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ABSTRACT 

An important stochastic turnpike property in optimal growth models asserts that 
optimal programs of capital accumulation from different initial stocks converge almost surely 
in a suitable metric. Its proof requires constructing a value-loss process satisfying both 
uniform boundedness in expectation and sensitivity (in the sense of recording a strictly 
positive value-loss when the capital stocks being compared diverge). Uniformity assumptions 
strengthen sensitivity by ensuring that value-loss is independent of time and state of 
environment in which the divergence occurs. They are imposed either directly on the value­
loss process, or indirectly through bounds on the degree of concavity of the felicity or 

*1 would like to thank Professors F.R. Chang and Santanu Roy for their comments which have improved 
the paper. A preliminary version of this paper was presented at the seminar series of Erasmus University, 
Rotterdam. I would like to thank the participants for their comments. This paper was completed while I was 
visiting the Centre for Development Economics, Delhi School of Economics. I would like to thank them for 
providing me the resources to complete this project. I remain responsible for any errors. 
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production functions, and are acknowledged as strong restrictions on the modeL This paper 
argues, within the context of a convex aggregate growth model~ that uncertainty can obviate 
the need for uniformity, The multiplicity of states afforded by a stochastic framework permits 
constructing a vallle~loss process over an "extended" time~line that is a martingale and, hence, 
relatively easy to uniformly bound in expectation. Further, if capital stocks diverge by some 
critical amount in any time and state, then the martingale registers an upcrossing across a band 
of uniform width on its extended time~line for that state thereby giving uniform value-loss. 
Probabilistic arguments based on the Martingale Upcrossing theorem and the Borel-Cantelli 
lemma then clinch the turnpike property. 
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Introduction1; paper 
)bviate 
permits Optimal growth theory, in Ramsey-typo normative models with convex preferences and t(~(;h~ 
hence, nology, has identified an important stability property referred to a.':> the late turnpike. It 
y some a.':)serts that two infinite horizon optimal programs of capital accumulation from disl;iuct 
;a band initial stocks converge (almost surely) in a suitable metric. A critical input in the deriva­
ue-Ioss. tion of this property is a strong u,n~for'ffl,ity assumption(Brock and Majumdar [8], Brock 
Cantelli and Scheinkman [11], Chang [12], Follmer and Majumdar[14J, Joshi [17], Majumdar and 

Zilcha [20], McKenzie [22])1. It is generally invoked in both discounted and undiscounted 
frameworks which eschew the time-stationarity restriction on preferences, technology and the 
evolution of the stochastic environment. It engenders independence from both time and state 
(of the stochastic environment) of the sensitivity of a key procesl:l the value-loss pro()ess 
which tracks the divergence in optimal programs from different initial stocks. The primary 
objective of this paper is to demonstrate, within the context of a convex aggregate stochastic 

'sity, 2201 growth model, that the late turnpike property can be derived without the encumbrance of a 
uniformity restriction. 

A general derivation of the late turnpike property, without any concession to uniformity, 
is warranted by the preeminent position this result occupies in the various strands of the 
growth literature. To substantiate, we offer a brief review. 

(i) Optimal Growth Theory: The late turnpike property is central by virtue of asserting the 
global asymptotic stability of optimal programs.2 Under the assumption of time-stationary 
preferences, technology and the stochastic environment, and with the added restriction of 
no discounting, it has been shown in Brock and Mirman [9], Dana [13] and Mirman and 
Zilcha [24] that all good programs converge in an appropriate topology to the golden rule 
(or optimal stationary) program3 . In the discounted context, as exemplified in Brock and 
Mirman [10] and Mirman and Zilcha [25], time-stationarity yields convergence in distribution 
of optimal programs from distinct initial stocks to the modified golden rule program. In nOl1­
stationary models, the uniformity restriction has been critical in establishing convergence in 
probability (Brock and Majumdar [8]) or the stronger property of almost sure convergence 

lOptimal growth theory has identified two other turnpike properties - the early and the middle of which 
the latter also relies on a uniformity assumption (for instance, McKenzie [22]). 

2A comprehensive review of the deterministic literature on turnpike theory, along with a discussion of the 
role of uniformity, is provided in McKenzie [23]. The review, however, does not cover the stochastic case. 
For this reason, we have mostly limited the discussion here to optimal growth under uncertainty. 

3Good programs, first identified in Gale [15], are feasible programs which do not perform infinitely worse 
in utility terms than the golden rule program and which include non-stationary programs that are optimal 
in terms of catching-up or overtaking of partial utility sums. 
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(Chang [121, Follmer and Majumdar [lAj, Joshi [17J and Majumdar and Zilcha [20]). 

