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ABSTRACT

An important stochastic turnpike property in optimal growth models asserts that
optimal programs of capital accumulation from different initial stocks converge almost surely
in a suitable metric. Its proof requires constructing a value-loss process satisfying both
uniform boundedness in expectation and sensitivity (in the sense of recording a strictly
positive value-loss when the capital stocks being compared diverge). Uniformity assumptions
strengthen sensitivity by ensuring that value-loss is independent of time and state of
environment in which the divergence occurs. They are imposed either directly on the value-
loss process, or indirectly through bounds on the degree of concavity of the felicity or
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production functions, and are acknowledged as strong restrictions on the model. This paper
argues, within the context of a convex aggregate growth model, that uncertainty can obviate
the need for uniformity. The multiplicity of states afforded by a stochastic framework permits
constructing a value-loss process over an "extended” time-line that is a martingale and, hence,
relatively easy to uniformly bound in expectation. Further, if capital stocks diverge by some
critical amount in any time and state, then the martingale registers an upcrossing across a band
of uniform width on its extended time-line for that state thereby giving uniform value-loss.
Probabilistic arguments based on the Martingale Upcrossing theorem and the Borel-Cantelli

lemma then clinch the turnpike property.
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1 Introduction

Optimal growth theory, in Ramsey-type normative models with convex preferences and tech-
nology, has identified an important stability property referred to as the late turnpike. [t
asserts that two infinite horizon optimal programs of capital accumulation from distinct
initial stocks converge (almost surely) in a suitable metric. A critical input in the deriva-
tion of this property is a strong uniformity assumpiion(Brock and Majumdar [8], Brock
and Scheinkman [11], Chang [12], Follmer and Majumdar[14], Joshi [17], Majumdar and
Zilcha [20], McKenzie [22])!. It is generally invoked in both discounted and undiscounted
frameworks which eschew the time-stationarity restriction on preferences, technology and the
evolution of the stochastic environment. It engenders independence from both time and state
(of the stochastic environment) of the sensitivity of a key process — the value-loss process -
which tracks the divergence in optimal programs from different initial stocks. The primary
objective of this paper is to demnonstrate, within the context of a convex aggregate stochastic
growth model, that the late turnpike property can be derived without the encumbrance of a
uniformity restriction. ‘

A general derivation of the late turnpike property, without any concession to uniformity,
is warranted by the preeminent position this result occupies in the various strands of the
growth literature. To substantiate, we offer a brief review.

(i) Optimal Growth Theory: The late turnpike property is central by virtue of asserting the
global asymptotic stability of optimal programs.? Under the assumption of time-stationary
preferences, technology and the stochastic environment, and with the added restriction of
no discounting, it has been shown in Brock and Mirman [9], Dana [13] and Mirman and
Zilcha [24] that all good programs converge in an appropriate topology to the golden rule
(or optimal stationary) program®. In the discounted context, as exemplified in Brock and
Mirman [10] and Mirman and Zilcha [25], time-stationarity yields convergence in distribution
of optimal programs from distinct initial stocks to the modified golden rule program. In non-
stationary models, the uniformity restriction has been critical in establishing convergence in
probability (Brock and Majumdar [8]) or the stronger property of almost sure convergence

1Optimal growth theory has identified two other turnpike properties - the early and the middle — of which
the latter also relies on a uniformity assumption (for instance, McKenzie [22]).

2A comprehensive review of the deterministic literature on turnpike theory, along with a discussion of the
role of uniformity, is provided in McKenzie [23]. The review, however, does not cover the stochastic case.
For this reason, we have mostly limited the discussion here to optimal growth under uncertainty.

3Good programs, first identified in Gale [15], are feasible programs which do not perform infinitely worse
in utility terms than the golden rule program and which include non-stationary programs that are optimal
in terms of catching-up or overtaking of partial utility sums.



{Chang [12], I'éllmer and Majumdar [14], Joshi [17] and Majumdar and Zilcha [20]).

(it) Competitive Equilibrium and the Turnpike Property: In contrast to normative models
of optimal growth, the deterministic analysis of Bewley [4], and its stochastic extension by
Marimon [21], consider a positive model of equilibrium growth with finitely many (infinitely.-
lived) consumers and perfectly competitive firms. A competitive equilibrium in their model
corresponds to the solution of an optimal growth problem where the social welfare function
is a weighted sum of the consumers’ utility functions, the weights being the inverses of the
marginal utility of expenditures in equilibrium. In particular, the stationary competitive
equilibrium with transfer payments corresponds to the (modified) golden rule program with
respect to this social welfare function. The late turnpike property highlights the global
asymptotic stability of interior competitive equilibria by showing that they converge to the
stationary competitive equilibrium with transfer payments for sufficiently high values of the
discount, factor.

(ii1) Imperfectly Competitive Equilibria of Endogenous Growth Theory: The voluminous
literature on endogenous growth, following the seminal contributions of Lucas [18] and
Romer [31], has considered the dynamic general equilibria of imperfectly competitive mar-
kets characterized by sustained growth at endogenously determined levels. The late turnpike
property addresses the issue of whether the time path of an imperfectly competitive equi-
librium converges to the path of balanced growth. Another facet of this literature has been
to explain the difference in growth rates of developing and developed economies (Barro and
Sala-i-Martin [2]). Identifying conditions under which long run convergence to the same
growth rate does (or does not) obtain bears formal similarity to the late turnpike property.

(iv) Patience and Chaos: The late turnpike property rules out the possibility of optimal

programs exhibiting chaotic dynamics. In reduced form models with two or more sectors,
the existence of complicated dynamics. has generally been obtained for low values of the
discount factor (Boldrin and Montrucchio [6], Mitra [26], Nishimura, Sorger and Yano [30] |
and Sorger [32]). Some additional features include felicity functions that are concave but
not strictly concave, and optimal programs that are possibly non-interior. In an aggregate
growth model, Majumdar and Mitra [19] have shown the existence of complicated dynamics |
when the felicity function depends on both consumption and the capital stock. This raises
the following issue: in aggregate growth models with strictly concave felicity functions that .
depend on consumption alone, and in which optimal programs are interior, does the late -
turnpike property obtain for all values of the discount factor? Majumdar and Zilcha [20] -
answered this in the affirmative under a uniform lower bound on the degree of concavity of
the production function and a particular relative distance function to measure the divergence

in capital stocks. This paper attempts to extend the result to the case with no uniformity
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restrictions and no restriction to a particular metric.

(v) Applications of Turnpike Theory: Long run invariance properties, akin to the late turn-
pike property, exist in diverse areas of economics, For instance, in public finance, a classical
invariance proposition states that in a neoclassical growth model a capital income tax is com-
pletely shifted to the labour input in the long run (Becker [3]). In the turnpike vernacular,
the time paths of the after-tax return to capital per unit, corresponding to different rates
of capital income taxation, converge almost surely. Similarly, in industrial organization, a
result bearing formal resemblance to the late turnpike property, identifies conditions under
which two firms with different initial conditions (technology gap) can close the gap over time
through optimal investment in research and development (Budd, Harris and Vickers [7]).
The turnpike technique can be profitably applied to all such areas where the objective is
to obtain the asymptotic stability of the time paths of a variable of interest generated from
different initial conditions.

The pervasive nature of the late turnpike property in economic dynamics, as attested by the
above review, provides a compelling reason to re-examine this issue under the greatest gen-
erality. In this regard, uniformity assumptions pose a strong restriction on optimal growth
models. This paper demonstrates that the potential to exploit multiple states of the envi-
ronment afforded by a stochastic paradigm can eradicate the need for any strong uniformity
restriction. Towards this end, we organize the paper as follows. The convex optimal growth
mode] is presented in Section 2. The nature of the uniformity assumption is examined in
Section 3. A non-technical description of our methodology is provided in Section 4. The
mathematical underpinnings of this methodology, along with a formal statement of results,

is available in Section 5. All proofs are relegated to an Appendix. Our conclusions are
contained in Section 6.

