 
Li€N(lJl) eli(g) 'is ma:1:irnized when g' is complete. In particldar, aggregate output, q(g) ,is a 
max'imum fo1' tll.(~ complete n(~twork, ge. 

Proof of Lemma 3.1: Consider a component. 9' in a network 9 that is not complete. Let 
IN(g')1 == '1111 '11' ::; N. Consider firms i,j E N(g') such that gij = O. Under (A.2), all firms 
produce a strictly positive ou1;put in a Cournot equilibrium. 

L [Qk(g + gij) - Qk(g)] 
kEN(lJ') 

r 

e 
= i\f 1_ 1 L [N (Ck (g) - cdg + gij)) + L Cj C9i + gij) - L Cj (9i)] 

1 -j kEN(lJ')\{i,j) j# j# 

e +N ~-1 L, [N(Ck(9) - Ck(g + gij)) + L q(gi + gij) L C/(9i)] 
k=t,J 1# I",k 

e 

;s On rearranging terms and simplifying, we get: 


~t 

,e 

a 
.il 
,0 

Under (A.I)' the last expression is strictly positive. This completes the proof. 

The proof of Proposition 3.1 proceeds by showing that the aggregate social welfare increases 
every time a pair of firms previously unconnected form a link. Thus we compare two net­
works, 9 and g+gij and show that the welfare levels in the two networks satisfies the following 
relation: ~V(g + gij) > W (g). It is relatively straightforward to show that the aggregate out­
put and hence consumer surplus increases as costs of the two firms i and j go down. The 
behaviour of the second term in the welfare expression, the aggregate profits of the firms is, 
however, unclear. We exploit the linearity of the cost reduction in determining the sign and 
magnitude of that term. The details of the computations are given in the appendix. 
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4 The Case of Perfect Spillovers Pl 
/-ir 
N

We now consider the case where a firm's marginal cost decreases with the number of firms 
1;0 whom it is directly as well as those to whom it is indirectly linked.6 We start by showing 

pthat the complete network is pair-wise stable. This result also shows that the set of pair-wise 
stable networks is non-empty. 1t 

III 

Proposition 4.1 Suppose that (A.l'}-(A.2) hold. Then gC is paiT-wise stable. Cl 

Proof In gC , the payoff to each firm is: 

a-,o+,(N -1) (8) 

The payoff to firm i after deleting a link gij is given by: t 

a N Ci(gC - gij) + Cj(gC - gij) + L Ck(gC gij) (9) 
ki=i,j 

Under the assumption of perfect spillovers, Ci(gC gij) = Cj(gC gij) Ci(gC) =,0 ,(N 1) 
and Ck(gC - gij) =,0 - ,(N - l),k -=I i,j. Therefore, 1ri(gC) = 1ri(gC gij) and there is no 
incentive to delete the link gij' l:::. 

We now study the nature of stable networks more generally. Recall that there exists a 
path between i and j if either gij 1 or there is a sequence of firms i 1 I i 21 ... ,in such that 
.9iil = .9i1'2 ... = .9i"j 1. We say that a network is connected if for every pair of firms 
i, j E N, there exists a path between them. A network is unconnected if there exists some 
i, j E N such that there is no path between them. A network is minimally connected if 
9 - gij is unconnected for each gij E g, gij 1. Examples of minimally connected networks 
include the star and the line network. 

Our next result looks at connected networks. We will say that a link gij is cTitical in the 
network g if gij 1 in 9 and there is no path between i and j in the network 9 - gij' Likewise, 
gij is non-critical in the network 9 if gij = 1 in 9 and there exists a path between i and j in 
the network 9 gij. 