(U) Cornpetitive Equilibr'ium and the Turnpike Property: In contrast to nonnative models 
of optimal growth, the, deterministic analysis of Bewley [4], and its stochastic extension by 
Marimon [21], consider a positive model of equilibrium growth with finitely many (infinitely~ 
lived) consumers and perfectly competitive firms. A competitive equilibrium in their model 
corresponds to the solution of an optimal growth problem where the social welfare function 
is a weighted sum of the consumers' utility functions, the weights being the inverses of the 
marginal utility of expenditures in equilibrium. In particular, the stationary competitive 
equilibrium with transfer payments corresponds to the (modified) golden rule program with 
respect to this social welfare function. The late turnpike property highlights the global 
asymptotic stability of interior competitive equilibria by showing that they converge to the 
stationary competitive equilibrium with transfer payments for sufficiently high values of the 
discount factor. 

(iii) Imperfectly Competitive Equilibria of Endogenous Growth Theory: The voluminous 
literature on endogenous growth, following the seminal contributions of Lucas [18] and 
Romer [31], has considered the dynamic general equilibria of imperfectly competitive mar~ 
kets characterized by sustained growth at endogenously determined levels. The late turnpiJee 
property addresses the issue of whether the time path of an imperfectly competitive equi­
librium converges to the path of balanced growth. Another facet of this literature has been 
to explain the difference in growth rates of developing and developed economies (Barro and 
Sala-i-Martin [2]). Identifying conditions under which long run convergence to the same 
growth rate does (or does not) obtain bears formal similarity to the late turnpike property. 

(iv) Patience and Chaos: The late turnpike property rules out the possibility of optimal 
programs exhibiting chaotic dynamics. In reduced form models with two or more sectors, 
the existence of complicated dynamics, has generally been obtained for low values of the 
discount factor (Boldrin and Montrucchio [6], Mitra [26], Nishimura, Sorger and Yano [30J 
and Sorger [32]). Some additional features include felicity functions that are concave but 
not strictly concave, and optimal programs that are possibly non-interior. In an aggregate 
growth model, Majumdar and Mitra [19] have shown the existence of complicated dynamics 
when the felicity function depends on both consumption and the capital stock. This raises 
the following issue: in aggregate growth models with strictly concave felicity functions that 
depend on consumption alone, and in which optimal programs are interior, does the late 
turnpike property obtain for all values of the discount factor? Majumdar and Zilcha [20J 
answered this in the affirmative under a uniforIl} lower bound on the degree of concavity of 
the production function and a particular relative distance function to measure the divergence 
in capital stocks. This paper attempts to extend the result to the case with no uniformity 
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restrictions and no restriction to a partieular metric. 

(v) ill)pUcat'ions of 2'urnpiA:e Theory: Long run invariane~! properties, akin to the late tum~models 
pike property, exist in diverse area.':! of economics. For instance, in public finance, a clasl:lical .sion by 
invarianee proposi\;ion states that in a neoela ..'3sieal growth model a capital income tax is com­finitely­
pletely shifted 1;0 the labour input in the long run (Bed<er [3]). In the turnpike vernacular, r model 
the time paths of the after-tax return to capital per unit, corresponding to different rates:unction 
of capital income taxation, conv(~rge almost surely. Similarly, in industrial organization, a 

~s of the 
result bearing formal resemblance to the late turnpike property, identifies conditions underlpetitive 
which two firms with different initial conditions (t.echnology gap) can close the gap over timeam with 
through optimal investment in research and development (Budd, Harris and Vickers [7]).e global 
The turnpike technique can be profitably applied to all such areas where the objective is 

~e to the 
to obtain the asymptotic stabilit.y of the t.ime paths of a variable of interest generated from es of the 
different initial conditions. 

The pervasive nature of the late t.urnpike property in economic dynamics, as attested by the .uminous 
above review, provides a compelling reason t.o re-examine this issue under the greatest gen­[18] and 
erality. In this regard, uniformity assumptions pose a strong restriction on optimal growth ;ive mar­
models. This paper demonstrates that the potential to exploit multiple states of the envi­turnpike 
ronment afforded by a stochastic paradigm can eradicate the need for any strong uniformity ;ive equi­
restriction. Towards this end, we organize the paper as follows. The convex opt.imal growth has been 
model is presented in Section 2. The nature of the uniformity assumption is examined in ~arro and 
Section 3. A non-technical description of our methodology is provided in Section 4. Thethe same 
mathematical underpinnings of this methodology, along with a formal statement of results, property. 
is available in Section 5. All proofs are relegated to an Appendix. Our conclusions are 

.f optimal contained in Section 6. 
'e sectors, 
les of the 
Yano (30] 2 The Aggregate Growth Model 
ncave but 
aggregate 