2 The Aggregate Growth Model

Our description of the growth model generalizes Brock and Mirman {10], Majumdar and
Zilcha [20], and Mirman and Zilcha [24] by allowing non-stationarities in preferences, tech-
nology and the evolution of the stochastic environment. From now on, we will let Z, =
{0,1,2,...}, and let (h;) denote the sequence, ho, hy, ho,... e, ..., t € T,

The possible states, wy, of the environment at any date ¢ € Z is given by an uncountably
infinite set, {2, that is a compact metric space in an appropriate topology. Let & denote the
Borel o-field of subsets of §; generated by the open sets in this topology. By assumption,




satisfies the second countability axiom (Munkres [29, Section 4-1]), i.e. { has a countable The
basis, M, = (Huy), n € Ly, for its topology. It follows that & = o(M,). Let Q = x5, prog
denote the set of all sequences, w = (w,), wy € €y, and F denote the o-field on §) generated
by open sets in the product topology on Q. The stochastic environment is represented by
the probability space (2, F,v), where v is a probability measure on Q. Let (F;) denote
the filtration on . Fj is the sub-o-field on € induced by partial history till date ¢, i.e.
Fro= o(Egx & %o X & X Qg X Qpg X -+ A C Exist
Technology is described by a sequence of possibly time-varying production functions (f;), éf}}?d L
Ji i Ry X Qupy = Ry, where for each t € I, ). 1
' ate tr
' ! _ iuler
(A1) f, is continuous on Ry X 4.
(A.2) For each wiyy € Quir, fi(0,wey) = 0, fi(k,wiqr) is strictly concave for & > 0,
and fi(k,wi1) = 0fi(k, w1 )/ 0k exists and is strictly positive for & > 0.
Define
Preferences are represented by a sequence of possibly time-varying felicity functions (u,), as pj =
uy @ Ry — R, such that for each t € Z,.:
7
(A.3) w(c) is continuous and strictly concave for ¢ > 0.
(A.4) uy{c) exists and is strictly positive for ¢ > 0 with uy(c) T +oo as ¢ | 0. where 7
prograr
The initial stock, s, is random and is drawn from the set £ = £ (2, Fo, v, Ry4) of all equatio
essentially bounded Fp-measurable functions from 2 into R44. A real-valued (F;)-adapted
process, {(k, ¢:)), is a feasible program from s € L if with probability 1: 0
i
ko+cy < s (1) * Therefo:
.. We
kiv1 +cpn < ft(kt,wz+1) , teTq (2)  capital i
A Congside
k>0, 20, tel, ' 3) (5) show
“Note that £ x £ X -+ x & X Qyyq X Qypa X --- denotes the collection of cylindrical sets of the form, HOW@V@
convenle:

A{)XA} X"'XAtXQvH_l XQ&+2X"',W}1€I‘6A{€(€{ fori=0,l,...,t.
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The set of all feasible programs from a given initial stock s € L is denoted by ®(s). A
program, {(kf,¢;)) € ®(s), is opiamal if for any other program, {(k,¢,)) € ®(s):

N

fimsup ¥ E [ue) ~ w(g)) < 0

Neoo

Existence of an optimal program follows under a joint boundedness restriction on preferences
and technology (Majumdar and Zilcha [20. Theorem 1] or Mitra and Nyarko [27, Condition
E]). From assumption (A.4), optimal programs are interior and (in addition to appropri-
ate transversality conditions for discounted and undiscounted models) satisfy the stochastic
Euler equations:

w(e) = E [t (i) ikl o) | 7] v—as teT, (4)

Define the competitive price process, (pj), associated with the optimal program, {(kZ,cf)),
as pi = uy(c}), t € Zy. Further, let:

t
’R’ézl, 7f§+1=Hf«£(k?1wi+l)v t€I+
-0

where 7} is F;-measurable and strictly positive (almost surely) from the interiority of optimal

programs. Multiplying both sides of (4) by #}, and using its F;-measurability, the Euler
equations can be rewritten succinctly as:

pimi = Elpiamia | A v—as tel, (5)

‘Therefore, the process (pims) is a (F,)-martingale with E[pin] = Elping] = Efuj(cf)], t €

T,. We can interpret {p{nf) as the sequence of valuations of future increments of a unit of
capital invested optimally in time period 0 from the initial stock s.

Consider an initial stock y € £, y # s, and let p = Eluj(c)) — up(ch)]. An examination of
(5) shows that adding a constant to both sides of the Euler equation leaves it unaffected.
However, given that the two sides of (5) are strictly positive (almost surely), this operation
conveniently bounds each side from below by the constant. Letting M{ = pim} + p, i = 5,9,
the Euler equations become M; = E[M{,, || ;] almost surely for each t € 7.
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3 The Uniformity Assumption > asst
corr
In this section, to illuminate the precise nature of the uniformity assumption, we review the Ap
methodology that underlies the stochastic late turnpike property in non-stationary models, one
The first step entails the construction of a value-loss process, (V;), by utilizing the competitive dl,{v,h'
conditions which characterize an optimal program (the “turnpike”). These are the Euler {’7'29
conditions in aggregate models (Joshi [17], Majumdar and Zilcha [20]) and the reduced um"
utility maximization conditions in multisector models (Brock and Majumdar [8], Chang [12], ' %'fl U
Follmer and Majumdar [14]). The process (V;) has the convenient property of being eit her ‘mld
a martingale (Majumdar and Zilcha [20, Equations 6.20 and 6.21]), a submartingale (Brock Whi)
and Majumdar [8]) or a supermartingale (Joshi [17], Marimon [21]) thereby permitting a sensi
passage to the rich theory of martingales. The second step is to ensure that (V;) is uniforly ment
bounded in expectation. This is achieved in aggregate models through interiority of optimal facto
programs, and in multisector models through the transversality (bounded capital value) wher:
condition. The third step is to endow (V}) with the sensitivity to record a strictly positive The |
difference — called value-loss — when optimal programs from different initial stocks diverge wndire
by some pre-specified critical amount. This value-loss will in general depend on the time by ay
period, £, and the state of environment, «. in which the divergence occurs. malkii
At this stage, as noted by Follmer and Majumdar [14, Theorem 3.1}, a weak version of Joshl
the late turnpike property can be obtained: for any arbitrary constant A > 0, (V}) will lfy ex.
almost surely leave a set on which value-loss exceeds A in finite time. This is a consequence i)}(}?{hen
he pr

of the uniform bound on the expectation of (V;) and the Martingale Convergence theorem
(Billingsley [5, Theorem 35.4]). Coupled with the sensitivity property, it implies that capital In eit

stocks cannot diverge for infinitely many periods by an amount that causes value-loss to stitut
exceed A. It is a weak characterization, however, because convergence is not implied: capital charac
stocks can diverge for infinitely many periods by any amount that causes value-loss to be a “str
less than ). in Mel
This is precisely the point where the uniformity assumption enters into the analysis to %Iz}‘}t?

with tj

force the convergence of optimal programs from different initial stocks by strengthening the

sensitivity of (V;). In particular, for any € > 0, if capital stocks diverge by more than ¢ in For ins
period ¢ and state of environment «, then uniformity dictates that (V;) record a value-loss of ~ S¢quen
at least 7(e) > 0, where n(e) is independent of the tuple (¢,w). Since (V;) converges almost (1); (lzfﬁ

surely from the Martingale Convergence theorem, the {(contrapositive of the) uniformity

assumption ensures that capital stocks generated by optimal programs from different initial the deg
stocks converge too. This is how the twin properties of uniformly bounded expectation (which
allows an application of the Martingale Convergence theorem to (V;)) and the uniformity

constar
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assumption (which ties the convergence of optimal programs from distinet initial stocks to
convergence of (V;)) act in conjunction to yield the late turnpike property.

A potential conflict exists, however, between the dictates of uniform boundedness on the
one hand and uniform sensitivity on the other. This tension exists because it is in general
difficult to reconcile a process that is uniformly bounded in expectation with one that can
priori register an infinite number of jumps of a magnitude exceeding some strictly positive
constant. The construction of a value-loss process, therefore, while imparting a martingale
structure to (V;), has to balance these vital but conflicting objectives of uniform boundedness
and uniform sensitivity.