6This corresponds to the original IVlyerson (1977) formulation where two players cooperate in any given 
network if they are directly connected by a collaborative link or indirectly by a path of intermediate collab­
orative links. 
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Proposition 4,2 StLppose that (A.l')~(A.2) hold. If 9 is connected then 9 i.s stable if eV(J.'ty 

link in 9 ,is non-critical. Moreover, if .9 is minimally connected, then it i.':J not stable for 
N > 8.ms 

mg 
lse 	 Proof: If 9 is connected, then clearly adding links makes no difference to the payoffs because 

it leaves the marginal costs of all firms unaffected. Moreover, deleting a single link 9ij again 
makes no difference since 9ij is non~criticaL Thus, if rJ is connected and every link is non­
critical, then 9 is stable. 

Let 9 be a minimally connected network. In 9, all firms have a marginal cost of ,0 -,(N -1). 
By definition of minimal connectedness, t.here exists some i,.i E N such that. in 9 - 9ij, firm 
j is isolated from the other N - 1 firms and firm ·i is Iconnected to N - 2 firms other 

(8) 	 than firm j. The new marginal costs are Ci(g - 9ij) = ,0 ,(N - 2), Cj(g - gij) = ')'0 and 
Ck(q - glj) = 1'0 ,(N 2), k =1= i,.i. The payoff to firm i before and after the deletion of 
th(~ link are: 

(9) 	 o· bo - '),(N - 1)] (10) 

- 1) 
1ri(g - gij) = 	a - Nbo -,(N - 2)J + (N - 2)bo - ,(N - 2)} + ,0 (ll)

no 
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It can now be verified that 7ii(g rJij) 1ri(g) ,(N - 3) > 0 for N > 3. Therefore, g is not 
s a stable for N > 3. 6 
bat As a partial converse of the first part of Proposition 4.2 we have that if 9 is a stable connected 

network with N > 3 firms, then at least one link in .9 is non-critical. If not, then all links 
in g would be critical implying that g is minimally connected. But, from the second part of 

i if Proposit.ion 4.2, this would contradict the stability of g.
rk8 

We next look at the class of unconnected networks. We first show that components in a 
stable network must be of unequal size. The argument is as follows: suppose that there 

the are two components 1 and 2, of size k each in a stable network. Then the gross profit 
Ise, advantage for a firm i in component 1 to form a link with another firm j in component 2,
i in is given by Nk" while the disadvantage in terms of reduced costs of other firms is given by 

(k2 + (k - 1)kh. The former effect is larger jf Nk, > (k2 + (k - l)kh, which is equivalent. 
iveil to the requirement that N > 2k - 1, which is always true. This argument is summarized in 
lab- the following lemma: 

12 



laLemma 4.1 Suppose that (A.l'}-(A.2) hold. In a stable network the components are of 
is·unequal size. 

v 
The next result derives an upper bound on the number of components. o 

Proposition 4.3 Suppose that (A.l'}-(A.2) hold. If 9 is a stable network, then it has at 
most two components. 

1= 
Proof: Suppose 9 is a stable network with more than two components. Let gl and gil be I­
the smallest two components with IN(gl)1 nl and IN(g")I = nil. Then, by the definition of i 
a component, nl, nil < (N + 1)/2. Let i E N(gl) and j E N(g"). Then, the payoff of firm 'i t 
before and after forming a link with firm j are: l: 

s 
a 

7fi(g) = 0: - (Nn' + 1)[,0 i(n' l)J + nil [,0 - "((nil 1)J + 

0: - (N n' + 1)[,0 "((n' - 1 + n")J 

+ n"h'o -i(n' + nil - l)J + L Ck(g + gij) (13) 
krtN(gJ)uN(g") 

Subtracting (12) from (13) and simplifying: 

(14) 


From (14), 'lfi(g + gij) > 'lfi(g) if and only if n! < (N + 1)/2, which is true by hypothesis. An 
identical argument establishes that 'lfj(g + gij) > 'lfj(g) if and only if nil < (N + 1)/2, which 
is also true by hypothesis. But this contradicts the stability of g. 6 

We now give an example of a stable network with two components. Consider a network 
where one component contains N - 1 firms while the other one contains the remaining single 
firm. Moreover, let the first component be complete. It can be verified that if N ::::: 4 then 
this network is stable. In such a network, the isolated firm wishes to form a link with the 
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large component, but none of the firms in tho large component wish to form a link with the 
isolated firm. 7 

vVe study the nature of efficient networks next. In contrast to the no spillover case, th(~ set 
of efficient networks is quite large. 