Our description of the growth model generalizes Brock and Mirman [10], Majumdar and dynamics 
Zilcha [20], and Mirman and Zilcha [24] by allowing non-stationarities in preferences, tech­fhis raises 
nology and the evolution of the stochastic environment. From now on, we will let 1:+ =:tions that 
{O, 1,2, ... }, and let (ht ) denote the sequence, 11,0, hI, h2, •.. , ht , .. " t E I+.~s the late 

Zilcha [20] The possible states, Wt, of the environment at any date t E I+ is given by an uncountably
mcavityof' infinite set, nt, that is a compact metric space in an appropriate topology. Let £t denote the 
divergence . Borel u-field of subsets of nt generated by the open sets in this topology. By assumption, nt 
uniformity' 
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Tlwsa,l;isfies th(~ i~ec()!}d ccmnt:abilit;y axiom (Munkres [21), Sedion 4"1]). i.e. Ot has a countabk' 
J)l'Ogba.sis, 'lit (fI,)"I,) , 'il (:; 14,"1 ft)f it.s topology. It follows that et (7(111,). Let n = x~ofl( 

denote the set of all sequences, W= (Wt), Wt E Ot, and :F denote the O'~field on 0 generat(~d 
by open sets in the product topology on O. The stocha.9tic envi1'Onment is represented by 
the probability space (0, F, l/), where v is a probability measure on n. Let (Ft) denote 
the filtration on .0, :Ft. is the sub-(7-field on 0 induced by pftrtial history till date t, Le. 
Ft = O'(eo x 51 X , •• x 5t x 01,+1 X 0 1,+2 X ... ).4 Exist 

Technology is described by a sequence of possibly t.ime-varying production functions (It'), and t 

Ii; R+ x nt •H --> R+, where for each t E 1+: Ej). I 
fl,te tr 

Euler 
(A.I) ft is continuous on n+ x 0 1,+1, 

(A.2) 	For each WI+l E Ol.+ll fl.(O,WHd = 0, ft(k,wt,+l) is strictly concave for k 2: 0, 

and f/(k,wt+d =8fl.(k,wt+d/8k exists and is strictly positive for k > 0. 


Defino 
Preferences are represented by a sequence of possibly time-varying felicity functions (UI) , os 7>t 
Ut : R+ --> n, such that for each t E 1+: 

(A.3) ttl,(C) is continuous and strictly concave for c 2: 0. 

(A.4) u~(c) exists and is strictly positive for c> °with u~(c) T+00 as c 10. where 1 

prograr 

The initial stock, 8, is random and is drawn from the set [, [, oo(n, Fo, v, n++) of all equatio 
essentially bounded Fo-measurable functions from n into n++. A real-valued {Ft)-adapted 
process, ((kt, Ct)), is a feasible program from s E [, if with probability 1: 

ko+co ::; s 	 (1) 
Therefo 
L,.. We 

(2) 	 capital i 

Con,Bidel 
(3) (5) sho\\ 

How~ver4Note that Eo x £1 X ... x £t x ntH x n t+2 x . .. denotes the collection of cylindrical sets of the form, 
convenie:An x Al X ... x At x ntH x ntH x ... I where Ai E £i for i = 0, 1, ... It. 
the Eule] 

6 

11 



·untable 
x~ont 

merated 
:nted by 
. denote 
te t, i.c. 

ons (It), 

++) of all 
~)-adapt(~d 

(1) 

(2) 

(3) 

; of t.he form, 

The ::;(11. of all feasible prograrns from l1 given initial stock s E; £, is denoted by <PC 8). A 
progra.m, ((kf, en) E <p(s), is opiirnal if for any other program, ((ki' cd) E (1)(8): 

N 

lim sup L E [u.t(cl,) - l.t/(cnJ ~ 0 
N-·oo t""Q 

Exist.ence of an optimal program follows under a joint boundedness restriction on preferences 
and technology (Majumdar and Zilcha [20. Theorem 1] or Mitra and Nyarko [27, Con.dition 
ED. From assumption (A.4), opt.imal programs are interior and (in addition to appropri­
ate t.ransversality conditions for discounted and undiscounted models) satisfy the stochastic 
Euler equations: 

(4) 

Define the competitive price process, (pf), associated with t.he optimal program, (( kl ,cl)), 
as pf == u~(cn, t E I+. Further,lel;: 

t 

ng = 1, ntH = II fI(kf, Wi+l), t E I+ 
i=O 

where n/ is Ft-measurable and strictly positive (almost surely) from the interiority of optimal 
programs. Multiplying both sides of (4) by nt, and using its .rcmeasurability, the Euler 
equations can be rewritten succinctly as: 

(5) 

Therefore, the process (p;nt) is a (Ft}-martingale with E[pfnn = E[p~ng] = E[uS(co)], t E 

I+. We can interpret (p:nt) as the sequence of valuations of future increments of a unit of 
capital invested optimally in time period 0 from the initial stock s. 