While the uniform bound on expectation is relatively easier to impose, ensuring uniform
sensitivity poses the difficult problem of identifving the precise restrictions on the funda-
mentals of the model ~ the felicity functions, the production technology, and the discount
factor ~ that permit value-loss to record a uniform jump in those states of the environment
where capital stocks diverge while being uniformly bounded on average across all states.
The literature has addressed the problem in two ways which may be classified as direct and
indirect. The former method directly imposes uniform sensitivity on the value-loss process
by appealing to appropriate curvature restrictions on technology and preferences without
making them explicit (Brock and Majumdar [8], Chang [12], Follmer and Majumdar [14],
Joshi [17], McKenzie [22]). The latter method proves uniform sensitivity from first principles
by explicitly imposing bounds on the degree of concavity of the felicity functions (Brock and
Scheinkman [11], Guerrero-Luchtenberg [16] and McKenzie [22] in the multisector case) or
the production functions (Majumdar and Zilcha [20] in the aggregate case).

In either their direct or indirect guise, uniformity assumptions are acknowledged as con-
stituting strong restrictions on the growth model. In the direct approach, they have been
characterized as “strong uniformity” (Brock and Majumdar [8, Assumption (A.4)]) or as
a “strong value-loss assumption” (Féllmer and Majumdar [14, p.281]). Further, as noted
in Mckenzie [22], they are difficult to extend to discounted models without additional re-
strictions on the discount factor. In the indirect approach, they preclude growth models
with time-varying preferences and technology that asymptotically approach the linear case.
For instance, consider the sequence of functions (h; : Ry — Ry), he(z) = 2!~/ This
sequence of strictly increasing, strictly concave functions is precluded from describing felicity
or production functions. The degree of concavity of hy, given by —zh} (z)/hi(z), is equal to
1/(t+2), and approaches zero as t — co. The uniformity assumption, however, requires that
the degree of concavity of each h, be uniformly bounded from below by a strictly positive
constant.
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4 Methodology: A Descriptive View

In this section, we offer an informal description of our method. Recall that our fundamenta)
problem lies in balancing a uniform bound on the expectation of (V;) with its potential
to possibly execute an infinite number of jumps of uniform size in those time periods and
states where capital stocks diverge by some critical amount. This can be visualized as the
problem of attempting to uniformly bound (in expectation) an increasing step-function on
an unbounded time interval. The crux of our approach is relatively simple: while it is
difficult to uniformly bound a strictly increasing (decreasing) process, it is fairly easy to
uniformly bound a process in which every up-jump (down-jump) is immediately followed
by an equal-sized down-jump (up-jump); this negation of the initial jump ensures that the
process starts at the same level once again and any pre-specified uniform upper (lower) bound
is not compromised even though the process is permitted an infinite number of jumps.

Figure 1 Somewhere Here

To see how we apply this idea to (V;), consider Figure 1. The graph on top tracks the time
path of ||kf(w) — k{(w)]|, where ||.|| is any distance function, permitting us to observe those
time periods when the divergence in capital stock exceeds some arbitrary constant € > 0
(in our example, t = 1,4,5). The graph for (V;) shows that for these time periods of more
than e-divergence, value-loss exceeds the strictly positive constant, 24 > 0.5 In the other
time periods, when there is less than e-divergence (in our example, t = 0,2, 3), value-loss
is non-positive. We then extend the time-line by including the mid-point between periods ¢
and t+ 1 for t =0,1,2,..., and posit a constant value (equal to zero) for value-loss, V, 1 ab
this intermediate point. We let 7 = 2¢, ¢ = 0, é—, 1, 1%, 2, 2%, ..., denote this extended time-
line and let (V;) denote the value-loss process over 7. Since we will have occasion to switch

between our original and new time-lines, it is useful to note that even-valued 7 correspond to

the original time-line while odd-valued T refer to the fictitiously introduced “intermediate’
points on the time-line. '

We now observe that if we have more than e-divergence in capital stocks, for instance in
t = 1, then (V;) moves upwards across a band of width equal to 2u over the time interval .
t =1 tot=1 (or, in the lexicon of martingale theory, it registers an upcrossing® over the '
range [0, 2] during this time interval). This upcrossing, by construction, is immediately

SWe will assume in the sequel that s < y almost surely, with s < y on some set of strictly positive

measure. This will ensure that p = Efug(cf) — uj(ch)] > 0.

5In martingale theory, an upcrossing across an interval can take place over more than one time period #
while in our analysis it takes place in one time period. We use the terminology of an upcrossing because |
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followed by a downcrossing of equal size from L = 1 to t = 1% so that value-loss returns to
its initial level once again. If there is less than e-divergence in any period, for instance in
t = 2, then V; remains non-positive and no upcrossing is registered across [0, 24]; from # = 2
o § = 23,5 value-loss returns to its base-line level of zero.

In implementing the above idea, we have to ensure that (V;) is a martingale. The multiplic-
ity of states afforded by a stochastic paradigm permits us the facility to induce upcrossings
across [0,2u] of (V;) for those realizations where ||k (w) — kf(w)|| > ¢ while simultaneously
manipulating those states where ||kf(w) — &Y (w)|| < e 1n order to endow (V;) with a martin-
gale structure,” The construction has the ﬁa,vor of an optimal stopping argument. Suppose
((k!, c!}) is the “turnpike”, and the planner (or representative consumer) is off the turmpike
on the path ((k7,¢f)). Staying off the turnpike subjects the planner to value-loss and, t here-
fore, the objective is to switch from {(k], ¢f)) to the turnpike. However, such a switch involves
an adjustment cost which depends on the distance of ((kf,cf)) from the turnpike. Hence,
given a realization w, the planner would like to “stop” value-loss and effect the transition to

the turnpike at time t(w) if ||k, (w)— k], )(w)l} < e and not if [[kf,,(w)— f(w)(w)ll > e Inan
optimal stopping problem, the objectlve is to determine the optimal stopping time to effect
the switch to the turnpike, given the adjustment cost. Our construction considers the reverse
problem: given any t € 7, and realization w, what is the size of the adjustment cost which
just makes it optimal for the planner to “stop” value-loss at time ¢ if ||kf(w) ~ & (w)]| < € but
not on the complement of this set. The value-loss process is shown to imbibe a martingale
structure as a consequence of such a choice of adjustment costs. This argument of course
presupposes that in each period ¢t € T, there will exist a set of states of strictly positive

measure on which ||kf (w) ~ &{(w)]| < e. This technical requirement is met via a reachability
assumption on initial stocks.

We have now achieved our twin objectives: the uniform bound on the expectation of {V;) is
realized because a potentially unbounded increasing process is replaced with an oscillatory
martingale process, and martingales have the convenient property that their expectation in
any period 7 > 0 is equal to their expectation in period 7 = 0. Interiority of the optimal
programs will ensure that expectation in period 7 = 0 is finite. Uniform value-loss is attained
because, when capital stocks are more than e-distance apart, (V) upcrosses a band of uniform
and strictly positive width.

of the formal analogy between our resolution of the turnpike property and the Martingale Uperossing theo-
rern (Billingsley [5, Theorem 35.3]).

"Note that optimal programs are defined on the original txme line while the value-loss process is con-
structed over the extended time-line.

11



5 Methodology: A Formal Analysis

Our coustruction of a value-loss process has to be tempered by four requirements: (F;)-
adaptability, the martingale property, uniform bound on expectation, and upcrossing across
a band of uniform width following a critical divergence in capital stocks. For each t € 7., we
isolate a collection of subsets of {2 generating F; and construct a value-loss process satisfying
the requisite properties with respect to this collection. We then invoke Dynkin’s w— A theorerm
(Billingsley [5, Theorem 3.2]) to extend these properties to the o-field F; generated by this
collection. As a first step, we exploit the second countability axiom to explicitly characterize
F; in terms of the countable basis of §3;, 7 =0,1,...,¢.

Lemma 1 Let 4, t € I, be a compact melric space and consider the countable collection
By = Hox Hyx -+ X Hy X Q1 X Qua X ---, t €L, Then, F; = o(B). Further, By can
be assumed to be a partition of 1.