Proposition 4.4 Suppose that (;1.1 '}-(A.2} hold. A network 9 is efficient if and only if it 
is connected. 

Proof Consider the" only if" part. Consider any network 9 with two or more components. 
Let g' and gil be the two largest components where IN(gl)1 '17,':::; nil = IN(gll)l. Let 

f 	 i E N(g') and j E N(g"). Consider the network g+gij.We will show that W(09+gij) > W(g); 
t.hus any disconnected network is welfare dominated, implying that an efficient network must 
be connected. From expression (4) it follows that Q(g + .9ii) > Q(g); therefore, consumer 
surplus strictly increases with the addition of the link gij 1. To show that aggregate profits 
also increase, we need a few intermediate facts. First. comparing the outputs of firms before 
and after the formation of t.he link gij = 1, we observe that for all hEN(091

), lEN(g") and 
k ~ N(g') U N(g"): 

(15) 

(16) 

Second, comparing the change in output for each firm before and after the formation of the 
link gij 1: 

,n"(N 2n' + 1)~) hE N(g') 	 (17)
(N + 1) 

\.n 

ch ,n'(N - 2n" + 1) 
(18)(N + 1) , 1E N(g")l:::,. 

·rk 	 'To see this lIote that, in the linear model with perfect spillovers, the advantage for a firm in the large 
1;le 	 component from forming a link is given by N'Y, while the disadvantage, reflected in the falling costs of the 

other firms, is given by (N - 1h + (N 2h. The latter is larger than the former if N > 3. By contrast, the en 
advantage for the singleton firm from such a link is N.(N -lh, while the disadvantage is (N -lh. Clearly,he 
the former is larger than the latter, so long as N 2: 2. 
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2,n'n" 
(N + 1)' k ¢ N(g') U N(g") (19) 

Ou 
Combining the above, we get: iff 

k, 

I: [Q~(g + gij) - Q~(g)] I: [Qm(g) + Qm(g gij)] [Qm(g + gij) Qm(g)] (20) Pr 
mEN mEN ne' 

'I'll 
stB(21) 

Le
Details of the computations are provided in the appendix. This proves that 9 is welfare 
dominated by 9 + gij' Since 9 was an arbitrary disconnected network, this implies that 
any disconnected network is welfare dominated. Hence an efficienct network is necessarily 

co:connected. 
ide 

R.egarding the "ir' part,' suppose 9 is some connected network which is not efficient. Then 
there exists some g* E 9 such that ltV(g*) > W(g). If g* is connected, then it yields the same 
aggregate welfare as g, contradicting W(g*) > ltV(g). Now suppose that g* is unconnected 
and let gl,g2, ... ,gK be its components such that IN(gl)1 ::; IN(g2)1 ::; .. . IN(gK)I. Letting 
in denote a firm in /N(gn)/, n = 1,2, ... , K, we can mimic the argument in the first part to In 
show that W(g* + giT<-liT<) > ~V(g*). Repeating this argument K 1 times strictly increases 
aggregate welfare in each step and culminates with the connected network, g* +'2:~;/ ginin+l . 
By the assumption of perfect spillovers, W(g) = W(g* + '2:;(':11ginin+l) > W(g*) contradicting 
lr(g*) > W(g). This proves the "if" part of the proposition. 6. 