Consider an initial stock y E C, y =1= s, and let JL == E[uS(cg) - uS(c~)]. An examination of 
(5) shows that adding a constant to both sides of the Euler equation leaves it unaffected. 
However, given that the two sides of (5) are strictly positive (almost surely), this operation 
conveniently bounds each side from below by the constant. Letting Mf p~n; + JL, i = s, y, 
the Euler equations become Mi E[M:+ 1 II .rt] almost surely for each t E I+. 
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rrll(~ 'Uniformity AssunlPtion USSl 

Call' 

In this section, to illuminate the precise nature of the uniformity assumption, we review the Ap 
methodology that underlies the ~toehastic late turnpike property in non-stationary mod(~ls. one 

dift!,The first step entails the construction of a value-loss process, (Vi.), by utilizing the competitive 
prioconditions which charact.erize an optimal program (the "turnpike"). These are the Euler 
consconditions in aggregate models (Joshi [17], Majumdar and Zilcha [20]) and the reduced 
sl;r\l(utility maximization conditions in multiseetor models (Brock and Majumdar [8], Chang [12], 
andFollmer and Majumdar [14]). The process (Vi) has the convenient property of being either 

a martingale (Majumdar and Zilcha [20, Equations 6.20 and 6.21]), a submartingale (Brock WhiJ 
a.nd Majumdar [8]) or a supermartingale (Joshi [17], Marimon [21]) thereby permitting a sensi 
passage to the rich theory of martingales. The second step is to ensure that (Vi) is uniformly ment 
bounded in expectation. This is aehieved in aggregate models through interiority of optiulal facto 
programs, and in multisector models through the transversality (bounded capital value) wher, 
condition. The third step is to endow (Vi.) with the sensitivity to record a strictly positive The J 

difference called value-loss when optimal programs from different initial stocks diverge -indin 
by some pre-specified critical amount. This value-loss will in general depend on the time by ttl 
period, t, and the state of environment, w. in which the divergence occurs. makiI 

JoshiAt this stage, as noted by Follmer and Majumdar [14, Theorem 3.1]' a weak version of 
by ex:the late turnpike property can be obtained: for any arbitrary constant ,\ > 0, (Vi.) will 
Scheilalmost surely leave a set on which value-loss exceeds ,\ in finite time. This is a consequence 
the pIof the uniform bound on the expectation of (Vi) and the Martingale Convergence theorem 

(Billingsley [5, Theorem 35.4]). Coupled with the sensitivity property, it implies that capital In ei t. 
stocks cannot diverge for infinitely many periods by an amount that calises value-loss to stituti 
exceed A. It is a weak characterization, however, because convergence is not implied: capital charac 
stocks can diverge for infinitely many periods by any amount that causes value-loss to be a "st.n 
less than A. in Mel 

stricti(This is precisely the point where the uniformity assumption enters into the analysis to 
with tjforce the convergence of optimal programs from diff<?rent initial stocks by strengthening the 
For im sensitivity of (Vi). In particular, for any € > 0, if capital stocks diverge by more than € in 
sequenperiod t and state of environment w, then uniformity dictates that (Vi) record a value-loss of 
or "pro(at least '1](€) > 0, where '1](E) is independent of the tuple (t, w). Since (Vi) converges almost 
1/(t+~surely from the Martingale Convergence theorem, the (contrapositive of the) uniformity 
the" de€assumption ensures that capital stocks generated by optimal programs from different initial 
constarstocks converge too. This is how the twin properties of uniformly bounded expectation (which 

allows an application of the Martingale Convergence theorem to (Vi.)) and the uniformity 
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assumpl;ioll (whieh tics tlH~ convergence of op.tinHll progl'E\,ll1~ from distinct initial stocks to 
convergence of (lit)) act in conjunction to yield the late turnpike property. 

A. potential confUet however, between the dictat.es of uniform boundedness on the 
one hand and uniform. sensitivit.y on the other. This tC:lIlsion (:lxist.s because it. is in general 
difficult to reconcile a process that. is uniformly bounded in expectation with one that can (I, 

[>Tior'i register an infinite number of jumps of a magnitude exceeding some strictly positive 
constant. The construction of a value-lotls process, therefore, while imparting a martingale 
structure to (lit), ha.."3 to balance these vital but conflicting objectives of uniform boundedrH1s::l 
and uniform sensitivity. 