Consider the set, Sy = {w : kf(w) # k¥ (w)}, and its subset, Sf = {w : ||k (w) — &k} (W)|] > €},
t € Z,.. Both sets are F;-measurable by virtue of the (F;)-adaptability of optimal programs.
We would like to ensure that v(2\Sf) > 0 for each t € Z, so that we are assured a set
of states of strictly positive measure on which to manipulate the value-loss process. This
necessitates a “reachability” restriction on initial stocks.' Clearly, in non-stationary models,
initial stocks must satisfy some reachability condition if the late turnpike property is to
obtain.® Our definition of reachability is a modification of the expansibility notion that we
can reach one initial stock from another in finite time for some realizations in §2. Since what
transpires over a finite horizon may be ignored in analyzing the asymptotic behaviour of
optimal programs, in effect we require that initial stocks coincide for these realizations.

Definition 1 Given s,y € L, s < y v-a.s., consider the Fo-measurable set, A(s,y) = {w :
s(w) = y(w)}. The initial stock y is reachable from s if v(A(s,y)) > 0.

Note that reachability, while requiring that the initial stocks agree on some set of strictly
positive measure, however small, places no restriction on how much they diverge on the
complement of that set. That is, apart from strict positivity, the v-measure of A(s,¥) is not

8The precise function of reachability in the proof of the late turnpike property is to bound the value-
loss process (McKenzie [22]). Reachability is put towards the same end in our framework, albeit somewhat
tangentially. By facilitating the construction of a value-loss process that is a martingale, it indirectly bounds
it in expectation,
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limited in any manner., Of course, to avoid trivialities, ¥(A(s,y)) < 1. In this sense, the
reachability restriction is not unduly stringent. The onerous task remains to demonstrate
that, starting from initial stocks that coincide on a set of positive but less than full probahility
measure, optimal programs will be arbitrarily close for all sufficiently large t € 7, on a set
of full probability measure.

Before proceeding, we record without proof a standard monotonicity property of optimal
programs (Majumdar and Zilcha [20]). Note that while monotonicity of optimal capital input
prograins also obtains in non-convex growth models (Mitra and Nyarko [27]), monotonicity
of optimal consumption programs obtains only in the convex growth model.

Lemma 2 Consider any s,y € L, s < y v-a.s. Under Assumptions (A.1)-(A.4), k < kY

and ¢ < ¢! almost surely for each t € T,..

We now show that reachability and Lemma 2 implies that v(Q\S;) > 0 for each t € I,
Since Q\S; € Q\S], it will then follow that v(Q\S;) > 0 for each t € 7.

Lemma 3 Consider initial stocks s,y € L, s < y v-a.s., such that y is reachable from s.
Under Assumptions (A.1)-(A4), A(s,y) CTO\So & ... € O\S € N\Sey1-

Unfortunately, it is not enough to just show that v(Q\Sf) > 0, t € Z,. What we require is
that v((Q2\St;,) N Bnyt) > 0 for each B, € B,. We refer to this property as the non-empty
intersection property.® It will permit us to let the value-loss process register a jump of 2y for
realizations in Sf,, N By, while simultaneously manipulating realizations in (2\S;, ) N By,
(through a suitable choice of adjustment costs) such that the martingale property holds. That
is, there will be no conflict in reconciling the uniform sensitivity property with the martingale
property (and hence uniformly bounded expectation) because each will be addressed over a
set of strictly positive measure that is disjoint from the other.

There is no reason, however, why the collection 3, will exhibit the non-empty intersection

property. In general, it will be made up of the following two non-empty sub-collections of
mutually disjoint sets:

B, = {B:l,t € By : v((O\S¢1) N Bny) > 0} (6)
B! = {B;,€ B : v((Q\Sy;) N Bny) =0} (7).

9This terminology is for brevity only for in fact the property requires not only non-empty intersection of
Q\S;,, with each B, ; € B; but also that this intersection have strictly positive measure.

13
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The following lemma combines the above sub-collections in order to derive a countable
rbllec{,iml satisfying the non-empty intersection property.

Lemma 4 For cach t € L, there exists a countable partition, Cy, of Q1 displaying the non.-
A - b i
empty intersection property. Purther, a(C;) € Fi.

V i ile preserving the non-
Since C; does not. generate JF , we need to (mugmen't this c,olle(‘:i,lonh while breféervmg t ¢ 31;1
empty intersection property. FFor this purpose, re-index sets in Bf' such that C,, ;N B, =10
for each n € Z,. We can now prove;

; ) / " - 31 "o e
Lemma 5 Consider Dy = (Dpa), Dne = Cop U By, for Coy € Gy, By, € BY, n€ I Then
D, displays the non-empty inlersection property and o(Dy) = F;.

The collection D, is not a partition of 2. Rather. finite im;er.sec:t'ions of the §1ement:s of ?9,;,
coupled with the operations of {inite unions and set-theoretic d1ffc~:r‘(mces't vields Bgv.. Wlth
this we turn to a consideration of the adjustment cost pammet.ers which .WIH play a vital role
in ensuring that value-loss is a martingale. These parameters in any period t + 1-are defined
over elements of the collection Dy, ¢ € Z,\{0}, as follows:

WADnd) = fi, ps Misrde

= e, nel 8
Ct+1(Dn.t) = f(Q\S‘ \C. ,§H~l du 3 ‘D'n,t On,s U Bn,t: n + ( )
! g ) e
- — fse ap. . MY dv
g}ﬂ(l}n 5) /‘LV(D'RJ) .fst.“m).,.:, t41 , Dpi= On,t U B;;,t , ne€ly (9)

.I‘(Q\Sﬁﬂ NCa éﬁ-’rl dv

where 6, = ||[kf — k]| + 1 > 0. Since v((Q\Sf,,) N Cpy) > 0 for all Cy; € C; from Lemma 4,
the cost parameters defined by (8) and (9) are well-defined and finite on C;. Further, they
are F;41-measurable by construction (since Cr ¢ € F; C Fiy).

We now use the adjustment cost parameters to define the adjustment cost functions over
realizations in £ Let:

th+1(w) = Ct+1(Dn,t)a W e On,ta Dn,t = Cn,t U x’t, n e I+ ' (10)
étﬂ(w) = gt-}—l(Dn‘t)s w e Cn,t» Dn,t = Cn,t U B::!u n e I+ (ll)
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Since €y is a partition of §2, the adjustment cost functions are well-defined. By construction,
they are (F;)-adapted. Further, they assume a constant value over each disjoint set, Cy, € C;.

We now construct two complementary processes that together make up the value-loss process.
Consider first the real-valued stochastic process, (X;), which measures total cost (value-loss
plus adjustment costs) incurred when ((k7,¢/)) is the “turnpike” and the planner is off the
turnpike on the path ((kf,¢)). In period ¢, if the event is S, then the planner stays off the
turnpike incurring a value-loss M;. However, if the event is Q\S§, then the planner switches
to the turnpike eradicating any value-loss but incurring an adjustment cost in the transition
which depends on the distance between the capital stocks. This motivates the following
definition for the (X,) process, where x{C') represents the indicator function of a set C:

Xe = x(SOM + x(O\S})Gbe, 1€ TA{0} (12)

with the initial condition, Xy = u. A symmetric argument is used to construct the real-
valued stochastic process (V) which measures value-loss when ((k?,cf)) is the “turnpike”
and the planner is off the turnpike on the path ((k¥,c})):

Y = x(SHMY + x(O\S5)éb., te T \{0} (13)

with the initial condition, Y = —u. We now extend the definition of (X;) and (Y;) over the
“intermediate” periods t + 1, t € 7, by letting:

Xpyw) = p, Vi) = —p. wel (14)

We further let DH% = D;. Then, fﬁ,% = F;. Now let 7 = 2¢, ¢t = 0, %, 1, 1%,2, ..., denote the
“extended” time-line and (X,), (¥;), the complementary processes over this new time-line.

We can prove:

Proposition 1 Under Assumptions (A.1)-(A.4), (X;} and (Y;) are (F,)-martingale pro-
cesses on the time-line T which are uniformly bounded in expectation.