N( 

reo 


5 General costs with no spillovers w] 


LE 
We once again consider the model where a firm's marginal cost decreases with the number irr 
of firms to whom it is directly linked but are unaffected by the number of indirect links to st. 
other firms. We specify marginal cost of firm i quite generally by Ci(g) == C(1]i(g, 1)). We th 
assume that: 
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c( A: ) :> c(k + 1), Yk E {I, ... , N - 1} (A,3) 

Our first result establishes that. every stable network h('\8 the following transitivity property: 
if firms i and firm j have a collaborat.ion and firm j ha.'3 a collaborat.ion wit.h some other firm 
k, them it must b(~ th(~ case that firms i and k also have a collaboration. 

Proposition 5.1 S1qJpOSe (A.2)~(A.8) hold. A stable network cons'ists of complete compo~ 
nerds. 

The proof uses two ll'!mmas; these results are also of some independent interest and so we 
state and prow) them in the text. 

Lemma 5.1 Consider a stable network, g. lfTJi(g, 1) :::::: 'I/j(g, 1), then gij = L 

Proof: Let 9 be stable, If TJi (g, 1) = 'I/j (g, 1) = N, then by definition gij ::.": 1. Therefore. 
consider the ca.'3e whef{~ TJi(g, 1) = TJj(g,l) < Nand .9iJ = O. The payoffs to i and j are 
identical if TJi (g, 1) = TlJ (g, l). The payoff to firm i is given by: 

1fi(g) = 0' - NC(TJi(g, 1)) + c(TJj(g, 1)) + L C(TJk(g, 1)) (22) 
k#i,j 

In the network, 9 + gij, the payoff to firm 1: is given by: 

)' 1fi(g + gij) = 0' - NC(Tli(9, 1) + 1) + c(TJj(g, 1) + 1) + L c(TJk(g + gij, 1)) (23) 
:> k#i,j 

Note that TJk(g + gij, 1) = TJk(g, 1) for k =1= i,j. Therefore, C(TJk(g + gij, 1)) = C(TJk(g, 1)). On 
rearranging terms, it follows that 1fi (g + gij) > 1fi (g) if and only if c(TJi (g, 1) + 1) < c(TJi (g, 1)) 
which is true by (A.3). But this contradicts the hypothesis that 9 is stable. ~ 

Lemma 5.1 has some interesting implications for the nature of stable networks. The first 
:r implication is that the empty network, ge, is not st.able. The second implication is that a 
o stable network cannot have two or more singleton components. The third implication is that 
e the star/hub~spokes network 8 is not stable. This is because in all these networks, there are 

8 A star network has one central agent i, with gij = 1 for every j =I i and gjk = 0 for every j, k =I i. 
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at l<:ltl.'3t two firms i and .i who have the same number of direct links but gij O. By Lemma 
5.1, these two firms have an incentive to form a direct link. 

Lemma 5.2 Consider a stable network g. If firms i and j belong to a component of g, then 
.%=1. 

Proof; Consider a stable network g. Suppose that g has a component g' where IN(g')1 = 
k ? ~3 (for k = 1 or k :;;::: 2, the claim is obviously true). Let there be l :::; k agents in g' with 
17i(g', 1) = k. If l == k, then we are done. Therefore, suppose that l < k. Since I agents have 
17i(g', 1) = k, it follows that for any j E N{g'), 17j(9', 1) ? l +1. Moreover, since only l agents 
have rJi(g', 1) = k, it follows that there are k - l agents with l + 1 :::; 17i(g', 1) :::; k - 1. Hence 
1Ji(g',l) can take on (k - l - 1) possible values. Since there are k -l firms, it follows that 
there exist at least two firms i and j with 17i (g', 1) = 17j(9') 1) < k. An application of Lemma 
5.1 now implies that 9 is not stable, a contradiction. This completes the proof. !::. 

Combining Lemmas 5.1 and 5.2 yields us Proposition 5.1. Moreover, an implication of 
Lemma 5.1 is that if a stable network contains many components then they must be of 
unequal size. 