While the uniform bound on expectation is relatively easier to impose, ensuring uniform 
sensit.ivity poses the difficult problem of identifying the pr('~cise restrictions on the ftlnda­
mentals of the model t.he felicity functions, the production technology, and the discount 
factor -, that permii; value~loss to record a uniform jump in those states of the environment 
where capital stocks diverge while being uniformly bounded 011 average across all states. 
The literature has addressed the problem in two ways which may be classified as direct and 
indi1'ect. The former method directly imposes uniform tlcnsitivity on the value-loss process 
by appealing to appropriate curvature restrictions on technology and preferences without 
making them explicit (Brock and Majumdar [8], Chang [12], Follmer and Majumdar [14;], 
Joshi [17], McKenzie [22]). The latter method proves uniform sensitivity from first principles 
by explicitly imposing bounds on the degree of concavit.y of t.he felicity functions (Brock and 
Scheinkman [ll], Guerrero-Luchtenberg [16] and McKenzie [22] in t.he multisector case) or 
the production fUIlctions (Majumdar and Zilcha [20] in the aggregate case). 

In either their direct. or indirect guise, uniformity assumptions are acknowledged as con­
stit.uting st.rong restrictions on the growth model. In the direct approach, they have been 
characterized as "strong uniformity" (Brock and Majumdar [8, Assumption (A.4)]) or as 
a "strong value~loss assumption" (Follmer and Majumdar [14, p.281]). Further, as noted 
in Mckenzie [22], they are difficult to extend to discounted models without additional re­
strictions on the discount factor. In the indirect approach, they preclude growth models 
with time-varying preferences and technology that asymptotically approach the linear case. 
For instance, consider the sequence of functions (ht : n+ -+ n+), ht(x) = Xl~1/(t+2). This 
sequence of strictly increasing, strictly concave functions is precluded from describing felicity 
or production functions. The degree of concavity of ht, given by -xh~(x)/h~(x), is equal to 
1/(t 2), and approaches zero as t ---+ 00. The uniformity assumption, however, requires that 
the degree of concavity of each ht be uniformly bounded from below by a strictly positive 
constant, 
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4 foll(}~Methodology: A Descriptive View 
its in: 
t 2. 

In this see1;ioll~ we offer an informal description of our method. Recall that our fundamental to t 'C::: 

problem Lies in balancing a uniform bound on the expectation of (\it) with its potential 
to possibly execute an infinite number of jumps of uniform 8i7.0 in those time periods and In iml 
states where capital stocks diverge by some critical amount. This can be visualized as the ityof 
problt~m of attempl;ing to uniformly bound (in expectation) an inereasing step-function on across 
an unbounded time interval. The crux of our approach is relatively simple: while it is rnanir 
difficult to 'I1mijormly bound a strictly increasing (decreasing) process, it is fairly easy to galc~ 81 

uniformly bound a process in which every up-jump (down··jump) is immediately follow(~d ((kf, c 
by an equal~si7.ed down-jump (up-jump); this negation of the initial jump ensures that the on thE 
process starts at l;he same level once again and any pre.specifi(~d uniform upper (lower) bound fore, t. 
is not compromised even though the process is permitted an infinite number of jumps, an adj 

given i 

Figure 1 Somewhere Here the tUJ 

opl;i1111 

To see how we apply this idea to (\it), consider Figure 1. The graph on top tracks the time the sw 
path of Ilkt(w) - kY(w) II , where 11.11 is any distance function, permit.ting us to observe those proble: 
time periods when the divergence in capital stock exceeds some arbitrary constant f > a just 111: 

(in our example, t = 1,4,5). The graph for (\it) shows that for these time periods of more not on 
than f-divergence, value-loss exceeds the strictly positive constant, 2/1, > 0,5 In the other structt 
time periods, when there is less than f-divergence (in our example, t = 0,2,3), value-loss presup 
is non-positive. V'le then extend the time-line by including the mid-point between periods t measm 
and t + 1 for t 0, 1, 2, ... , and posit a constant value (equal to zero) for value-loss, i't+!, at ass um f. 

2 

this intermediate point. We let T = 2t, t = O,~, 1, 1~, 2, 2~, .. " denote this extended tirne- Weha, 
line and let (Vr) denote the value-loss process over T. Since we will have occasion to switch realizec 
between our original and new time-lines, it is useful to note that even-valued T correspond to martinI 
the original time-line while odd-valued T refer to the fictitiously introduced "intermediate» any pel 
points on the time-line. prograr 

becaus(We now observe that if we have more than f-divergence in capital stocks, for instance in 
and st;r:t = 1, then (Vr) moves upwards across a band of width equal to 2p, over the time interval 

t = ~ to t 1 (or, in the lexicon of martingale theory, it registers an upt}rossing6 over the of the fOl 

range [0,2p,] during this time interval). This upcrossing, by construction, is immediately rem (Bill 
7.Note 

5We will assume in the sequel that s ::; y almost surely, with s < y on some set of strictly positive . strllcted 
measure. This will ensure that 1t:2 E[Ub(cg) - Ub(cg)] > O. 