The economic intuition underlying the above result is as follows. Suppose that 7+ 1 is even-
valued so that it corresponds to the original time-line. If in this time period the planner
decides to stay off the turnpike independent of which event obtains, then B[M:,; — MY ]
is a measure of the (expected) relative loss of value by not making a transition to the

15



turnpike. Recalling (5), this is just . Further, J2[X,iq]|F,] is the (conditional) total cost
of following the strategy of staying off the turnpike if the event St occurs and making the
transition to the turnpike if Q\5%,; oceurs. The adjustment cost has been chosen such that
E[X 1 ||Fr] = p with probability one. Moreover, note by construction that since 7 is odd,
we have fixed X, at u for all w. Therefore, E[X,,||F-] = X, with probability one, which is
simply the martingale property

\

Culling together the properties of the above two processes, we have the desired value-loss
process on the time-line 7.

Proposition 2 Under Assumptions (A.1)-(A.4), there exists a zero-mean (F,)-martingale
process (Vi) such that:

0, T =0, w e
0, T=2n+1l, nel,, w €
<0, 7=2n, neZ\{0} weQ\SE
> 21, T =12n, neZ,\{0}, wes

Vi(w) =

The middle graph in Figure 1 is the pictorial analog of Proposition 2. For even-valued r
corresponding to the original time-line, (V) upcrosses [0, 2u] from period 7 — 1 to 7 on the
set S&. On the other hand, on the set Q\ S, the process (V;) remains below the horizontal
axis and does not register any upcrossing across [0, 2u] between periods T — 1 to 7.

The martingale and upcrossing properties of (V;), which are fundamental to the resolution of
the late turnpike property, are invariant to an affine transformation of value-loss. Consider
any transformed process, (V*#), a,8 € Ry, where VP (w) = gV, (w) + a for all w € Q
and 7 € 7. Any (V) can assume the role of a value-loss process since it is a martingale
(and hence uniformly bounded in expectation) and registers an upcrossing across the interval
[, 28 + ] when there is more than e-divergence in capital stocks. A change in o adjusts
the upper and lower limits of the upcrossing-band by the same amount. The positivity
of B ensures that we upcross a band given some critical divergence in capital stocks; if 8
was negative, a symmetric argument can be constructed where (V.*#) downcrosses the band
[2uB+ e, ] following a critical divergence. Note that the endpoints of the upcrossing interval
do not depend upon e.

For any o, 8 € R4y, and w € Q, define the process (K*F), K*# . Q — {0,1}, 7 € Z, as:
0, 7=0
K&(w)y=1¢ 0, 7e€Z,\0, V(W) >2ub+a
1, 7€\, V(w) <2pub+a
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This process is predictable (i.e. K™% is F._ -measurable) and it indicates one UPCrossing
across |o, 23 + o of (V& ﬁ) when a chain of 1's is followed by a 0. This is shown in the
third graph in Figure 1. Note that in whatever manner the process may oscillate, only
one uperossing is registered across the upcrossing interval over any chain of 1’s fanked on
cither side by 0's (for instance, consider the chain of 1's stretching from 7 = 2 to 7 == 4
in Figure 1). It may be noted that our definition of K.(w) does not correspond to those
in standard probability texts (for instance, Billingsley [5, Theorem 35.3]) where a sequence
of 1's also indicates the duration of an upcrossing. We, on the contrary, are not interested
in the duration (since it is fixed at one period by construction) but rather in the nwmber
of upcrossings over the given interval (since each is indicative of more than e-divergence in
capital stocks); for the same reason, as opposed to martingale theory, we do not wish to
count downcrossings over any interval.

To count the number of upcrossings given w € Q. for each 7 € Z, let:

, 1, K&P(w)=1, K¥(w) =0
/}’a’ﬁ’ = 4 T 741\
rw) { 0, otherwise

Given an arbitrary planning horizon N € 7, and state w, let Ug(w) = 337, Z%f(w) repre-
sent the total number of upcrossings over [a, 2u6 + o] of {V“'ﬁ( )} on the tlme—]me 7. Our
version of the Martingale Upcrossing result states:

Lemma 6 For anye > 0 and N € T, the expected number of upcrossings across the interval
o, 20u8-+a] of the value-loss process (V%Y over a planning horizon. of length N+ 1 is bounded
from. above independently of N.

With the help of Lemma 6, we can prove the late turnpike property as follows. Since an
upcrossing over the given interval occurs if and only if there is more than e-divergence in
apital stocks, and this in turn transpires only for even-valued 7 (i.e. our original time-
line), Lemma 6 implies 28N 1(S¢) < EVSP. Since value-loss is bounded in expectation
mdepmdentl» of N, a passage to the limit as N — oo yields 3,52, v(Sf) < oco. The first
Borel-Cantelli lemma (Billingsley [5, Theorem 4.3]) then ensures that the set of realizations
on which capital stocks diverge by more than ¢ infinitely often has zero probability measure.
Hence, we have a resolution of the late turnpike property without the invocation of any
strong uniformity restriction.

Proposition 3 Consider initial stocks s,y € L, s <y almost surely such that y is reachable
from s. Under Assumptions (A.1)-(A.4), ||kf — k¥|| — O almost surely as t — oo.

17



6 Conclusion

In this paper, we have exploited the underlying stochastic primitive to obtain the late turn-
pike property in convex aggregate growth models without imposing any strong uniformity
restriction. In this regard, our paper echoes the argument put forward in Amir [1] that
growth models under uncertainty should not be simply extensions of the deterministic case
with the stochastic element as a mere addendum. Rather, uncertainty should add in an
essential way to the results derivable from the certainty case. A similar consideration had
also motivated Chang [12] to put forth a expected value-loss assumption conditioned to the
particular dictates of a stochastic paradigm.

There remains the issue of whether owr technique can be extended to multisector optimal
growth models. As noted earlier, such models can display complicated dynamics for low
values of the discount factor. However, even for discount factors sufficiently close to unity,
some form of uniformity is generally invoked to obtain the late turnpike property (Guerrerco-
Luchtenberg [16], McKenzie [22], Montrucchio [28]). It is an interesting question, therefore,
whether critical manipulation of the stochastic environment, along with a suitable restriction
of reachability on initial stocks, permits a derivation of the late turnpike property for suffi-
ciently high values of the discount factor without recourse to strong uniformity restrictions.
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Appendix
Proof of Lemma 1 Note first of all that:

Bt - 0“(7'{())XU(HQX"‘XO’(?‘{{)XQ;@}XQ”QX“'
= g()Xng"'X(E}XQH.IXQM“QX“*
o 0’(50X51XH'X&XQMQngeigzx"') = F;

It, therefore, follows that o(B,) € F;. To prove the converse, we use a result from Yeh [33,
Lemma 1.3] that o(Ho) x o(H;) x -+ xa(Hy) € o(Ho X Hy x -+ x H,). Using this result:

o(Hg) X o(Hy) X -+ X o(Hy) X Qg X Qygg X -+
‘;; O'(H()X?'i})("')(?‘i”XQ15+1XQ¢+2X"'
g U(HGXHIX"'X’H’AXS){AulXQL.{_QX"') o= U(Bt)

It now follows that F; = o (0(Ho) x o(Hy) X -+« X o(Hi) X Qes1 X QX +++) € o(By).