The above results leave open the issue of existence of stable networks. The next result shows 
that the set of stable networks is non-empty. 

Proposition 5.2 Suppose (A.2)-(A.3) hold. Then the complete network, gC, is stable. 

Proof: In 9C,17i(gC,l) = N -1, Vi EN. Therefore, firm i has a marginal cost of c(N 1) 
and payoff of: 

There are no links to add so condition (ii) of stability is automatically satisfied. We check 
condition (i) next. Suppose we set gij 0 for some pair i and j. In the ensuing network, 
gC - gij, the payoff to i is given by: 

7ri(gC - gij) = a - Nc(N - 2) + c(N - 2) + (N 2)c(N - 1) (25) 

The payoff to firm j is identical. There is no incentive to delete link gij = 1 if 1ri (gC - gij) < 
1ri(gC). But this is equivalent to c(N - 1) < c(N - 2) which is true by (A.3). D 
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We would like to further characterize the si;ructure of networks. A first step in that direction 
is the next, result. It provides a cornpiete characterization for a restricted set. of parameters. 

Proposition 5.3 Suppose (A.2)·(A .8) hold and in addition N[c(k) - c(k +1)] > c(l) c(l + 
1) Vl, k E {I, ... , N - 1}. Then gC is the unique stable network. 

Proof: Proposition 5.2 shows that under (A.2HA.3), gC is stable. We now show that under 
the hypothesis, N[c(k) - c(k + 1)] > c(l) - c(l + 1) Vl, k E {I, ... , N - l}, 9 =I gC is not 
stable, thus establishing that the complete network is the unique stable network. COIlsider 
some 9 with gij O. We show that both i and j are strictly better off by forming a link. 
The payoff toi in network 9 is given by: 

1fi(g) = a - NC(1]i(g, 1)) + c(1]j(g, 1)) + L c(1]k(g,l)) (26) 
k:j:i,j 

In the network, 9 + gij, the payoff to firm i is given by: 

a - NC(1]i(g, 1) + 1) + c(1]j(g, 1) + 1) + L C(1]k(g + 9i,j, 1)) (27) 
k:j:i,j 

Since 1]k(g + gij, 1) = 1]k(g, 1), it follows that C(1]k(g + gij, 1)) c(1]k(g,1)). Comparing (26) 
and (27), we find that 1fi(g + gij) > 1fi(g) if and only if: 

(28) 

Similarly for firm j, 1fj (g +gij) > 1fj (g) if and only if: 

(29) 

Inequalities (28) and (29) are satisfied if N[c(k) c(k + 1)] > c(l) c(l+l), for alll,k E 

{1,2, ... ,N I}. Thus, 9 is not stable, a contradiction. D 

We now examine the number of components that can arise in stable networks under more 
general conditions. Let k be the total number of firms to which a given firm is directly linked. 
Vve examine the cases where the marginal cost function is concave and convex, respectively, 
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in k. It is easily seen that if the function is concave then it displays increasing differences, 
i.e., c(k) - c(k + 1) > c(k -1) - c(k), for all k E {1, ... , N 1}.9. Likewise, convexity implies 
decreasing differences, Le., c(k) - c(k + 1) < c(k 1) - c(k), for all k E {I,···; N - I} 

Proposition 5.4 Suppose (A.2}-(A.3) hold and the marginal cost function has the property 
of decreasing differences in k. Let z E {1,··· 1 N - I} be the smallest integer for which T 
N[c(z) - c(z + l)J S; c(O) - c(l). Then, in any stable network, there is at most one 

Tcomponent of size smaller than z. If there is 0 z satisfying the above inequality, then the 
tlcomplete network is the unique stable network. 
tl 
tl 

Proof: If there is no z satisfying the conditions of the proposition, then the proof of Propo­ 1;( 

sition 5.3 applies. We, therefore, focus on t.he case where such a z exists. We first show t;( 

that given any two components, gl and gl/ of 9 with IN(l)1 = Zl and IN(gll)1 Zll, Zl < Zll, 11 

each firm j E N (l), has an incentive to form a link with a firm i E N (g'I). The payoff to \\ 

j E N (g') is given by: n 

0' Nc(z') + c(z") + L C(T/l(g, 1)) (30) 11 
Ili,j 1.. 