6Ill martingale theory, an upcrossing across an interval can take place over more than one time period 
while in our analysis it takes place in one time period. We use the terminology of an upcrossing because, 
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2 

f()llow(~d by a do'Wncrossing of equal size from t 1 to 1; = 1~ so that vaJue~loss retun:l8 to 
its initial lev(~l once again. If there is l(~ss tlHln e-divergcnce in any period, for instan<;(l in 
t ::;:;;; 2. then Vr remains non-positive and no upcrossing is registered across [0,2/1,]; from t 

mental tot 2! value-loss n~turns to its base-line level of zero. 
)tential 

In implementing the above idea, we have to ensure that (Vr ) is a martingale. The multiplic­,ds and 
ity of states afforded by a stodla.'3tk paradigm permits us the facility to induce upcrossings . as the 
across [0,2rJ,] of (VT ) for those realizations where Ilkt(w) - kY.{w) I I > c while simultaneously tion on 

He it ,is manipulating those states where Ilkf(w) - kY(w)11 :::; IS in order to endow (Vr ) with a martin~ 
gale structure.7 The construct;ion has t.he flavor of an optimal stopping argument. SUPpOSHeasy to 
((kl, en) is the "turnpike", and the planner (or representative consumer) is off the turnpike:ollowed 
on the path (( kt, C:). Staying off the turnpike subjects the planner to value-loss and, there­;hat the 
fore, the objective is to switch from ((kt, en) to the turnpike. However, such a switch involves ) bound 
an adjustment cost which depends on the distance of «(kt,cn> from the turnpike. Hence,ps. 
given a realization w, the planner would like to "stop" value-loss and effect the transition to 
the turnpike at time t(w) if IIkt(w)(w)-k::(w}(w)1I :::; E and not if IIkt(w)(w)-kr(w)(w)1 I> E. In an 
optimal stopping problem, the objective is to determine the optimal stopping time to Elffect 
the switch to the turnpike, given the adjustment cost. Our construction considers the reverse the time 
problem: given any t E L+ and realization w, what is the size of the adjustment cost which 've those 
just makes it optimal for the planner to "stop" value-loss at time t if Ilkt(w) - kl(w) 1\ :::; E butlt € > 0 
not on the complement of this set. The value-loss process is shown to imbibe a martingale of more 
structure as a consequence of such a choice of adjustment costs. This argument of course ,he other 
presupposes that in each period t E L+ there will exist a set of states of strictly positive ralue-loss 
measure on which IIkt(w) - kl'(w) I I :::; c. This technical requirement is met via a reachability periods t 
assumption on initial stocks. ,~+l' at.

2 

led time- We have now achieved our twin objectives: the uniform bound on the expectation of (Vr ) is 
to switch realized because a potentially unbounded increasing process is replaced with an oscillatory 
3spond to martingale process, and martingales have the convenient property that their expectation in 
:mediat.e" any period T > °is equal to their expectation in period T O. Interiority of the optimal 

programs will ensure that expectation in period T = °is finite. Uniform value-loss is attained 
because, when capital stocks are more than E-distance apart, (Vr ) upcrosses a band of uniform lstance in 
and strictly positive width. te interval 

6 over the of the formal analogy between our resolution of the turnpike property and the Mactingale Upcrossing theo­
.medlately rem (Billingsley [5, Theorem 35.3]). 

7Note that optimal programs ace defined on the origin~l time-line while the value-loss process is con­
:tiy positive structed over the extended time-line. 

time period 
3ing because 
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5 Methodology: A Formal Analysis Ii11li t 

read 
that. 

Our COllstl'Uction of a value-loss process has to be tempered by four requirements: {Ft )·> 
IIlOH!:' 

adaptability, the martingale property, uniform bound on expectation, and Upcl'ossing across of/u,
a band of uniform width following a critical divergence in capital stocks. For each t E I+, we 
isolate a collection of subsets of n generating F t and construct a value-loss process satisfying B(~fOI 

the requisite properties with respect to this collection. We then invoke Dynkin's 1r-A theorem progr 
(Billingsley [5, Theorem 3.2]) to extend these properties to the u-field F t generated by this . progr 
collection. As a first step, we exploit the second countability axiom to explicitly characterize of op 

F/ in terms of the countable basis of nil 'i = 0, 1. ... , t. 

Leml 

Lemma 1 Let nt, t E I+, be a compact metric space and consider the countable collection and c 

B/ = Ho X HI X ..• x H t x ntH x nt+2 x "', t E I+. Then, Ft = u(Bt ). Further, Bt can 
be assumed to be a partition oj n. Wn n. 

Since 

Consider the set, St {w: kt(w) i= kY(w)}, and its subset, Si = {w: Ilkt'(w) - k[(w) II > €}, 

t; E I+. Both sets are Ft-measurable by virtue of the {Ft)-adaptability of optimal programs. Lenu. 