For ¢ = 0,1,...,¢, since §; is open and can be expressed as the countable union of the
elements of H,, it follows that B; covers 2. To show that B; can be assumed to be a countable
collection of mutually disjoint sets, define one possible countable partition, B, = (B, ;), as
By, = Bot, B, = Bn\ U}Z; By, for n € T,\{0}. Let F denote the o-field generated
by B;. For each w € Q, and a set B,; € B; containing w, by construction there is a set
B, € B; such that w € B, C B,,. Hence, it follows that #; C F,. Conversely, because
a o-field is closed under set-theoretic difference (given closure under complementation and
finite intersections) and countable unions, we have B, C F,. Hence, F, = o(B;) C F:. AN

Proof of Lemma 3 Suppose there exists F' € Fy, v(F) > 0, where F' C A(s,y) but
FN(\S) = 0. Then s(w) = y(w) but kf(w) # k§{w) for all w € F. From Lemma 2, this
implies kf(w) > k§(w) on F. From the Euler equations for i = s,y:

[ = [ (e folhs ) (15)
Since c§(w) = s(w) — k§(w) > y(w) — kf(w) = cf(w) on F, it follows from (A.3) that:

[ sk wnldy < [ u(e (ks wn)dv (16)
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On the other hand. from (A.2), fo(kg,w1) = JH(kY, @) almost surely. Further, ((k2, ¢h)) is also
optimal starting from initial stock fo(k,w)) lor otherwise its optimality will be contradict.ed.
From Lemma 2 this implies ¢ > ¢ almost surely. Using (A.3), it follows that:

A (@) [k wn)dy 2 /r L) [ kY, wh )y (17)

However, (16) and (17) are mutually contradictory. Now, for any ¢ € 7, \0, suppose there
exists I, € Fy, v(F,) > 0, where Fy C Q\S;; but F; N (Q\S:) = 0. Repeating the above
argument once again generates a contradiction. AN

Proof of Lemma 4 Consider the partition, By, of Q, 7, = o(B,). Recalling (6), B, =
B, U BY. Since By covers 2, the sub-collection B; is non-empty. Without loss of generality,
it can be assumed that B, and B} are countably infinite.!® We now define a partition,
Cr = (Chny), of Q by letting Cy ¢ = B;, ,UB, ;, n € Ty, By construction, v((€2\Sf,;)MNCry) > 0
for all Cy & Cy. Since C, is a coarser partition of  than B, a(Cy) C Fi. AN

Proof of Lemma 5 Since each D,,;, € Dy is a finite union of sets in By, it follows that
Dy C Fp and, therefore, o(D,) C F,. Conversely, it can be verified that each B, , € B, can be
derived from D, through the operations of finite intersection, finite union, and set-theoretic
difference.!! Therefore, B, C ¢(D,), and hence, F; C o(D,). A

Proof of Proposition 1 The proof is provided for (X,) and is identical for (Y;). (Fr)-
adaptability follows by construction. From Billingsley [5, Section 35], to establish the mar-
tingale property we need to demonstrate that for any F € F,:

‘ _ _ ’ 18)
./F‘deu /F X, dv = jw(F) | (18)

The last equality follows from the fact that (X} at the “original” time-periods (i.e. even
values of 7) is flanked by the constant value of u at the “intermediate” time-periods (i.e.
odd values of 7). We establish this result by means of Dynkin’s m — X theorem. Note that
(18) is trivially true if v(F) = 0. Therefore, without loss of generality, we restrict attention
to F,-measurable sets of strictly positive measure. We will also let 7+ 1 be even-valued so

10A5 subsets of a compact metric space, S¢ and (Q\S§) are Lindeldf spaces (Munkres (29, Ch.4]) and,
therefore, can be covered by a countable collection of open sets, Sf = U204 , and 2\Sf = Up2,0n .. By
and By can be taken to the basis sets generating (O, ;) and (O, ) respectively.

For instance, suppose Dy, = B} ,UBY,U Bj,. By construction, there are distinct sets, Dm,t, Dnt € Ds,
of the form Dpm = Bl,, U Bf,UBY, and Dy; = B, , U B, U B/ ;. Therefore, By, = D1t 0 Dz,

Bf,t == Dl,t N Dn’g, and Bll,t == Dl’g\{B;"t U B.lz,,t .
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that it corresponds to the original time-line (the same argument applies with 7 even-valned,
so once again there is no loss of generality stemming from this assumption).

We start with the collection D,. Taking the expectation of X,y over D, , = Cp; U B,’;"T:

| Xrppdy == / M2, dv +/ Orp1dv 19
/D,,, H §¢ D T sz\smﬁn,,,cr"” * (19)

By construction, Cy . N By, . = @ and v((Q2\Sf,,) N By ) = 0. Therefore, the extreme term
on the right in (19) becomes:

67-%1514*1(11/ = /

(NS, )N, v

/(Q\SE D é‘T'ﬁ'léTﬂ“ldU e (20)
+l n,r

Substituting (20) in (19), and noting that by definition (.., assumes the constant value of
Cra1(Dnr) on Cy -, we have:

Xrpdv = / 71V + Gr(Dn bry1dy (21)

S;.’.lmDﬂ,T

. Qn,‘r /(‘Q\ST,’ l)ﬁcn,r

Substituting for (;41(Dn,r) from (8) in (21), we observe that (18) is satisfied. Now let O,
denote the collection of sets which are a countable union of disjoint sets in D;. For any
Ok"r = U;?lej‘-r E 07‘3 k: e I+:

X;n*.ld!/ == / -;—.;.1 dl/ = Z/ ){Tlldy =

Okﬂ— Uﬁler
S [ Xedv = / X,dv = [ X.dv (22)
7=1 Dj.T U?ile,'r Ok,r

Therefore, (18) holds for all sets in ;. Also note that O, constitutes a w-system, i.e. it is
closed under finite intersections. Given any Ok .,Om, € O, one possibility is Ok N Om, .
is empty, in which case (18) holds trivially. The other possibility is that Ogr N O+ is non-
empty, and is, therefore, a countable collection of disjoint sets in D;; in this case a string of
equalities as in (22) establishes (18).

Now consider the collection, A, of all F-measurable subsets of {2 for which (18) holds. We
now show that A constitutes a A-system. First of all note that {2 € A, given that §2 is open
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in the product topology which generates F. Second, A is closed nnder proper differences. "To
verify, consider I, G & A such that & C F. Since F = (I'\G') U (. the subtractive propexty
of probability measures vields:

.//;‘\,G Ny dy = /[ Xy dir — /G Xewpdv = plv(F)y —vig)] = w(F\G) (23)

Third. A is closed under monotone limits. To verify, consider a sequence (F,) of F-
measurable sets and [* € F such that F, 7 F. Then 0 < x(F,) T x(F).'* Using the
Monotone Convergence theorem and the sequential continuity from below of probability
measures (Billingsley [5, Theorem 16.2; Theorem 2.1}), it follows that:

[Xowdv = Jim [ Xewdv = < lim i) = wiF) (24)

oo f g = 00

This indicates closure under monotone limits. Note that O, C A since sets in O, satisfy (18)
and are F-measurable. From Dynkin’s 7 — A theorem, ¢(0,) C A. The martingale property
now follows. since an argument similar to that in Lemina 5 establishes that o(O;) = o(D;) =
F,. To establish the bound on the expectation of (X,), note that since 2 € F;, we have
Jo Xrpdv = uw(Q) = p. A

Proof of Proposition 2 Let the value-loss process (V;) be defined as:
Vr = ‘XT + Y;' , TE I‘r\{o} (25)

with the initial value, V5 = 0.1® If 7 is odd, then by construction, V,; = 0. Now suppose that
7is even. If w € %, then Vi (w) = M7 (w) + M¥(w) > 24. On the other hand, if w € (Q\S5),
then V,(w) = &, (w)[CT( ) + &-(w)] < 0. Further, as the sum of (F,)-martingales {X,) and
(Y;) with means p and —p respectively, (V;) is a zero-mean (F,)-martingale. A

Proof of Lemma 6 Consider any (VS o, € Ryy. For arbitrary N € I, and any
w € ). on the time-line 7:

Vﬁ'ﬂ > VNa,ﬁ —Voa‘ﬁ

BPix ¢ > 0. fw ¢ F, then w ¢ F, for all n and hence x(F) ~ x(Fy) = 0 < ¢ for all n. If w € F, then
there exists m € I such that w € F,, for all n > m and hence x(F) — x(Fn) =0 < efor all n 2 m.