11 

The payoff to firm j E N(g'), after adding a link with i E N(g"), is given by: 

0' - Nc(z' + 1) + C(ZIl + 1) + L C(T/l(g + gij, 1)) (31 ) ( 
Ili,j 

Note that c(T/l(g,l)) = C(T/l(g + gij, 1)) for l i= i,j. Therefore, 7rj(g + gij) > 7rj(g) if and only 
sif N[C(ZI) C(ZI + 1)J > C(ZIl) - C(ZII + 1). But this is true since z' < Zll and the property of 


decreasing differences is satisfied. ( 


We next show that if z is any integer satisfying N [c( z) - c(z + 1)J :; c(0) - c(1), then '" 

there is at most one component with less than z firms. Suppose not. Let there be two 

r 


components g' and g", with N(g') = z' and N(g") = Zll firms. Assume that 0 < z' < Z" < z. 

We have already seen that every j E N(g') has an incentive to establish a link with any 

firm i E N(g"). Therefore, stability dictates that every firm i E N(g") should have an 

incentive to not form a link with any firm j E N (g'). In other words, it must be true that 


9To see this note that by the definition of concavity, for any integer 1 < k < N, c(k) = c(~(k -- 1) + 
Hk + 1)) > ~c(k 1) + tc(k + 1). Rearranging the above yields the property of increasing differences: 
c{k) c(k + 1) > c{k 1) - c(k) 
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'ffi(g) > 'ffi(g+Uij)' Following the same argument above, this is equivalent to the n~quirement, 
that N[C(ZI') - C(ZII +1)] < C(ZI) C(ZI + 1). However, Zll < z, and so by definition of z and 
the property of decreMing differences it follows that: 

N[C(Z") C(ZII -t. 1)] > c(O) - c(l) > C(ZI),- C(ZI 1) 

This contradicts the definition of stability of 9 and completes the proof. 

This result gives us an upper bound on the numb(~r of components. To illustrate this, let 
the oligopolistic industry consist of N 100 firms and suppose that the parameters are such 
that z = 30. The abow~ result tells us that at most one component can be of size smaller 
than 30; the sma,llest such component consists of a single firm. The remaining 99 firms have 
to be each of size :30 or more. Thus there can be at most 3 other components. Putting 
together these observations we get that there can be at most 4 components in any sta,bIe 
network. More generally, letting [xl denote the smallest integer exceeding a real number :1:, 

) 	 w(~ can say tha.t if N is th(~ number of firms and z is as defined in Proposition 5.4, then the 
number of components in a stable network is bounded above by [(N l)jz]. 

It may also be noted that an argument identical to that in Proposition ~i.2, which exploits 
the assumption of no spillovers, can be construeted to show that the complete network is 
uniquely efficient in Q. 

6 Conclusion 

So far we have studied t.he nature of network formation with no spillovers and perfect 
spillovers and the case where all firms are ex-ante ident.ical. vVe conclude with a brief 
discussion of the nature of network formation when spillovers are positive but imperfect or 
when firms are not ex-ante identical. 

n 
To look at imperfect spillovers, we shall study a linear specification of the costs. Supposeo 
that Ci (09 ), i E N is defined as follows: 

y 
n 
,t 

+ where TJi(09: k) 	is the number of firms who are at a geodesic distance k from i and 0 < {j < 1 
s: 

is the spillover parameter. Note that if {j 0, then we are back in the model with no 
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7 spillovers, while {j :;;:; 1 corresponds to the case of perfect spillovers. An argument along the 
lines of Proposition 4.1 shows that' the complete network gC continues to be stable in this 
setting. This indicates that the set of stable networks is non-empty. It can also be shown Pr 
that networks in which two firms) i and j have the same number of direct and indirect links 
with identical firms k =/: i, j but gij = 0 cannot be stable. This once again rules out networks 

Th 

with two or more singleton components) and the star network from being stable. 