We would like to ensure that v(fl\Si) > 0 for each t E I+ so that we are assured a set Under 

of states of strictly positive measure on which to manipulate the value-loss process. This 

necessitates a "reachability" restriction on initial stocks. Clearly, in non-stationary models, 
 Unforl 
initial stocks must satisfy some reachability condition if the late turnpike property is to that l/ 
obtain.8 Our definition of reachability is a modification of the expansibility notion that we intwrsl 
can reach one initial stock from another in finite time for some realizations in fl. Since what realiza 
transpires over a finite horizon may be ignored in analyzing the asymptotic behaviour of (thrau 
optimal programs, in effect we require that initial stocks coincide for these realizations. is, ther 

proper 

Definition 1 Given s, y E l, s :$ y v-a.s., consider the Fo-measurable set, t..(s, y) = {w : set of t 

s(w) = y(w)}. The initial stocky is reachable Jrom s iJv(t..(s,y)) > O. There 
propen 

Note that reachability, while requiring that the initial stocks agree on some set of strictly mutual 
positive measure, however small, places no restriction on how much they diverge on the 
complement of that set. That is, apart from strict positivity, the v-measure of t..(s, y) is not E 

13precise function of reachability in the proof of the late turnpike property.is to bound thevalue­
loss process (McKenzie [22]). Reachability is put towards the same end in our framework, albeit somewhat 
tangentially. By facilitating the construction of a value-loss process that is a martingale, it indirectly bounds 
it in expectation. 

12 
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limited ill any manrH:l'. Of course, to avoid trivialities, 1/(1.,:1(8, y)) < 1. In this sense, t;iw 
reachability restridioll It; not unduly stringent. The onorous task remains to demonstra.te 
that, starting from initial stocks that coincide on a set of pos; ti v(~ but less than full probability 

(Ft )- measure, optimal programs will be arbitrarily close for all sllfHciently large t E I+ on a 8(~t 
across of full probability measun~. 
[+, we 

J3efore proceeding, we record without proof a standard llionotonieity property of optimal.sfying 
programs (Majumdar and Zilcha [20]). Note that while mOllotonicity of optimal capital input.eorem 
programs also obtains in llOIH;onvex growth models (Mitra and Nyarko [27]), monotonieity)y thi$ 
of optimal consumption programs obtains only in the convex growth model. cterize 

Lemma 2 Consider any s, y E ,c, s S; y //-a.s. Under Ass'U.mptions (A.l)-(A.4), kt :~ kl! 
a.nd cl S; Cl all1wsl. sll.rely for each t E I+.llection 

Bt can 

We now show that reaehability and Lemma 2 implies that 1/(D\St,) > 0 for each t E 1'1" 

Since D\St s:;; D\S:, it will then follow that 1/( D\St) > 0 for each t E I+. 


11> E}, 
)grams. Lemma 3 Consider' inUial stocks s, y E ,c, s S; Y 1/-a.s., such I;/wt y is reachable from 8. 

~d a set Under Assumptions (A.l)-(A.4), ,6,(s, y) s:;; n\So ~ ... ~ D\8t ~ n\St+I' 
.s. This 
models, Unfortunately, it is not enough to just show that 1/(D\Sn > 0, t E I+. \Nhat we require is 
ty is to that 1/((n\S~+l) n Bn.d > 0 for each Bn,t E HI.. 'vVe refer to this property as the non-empty 
that we intersection propertyY It will permit us to let the value-loss process register a jump of 2fl, for 

Ice what realizations in S~+1 n En.1. while simultaneously manipulating realizations in (D\S:+1) n En,t 
Lviour of (through a suitable choice of adjustment costs) such that the martingale property holds. That 
.ons. is, there will be no conflict in reconciling the uniform sensitivity property with the martingale 

property (and hence uniformly bounded expectation) because each will be addressed over a 
set of strictly positive measure that is disjoint from the other. ,) = {w: 
There is no reason, however, why the collection Ht will exhibit the non-empty intersection 
property. In general, it will be made up of the following two non-empty sub-collections of 
mutually disjoint sets: If strictly 

re on the 
) 

,y) is not H't {B~,t E Bt 1/((D\'?:+1) n Bn,t) > O} (6) 

B~' = {B~,t E Bt 1/((D\S;+1) n Bn,t) = O} (7) .
the·value­

; somewhat 
9This terminology is for brevity only for in fact the property requires not only non-empty intersection of 

3tly bounds 
n\S~+l with each Bn .t E 8 t but also that this intersection have strictly positive measure. 
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'fIll' following lemma combimm LIlt! al)()ve 8ulH~oJlec(;ion:,; in ord(;w to dorive a cOlmtabh;" 
c;ollection the fl(lIHlmpty illtHl'8(~ction property, 

L(muua 4 FOT each t (~ I+, there a countable partition, C1, of n displaying the non~ 
(~1nptJl intersect'ion 7)'toperty, Farther, a(C, ) ~ Ft. 