3Gince our time line starts at zero, fixing the initial value V4 = 0 implies that we ignore a potential
deviation in capital stocks by more than € in the initial period. But ignoring one possible deviation in period
0 is inconsequential given our concern with the long run behaviour of optimal prograins.
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period

N ) s
A A 7L |~
= 3 (v - ved)
Tmai
& 3 i al 3
-, ' Y, ) S, W I3 Ys
= YRRVl vy 4+ S (1= KO (VRO - ved) (26)
Tzl T}
The reference to the argument, w, is suppressed for notational ease. Now consider an up-
crossing represented by a chain of 1's flanked by 0%s: K&8 = 0, K&, = ... = K& = 1,

K®P = 0. Note by construction that Vol > 2uB 4 o and V= o (where the latter
follows from the fact that, with the exception of v = 0, K%# = 0 only for odd-valued 7

which succeed an upcrossing and never at any even-valued 7; further, at any odd-valued r,
value-loss takes the constant value of a). Therefore:

7t
S KR (VAP - V) = VR~ VaE > ouB (27)
T=mA4-1

[t now follows that if the number of upcrossings are equal to Uy, for the given w, then:

N
> KPP (VP - veR) 2 ouUy, (28)
Te=l

Also note from the martingale property of (V@Y and the predictability of K&# that:

N
> [ (1K) (VP - veR) dv =
=1

N

> [ (1= K) B [ve? - Vg || Foadv = 0 (29)

T=1

Combining (26), (28) and (29) yields:

28 / USdy < / VeBdy (30)

The result follows by noting that the expectation of Vﬁ‘ﬁ is bounded from above by a. A
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Proof of Proposition 3 Revert to the original time-line (i.e. even-valued 7) since the

variable Z;" = 1 only in time periods ¢ = 1,2, ..., and not in periods ¢ = %, 1%, .... Further,
note that an upcrossing takes place over w, 2p0 + « if and only if there is more than e-

divergence in capital stocks, i.e. Z&P = 1 if and only if x(S¢) = 1. From (30), and the fact

that EUG = EL, 7P = 5N p(88), we can conclude that:

N N
2By () = 2B [ 3o x(SD)dv =
fex] M £33

2 [ iZ"”ﬁdu — uf / Usdy < / valy (31)
t L NaV = N oV 1
] % . ‘

Since the expectation of V;j‘ﬁ is bounded from above independently of N, letting N — oo
in (31) yields 3282, v(S§) < co. An application of the first Borel-Cantelli lemma then yields
v({w: limsup,_., 5 }) = 0. A

24

e oS DR R A




the
her,
n e
fact

(31).

- 00
ields

References

1]

(12]

[13]

R. Amir (1997) “A New Look at Optimal Growth under Uncertainty”, Journal of Eco-
nomie Dynamics and Control, 22, 67-86.

R. Barro and X. Sala-i-Martin (1995) Economic Growth, McGraw Hill, New York.

R.A. Becker (1985) “Capital Income Taxation and Perfect Foresight”, Journal of Public
Economics, 26, 147-167.

T. Bewley (1982) “An Integration of Equilibrium Theory and Turnpike Theory”, Journal
of Mathematical Economics, 10, 233-267.

P. Billingsley (1979) Probability and Measure, John Wiley and Sons, New York.

M. Boldrin and L.. Montrucchio (1986) “On the Indeterminacy of Capital Accumulation
Paths”, Journal of Economic Theory, 40, 26-39.

C. Budd, C. Harris and J. Vickers (1993) “A Model of the Evolution of Duopoly: Does
the Asymmetry between Firms Tend to Increase or Decrease?”, Review of Economic
Studies, 60, 543-573.

W.A. Brock and M. Majumdar (1978) “Global Asymptotic Stability Results for Mul-
tisector Models of Optimal Growth under Uncertainty when Future Utilities are Dis-
counted”, Journal of Economic Theory, 18, 225-243.

W.A. Brock and L.J. Mirman (1973) “Optimal Economic Growth and Uncertainty: The
No Discounting Case”, International Economic Review, 14, 560-573.

W.A. Brock and L.J. Mirman (1972) “Optimal Economic Growth and Uncertainty: The
Discounted Case”, Journal of Economic Theory 4, 479-513.

W.A. Brock and J.A. Scheinkman (1975) On the Long Run Behavior of a Competitive
Firm, In “Equilibrium and Disequilibrium in Economic Theory”, G Schwodiauer (ed),
Springer Verlag, Vienna.

F.R. Chang (1982) “A Note on the Stochastic Value Loss Assumption”, Journal of
Economic Theory, 26, 164-170.

R.A. Dana (1974) Evaluation of Development Programs in a Stationary Stochastic
Economy with Bounded Primary Resources, Proceedings of the Warsaw Symposium
on Mathematical Methods in Economics, North Holland, Amsterdam, 179-205.

25



[14)

[15]

|16}

(17

[20]

[21]

[22]
[23]

24

[25]

[26]

H. Follmer and M. Majumdar (1978) “On the Asymptotic Behavior of Stochastic Eco-
nomic Processes”, Journal of Mathematical Economics, 5, 275-287,

D. Gale (1967) “On Optimal Development in a Multisector Economy”, Review of Eco-
nomic Studies 34, 1-18.

C.L. Guerrero-Luchtenberg (1998) “A Turnpike Theorem for a Family of Functions”,
mimeo, Universitat Autonoma De Barcelona.

S. Joshi (1997) “Turnpike Theorems in Nonconvex Nonstationary Environments”, In-
ternational Economic Review, 38, 225-248.

R.E. Lucas (1988) “On the Mechanics of Economic Development”, Journal of Monetary
Economics. 22, 3-42.

M. Majumdar and T. Mitra (1994) “Periodic and Chaotic Programs of Optimal In-
tertemporal Allocation in an Aggregative Model with Wealth Effects”, Economic The-
ory, 4, 649-676.

M. Majumdar and I. Zilcha (1987) “Optimal Growth in a Stochastic Environment: Some
Sensitivity and Turnpike Results”, Journal of Economic Theory, 43, 116-133.

R. Marimon {1989) “Stochastic Turnpike Property and Stationary Equilibrium”, Jour-
nal of Economic Theory, 47, 282-306.

L.W. McKenzie (1976) “Turnpike Theory”, Econometrica, 44, 841-865.

L.W. McKenzie (1998) “Turnpikes”, American Economic Review Papers and Proceed-
ings, 88(2), 1-14.

L.J. Mirman and I. Zilcha (1977) “Characterizing Optimal Policies in a One-Sector
Model of Economic Growth under Uncertainty”, Journal of Economic Theory, 14, 389-
401.

L.J. Mirman and I. Zilcha (1975) “On Optimal Growth under Uncertainty”, Journal of
Economic Theory, 11, 329-339.

T. Mitra (1998) “On the Relationship between Discounting and Complicated Behaviour
in Dynamic Optimization Models”, Journal of Economic Behaviour and Organization,
33, 421-434.

26




In-

ary

In-
he-

me

Our-

ceed-

actor

389-

2al of

wiour
ation,

(27) T Mitra and Y. Nyarko (1991) “On the Existence of Optimal Processes in Non-
Stationary Environments”, Journal of Economaics, 53, 245-270.

(28] L. Montrucchio (1995) “A New Turnpike Theorem for Discounted Programs”, Feonomie
Theory, 5, 371-382.

(29] J.R. Munkres (1975) Topology: A First Course, Prentice Hall Inc., Englewood Cliffs,
New Jersey.

[30] K. Nishimura, G. Sorger and M. Yano (1994) “Ergodic Chaos in Optimal Growth Models
with Low Discount Rates”, Economic Theory, 4, 705-717.

[31] P.M. Romer (1986) “Increasing Returns and Long Run Growth”, Journal of Polétical
FEconomy, 94, 1002-1037.

[32] G. Sorger (1992) “On the Minimum Rate of Impatience for Complicated Optimal
Growth Paths”, Journal of Economic Theory, 56, 160-179.

[33] J. Yeh (1995) Martingaleé and Stochastic Analysis, World Scientific, River Edge, New
Jersey.