We saw in the no spillover case that stable networks generated a collaboration relationship 
1'1

that was transitive. Allowing firms to be asymmetric) while maintaining the assumption of 
no spillovers, generates stable networks where collaboration relations may be intransitive. 

co 

!/For instance, let N = 3 and consider the following marginal costs for the three firms: 

where ,,3 > O. Every direct link reduces marginal cost by !3 unless costs are already at a 
minimum in which case links have no effects. The minimum marginal cost is ,. It can be 
easily verified that a star network) with either firm 2 or firm 3 as the center of the star, is \\ 
uniquely stable. tJ 

A full characterizatioIl of network formation with imperfect spillovers and with asymmetric 
fc 

firms is one of the objectives of future research. 

I; 

c 
" 

21 




7 Appendix 

Proof of Proposition 3.1: We first show that gC is stable. In gC, 'rJi(gC, 1) := N 1, Vi E H. 
Therefore, firm i has a marginal cost of ')'0 - ')'(N - 1) and payoff of: 

(32) 

There are no links to add so condition (ii) of stability is automatically satisfied. We check 
condition (i) next. Suppose we set .9iJ = 0 for some pair i and j. In the lmsuing network, 
gC ~ gij, the payoff to i is given by: 

The payoff to firm j is identical. There is no incentive to delete link gij ::= 1 since 'lfi(gC) ­
1r"i(gC - .%) ')'(N - 1) > O. 

\Ne now show that gC is the unique stable network Consider a stable network 9 ::? gC. Then. 
there exists i, j E H with .% = O. We show that both 'i and j are st.rictly better off by 
forming a link. The payoff to i in the network 9 is given by: 

a - NC('f}i(g, 1)) + c('f}j(g, 1)) + L C('f}k(g, 1)) (34) 
k¥i,j 

In the net.work, g + gij, the payoff to firm i is given by: 

1r"i(g + gij) = a - NC('f}i(g, 1) + 1) + c('f}j(g, 1) + 1) + L C('f}k(g + gij, 1)) (~35) 
kli,j E 

Since 
etak(g + gij, 1) 'f}k(g, 1), it follows that C('f}k(g + gij) 1)) C('f}k(g,1)), Using (34) and (35) 
and the specification (A,I), we find that 1r"i(g + gij) - 'lfi(g) = ')'(N 1) > O. An identical 
argument establishes that for firm j, 'lfj(g + gij) - 1r"j(g) = ')'(N 1) > O. Thus, condit.ion 
(ii) is violated and 9 is not stable, a contradiction. 6 

Proof of Proposition 3.2: Consider any network 9 ::? ge, Then, for some i, j E H, gij = 0, 
We now show that 9 + gij yields strictly greater aggregate welfare than g. First, consider 
consumer surplus. Under (A.I), note that: 
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2, [, ]Q(g + gij) - Q(g) = (N + 1) , Q(g + gij) + Q(g) = 2 Q(g) + (N + 1) 

Therefore, the change in consumer surplus becomes: 

1 [ 2 2 ] ,] 2,'2 Q (g + gij) - Q (g) (36)[Q(g) + (N + 1) (N + 1) 

Next, consider aggregate profits. For firm i (as well as for firm: j): 

Therefore, the change in aggregate profits for firms i and j are: 

= [ ,(N - 1)] [,(N - 1)]L [Q~(g + gij) - Q~(g)] (37)h~j 2Qh(g) + (N + 1) (N + 1)
h=i,j 

For firms k: f i, j: 

Therefore, the change in aggregate profits for firms k i, j are: 