27



I/ (w) - k(W)

.
ﬂ’l
‘,a"&.‘
4
4
;‘ ,
¢ 2 \s r"
""' ‘s‘ ”fl
/’ \~ R
o ., Pl
L R >’
* ,.u-"""
ﬁ“'.m*""
i I
} J } } T
0 | 2 3 4 5 t
Ve ()
i
i
4 HR *
2 IA - FAY
p I 1 2 £y
A oA !y
Y ’
{0 i ! T |
¥ ¥ * { s
] 1 4 ' [}
] |} ] ‘ ,’ 3
] H ] H F 1
y % ! [} 4 '
] ! [} I 3
» [ ¥ 1 ¥ [}
/] Y ¥ . H 1
i 1 P 3
2 M ¥ s g %
H 1 ' T P
H \ H [ Y
H ' H () i
| * I I * I * |
AT
I “ 'I “ ‘l
* ’l \‘ ’l .
0 Va 1 1 \‘ 2’:’ 2% N 3 4 3% 4 4% 5 5%
v ‘V'
K. (w)
H 1 [ § ¥ H 4 L ] [ ] i
] 1 i i 1 i i | I ] i
0 1 1 0 1 1 1 1 1 0 1 0
One Upcrossing

One Upcrossing
of [0,21]

of [0,2]

One Upcrossing
0f[0,2p]

Figure 1: Tracking Divergence in Capital Stocks Through Upcrossings of the Value-Loss
Process




No

vl

(WS

wn

10

11

CENTRE FOR DEVELOPMENT ECONOMICS

Author(s)
Kaushik Basu
Arghya Ghosh
Tridip Ray

M.N. Murty
Ranjan Ray

V. Bhaskar
Mushtaq Khan
V. Bhaskar
Bishnupriya

Gupta

Kaushik Basu

Partha Sen

Partha Sen

Partha Sen
Arghya Ghosh

Abheek Barman

V. Bhaskar

V. Bhaskar

WORKING PAPER SERIES

O

The Babu and The Boxwallah : Managerial Incentives and
Government Intervention  (January 1994). Review of
Development Economics, 1997

Optimal Taxation and Resource Transfers in a Federal
Nation (February 1994)

Privatization and Employment : A Study of The Jute
Industry in Bangladesh (March 1994). American
Economic Review, March 1995, pp. 267-273

Distributive Justice and The Control of Global Warming
(March 1994) The North, the South and the
Environment: V. Bhaskar and Andrew Glyn (Ed.)
Earthscan Publication London, February 1995

The Great Depression and Brazil's Capital Goods Sector:
A Re-examination  (April 1994). Revista Brasileria de
Economia 1997

Where There Is No Economist: Some Institutional and
Legal Prerequisites of Economic Reform in India (May
1994)

An Example of Welfare Reducing Tariff Under
Monopolistic Competition (May 1994), Reveiw_of
International Economics, (forthcoming)

Environmental Policies and North-South Trade : A
Selected Survey of the Issues (May 1994)

The Possibility of Welfare Gains with Capital Inflows in
A Small Tariff-Ridden Economy  (June 1994)
Sustaining Inter-Generational Altruism when Social

Memory is Bounded (June 1994)

Repeated Games with Almost Perfect Monitoring by
Privately Observed Signals (June 1994)



No.

13

14

15

16

17

18

19

20

21

22

23

24

Author(s)

S. Nandeibam

Kaushik Basu

Kaushik Basu

S. Nandeibam

Mrinal Datta
Chaudhuri

S. Nandeibam

D. Jayaraj
S. Subramanian

K. Ghosh
Dastidar

Kaushik Basu

Partha Sen

K. Ghosh
Dastidar

K. Sundaram
S.D. Tendulkar

Sunil Kanwar

Coalitional Power Structure in Stochastic Social Choice
Functions with An Unrestricted Preference Domain
(June 1994). Journal of Economic Theory (Vol. 68 No.
1, January 1996, pp. 212-233 '

The Axiomatic Structure of Knowledge And Perception
(July 1994)

Bargaining with Set-Valued Disagreement (July 1994).
Social Choice and Welfare, 1996, (Vol. 13, pp. 61-74)

A Note on Randomized Social Choice and Random
Dictatorships (July 1994). Journal of Economic
Theory, Vol. 66, No. 2. August 1995, pp. 581-589

Labour Markets As Social Institutions in India  (July
1994)

Moral Hazard in a Principal-Agent(s) Team (July 1994)
Economic Design Vol. 1, 1995, pp. 227-250

Caste Discrimination in the Distribution of Consumption
Expenditure in India: Theory and Evidence  (August
1994)

Debt Financing with Limited Liability and Quantity
Competition  (August 1994)

Industrial ~ Organization Theory and Developing
Economies  (August 1994). Indian Industry: Policies
and Performance, D. Mookherjee (ed.),  Oxford
University Press, 1995

Immiserizing Growth in a Model of Trade with
Monopolisitic Competition (August 1994). The Review
of International Economics, (forthcoming)

Comparing Cournot and Bertrand in a Homogeneous
Product Market  (September 1994)

On Measuring Shelter Deprivation in India  (September
1994)

Are Production Risk and Labour Market Risk Covariant?
(October 1994)



g
S
d

€ =

ns
et

3t?

31

34

35

36

37

Author(s)

Partha Sen

Ranjan Ray

Wietze Lise

Jean Dreéze
Anne-C. Guio
Mamta Murthi

Jean Dréze
Jackie Loh

Partha Sen

S.J. Turnovsky
Partha Sen

K. Krishnamurty

V. Pandit

Jean Dréze
P.V. Srinivasan

Ajit Mishra

Sunil Kanwar

Jean Dréze
P.V. Srinivasan

Sunil Kanwar

Partha Sen

Title

Welfare-Improving Debt Policy Under Monopolistic
Competition  (November 1994)

The Reform and Design of Commodity Taxes in the
presence of Tax Evasion with Illustrative Lvidence from
India  (December 1994)

Preservation of the Commons by Pooling Resources,
Modelled as a Repeated Game (January 1995)

Demographic Outcomes, Economic Development and
Women's Agency (May 1995).  Population and
Development Review, December, 1995

Literacy in India and China (May 1995). Economic and
Political Weekly, 1995

Fiscal Policy in a Dynamic Open-Economy New-
Keynesian Model  (June 1995)

Investment in a Two-Sector Dependent Economy (June
1995). The Journal of Japanese and International
Economics, Vol. 9. No, 1, March 1995

India's Trade Flows: Alternative Policy Scenarios: 1995-
2000 (June 1995). Indian Economic Review, Vol. 31,
No. 1, 1996

Widowhood and Poverty in Rural India: Some Inferences
from Household Survey Data (July 1995). Journal
of Development Economics, 1997

Hierarchies, Incentives and Collusion in a Model of
Enforcement (January 1996)

Does the Dog wag the Tail or the Tail the Dog?
Cointegration of Indian Agriculture with Non-
Agriculture  (February 1996)

Poverty in India: Regional Estimates, 1987-8
(February 1996)

The Demand for Labour in Risky Agriculture
(April 1996)

Dynamic Efficiency in a Two-Sector Overlapping
Generations Model (May 1996)




No.

39

40

41

42

43

44

45

46

47

48

49

50

51

33

Author(s)

Partha Sen

Pami Dua
Stephen M. Miller
David J. Smyth

Pami Dua
David J. Smyth

Aditya Bhattacharjea
M. Datta-Chaudhuri
Suresh D. Tendulkar
T. A. Bhavani
Partha Sen

Partha Sen

Pami Dua

Roy Batchelor

V. Pandit
B. Mukherji

Ashwini Deshpande

Rinki Sarkar

Sudhir A. Shah

V. Pandit

Rinki Sarkar

Title

Asset Bubbles in a Monopolistic Competitive Macro
Model (June 1996)

Using Leading Indicators to Forecast US Home Sales in
a Bayesian VAR Framework (October 1996)
The Determinants of Consumers' Perceptions of Buying

Conditions for Houses (November 1996)

Optimal Taxation of a Foreign Monopolist with Unknown
Costs (January 1997)

Legacies of the Independence Movement to the Political
Economy of Independent India (April 1997)

Policy on Modern Small Scale Industries: A Case of
Government Failure (May 1997)

Terms of Trade and Welfare for a Developing Economy
with an Imperfectly Competitive Sector ~ (May 1997)

Tariffs and Welfare in an Imperfectly Competitive
Overlapping Generations Model (June 1997)

Consumer Confidence and the Probability of Recession:
A Markov Switching Model (July 1.99'?)

Prices, Profits and Resource Mobilisation in a Capacity
Constrained Mixed Economy (August 1997)

Loan Pushing and Triadic Relations  (September 1997)

Depicting the Cost Structure of an Urban Bus Transit
Firm (September 1997)

Existence and Optimality of Mediation Schemes for
Games with Communication (November 1997)

A Note on Data Relating to Prices in India (November
1997)

Cost Function Analysis for Transportation Modes: A
Survey of Selective Literature {December 1997)

Pl