Summing up (36), (37) and (38), the change in aggregate welfare can be simplified to: 

(39) 
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From (39), W(g + gl,j) > ~V(g), if for the network 9: 

N L Qh(g) - L Qk(9) > O. (40) 
kr/;i,j 

To see that this is true we proc<~ed as follows: First we check by direct computation that 
this inequality is satisfied for N = 3. Then we consider the ease of N ;::: 4. We suppose thaA; 
9 is a network ill which there is a link between (say) i and some other agent k E N\{i,j}. 
(If not, then proceed to the next step.) Define a new network 09 - Bi,k' Straightforward but 
tedious calculations reveal that: 

N L Qh(09) - L Qk(g) ;:: N L Qh(g gi,j) ~ L Qk(g - gi,j) (41) 
h=i,j k:i:-i,j h=::i,j k:i:-i"j 

Proceeding inductively, we show that 

N L Qh(g) - L Qk(g) ;::: N L Qh(g') -- L Qk(g') (42) 
h;i,j ki=i,j h=i,j k#;i,j 

where g' is defined as the network obtained from 09 after all links involving firms 'i and j are 
deleted. 

Now consider the network formed when every pair of firms k, I E N\{i, j} ha..s a direct link 
and the firms i and j remain isolated singletons. Denote this new network by .9. It follows 
from Lemma 3.1 that the output of firms in N\{i, j} is (weakly) greater in 9 as compared to 
g'. Since t.he costs of firms i and j have remained the same, while the costs of all the other 
firms have (weakly) decreased, it folows from (3) that the combined output of firms i and j 
has (weakly) decreased in the move from 09' to g. These observations along with (42) allow 
us to state: 

3) 
(43) 

h=i.j kf;i,j , h=i,j k'li,j 

Thus t.o verify inequality (40), it suffices to check if the R.H.S. of (43) is positive, In g: 

'Yo) (N - 2)(N - 3)')' h _ .. 
(44)(N+l) , ,-2,) 
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~) = (0: - 10) + 31 (N - 3) k.../.' .Qk (9 (N + 1) l' 11,,) (45) 

Substituting (44) and (45) into (40) and simplifying, aggregate welfare will increase if (N + 
2)(a - 10) > 1(2N + 3)(N - 2)(N 3) = 1[2N3 - 7N2 - 3N + 18]. But this is true under 
our parametric restrictions (A.2) and (A.l) since (N+ 2)(0: -10) > (N + 2)(2N 1}10 > 
(N+2)(2N-l)N1 = [2N3+3N2_2Nb > [2N3_7N2 3N+18b. Therefore, starting from 
any 9 =I ge, adding an additional link strictly increases aggregate welfare. Hence aggregate 
welfare is maximized at ge. f:::, 

Computations in Proposition 4.4: 

,-- [ 2 2 ]L- Qm(g + gi.i) - Qm(g) L [Qm(g) + Qm(g + gij)] [Qm(g + gij) Qm(g)] 
mEN mEN 

hEN(g') 

lEN (gil) 

+ 
krf.N(g')UN(gll) 
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+ L [Qh(g) + Qh(.g + gij)] 
heN(g") 

. 2,n'n"L [Qk(g) + Qk(g + gij)] N + 1 
kr/;N(gl)UN(gll) 

,nl/(N - 2n' + 1);::: L [QI1(g) + Qh(g + gij)]· N + 1 
hEN(g') 

,n'(N - 2n" + 1)
+ L [Qh(g) + Qh(g + 9i.i)] N + 1 

hEN(gil) 

2,n'n"L [Qh(g) + (Jh(g + gij)] N + 1 
hC/;N(g')UN(gl') 

[Qh(g) + Qh(g + ,9iJ)] x ,n"nl((N 2n' + 1) 
N+ 1 

+ (N ~ 2n" + 1) 2(N n' nil)) 

This proves the proposition. 
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