Since Ct do(~s not generate Ft., we need to a,ugment this eoll(~ction while preserving the non~ 
empty intersection propt;rty, For this purpose, re-index sets in B~' such that. CnJ n B~,t QJ 

for each n E "Ve Gan now prove: 

Lemma 5 Consider'Dt = (Dn,t), D1/,t Cn,t U B~,t fOT Cn,t E: Ct" B~", E B~/, n E I+. Then 
'D/ displays tile non-emp/;y intersect'/:on p1'Operty and a(Vd ;;;:; Ft· 

The collection VI. is no/; It partition of n. Rather. finite intersections of the elements of'Dt , 

coupled with the operations of finite unions and set-theoretic: differences, yields Bt . With 
this we turn to !:t consideration of the acljus\;ment cost pararnei;ers which will playa vital role 
in ensuring that value-loss is a martingale. These parameters in any period t + 1· are defined 
over elements of the collection Dt , t E I+ \{O}, as follows: 

(8) 

(9)Dn,t 

where bt Ilk: kill + 1 > O. Since v((n\Si+l) n Cn,d > 0 for all Cn,t E Ct from Lemma 4, 
the cost parameters defined by (8) and (9) are well-defined and finite on Ct. Further, they 
are .rt+l-measurable by construction (since Cn,t E Ft C Ft+d, 

We now use the adjustment cost parameters to define the adjustment cost functions over 

realizations in n. Let: 

(t+l(W) (t+l(Dn,d, wE Cn,t, Dn,t = Cn,t U B~,t, nET+ (10) 

tt+l(W) = ~t+l (Dn,t), wE Cn,b Dn,t = Cn,t U B~,t> nET+ (11) 
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SirlC8 C, it,; fl, po,rtition of 0, the adjustment emit funetions are well-defined, By construction,
9,ble they a.r(~ (J~)"i;\dapted, Further, they assunw a cousl,ant value over each disjoint; set" en•l Ct. 

vVe now construct two complementary processes I;hat together make up the value-loss proc,::css, 
Consider first the real-valued stochastic process, (Xt ), which measures total cost (vnJue-loss 

non­
plus adjustment costs) incurred when «(kl, en) is the "turnpike" and the planner is off the 
turnpike on t,he path «(kt, en). In period t;, if the event is Si, then the planner stays off th(~ 
turnpike incurring a value-loss 1\11I H()\V(wer, if the event is O\Si, then the planner switches 

non- to the j;urnpike eradicating any value-loss but incurring an adjustment cost in the transition 
. = 0 which depends on the distance between the capital stocks. This motivates the follOWing 

definition for the (Xt ) process, where x(C) represent.s t.he indicator function of a set C: 

Then 	 (12) 

with the initial condition, Xo = f.1" A symmetric argument is used to construct the real­
)f VI., valued stochastic process (yt) which measures value-loss when «(kl, e:)) is the "turnpike" 
With and the planner is off the turnpike on the path ((kr, cf)): 

11 role 
dined (13) 

with the initial condition, Yo -ft. We now extend the definition of (Xt ) and (yt) over the 
.,. t d' )) . d tit 'T b 1 .'lll,erme 	late perlO s + 2' E.L+, Y ettmg:

(8) 

-f.1., uJ E 0 	 (14) 

(9) 	 We further let Vt+~ = V t . Then, Ft+~ = Ft., Now let T 2t, t = O,~, 1, q, 2, .. " denot.e the 
"extended" time-line and (Xr ), (Yr), the complementary processes over this new time-line. 
We can prove: 

nma4, 
:r, they Proposition 1 Under Assumptions (A.1)-(AA), (Xr) and (Yr) are (Fr)-martingale pro­

cesses on the time-line T which are uniformly bounded in expectation. 

ns oyer 

The economic intuition underlying the above result is as follows. Suppose that T + 1 is even­
valued so that it corresponds to the original time-line. If in this time period the planner 

(10) 	 decides to stay off the turnpike independent of which event obtains, then E[M:+1 M~+ll 
(11) 	 is a measure of the (expected) relative loss of value by not making a transition to the 
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I,urnpike. Recalling (5), this is just p.F'ur'ther l E'[Xr.j• 11IFr] is the (conditional) tot.al cost 
of following the strategy of staying off the turnpike if the event occurs and rnaking the 
transition to the I;urnpike if n\8~'H occurs. The adjustment cosl; ha"s been chosen such tlmt 
E[,Xr+d IF1J /1. wit.h probability one. Moreover, note by eonstmetion that r is odd, 

'rJ 
a(;1 

thi 

we have fixed Xr at p. for all w. Therefore, E[Xr+IIIFrJ = Xr with probability one, which is 
simply the ulartingale property. 

Culling together the properties of the abov(~ two processes, we have the desired value-loss 
process on t;he time-line r. 

Proposition 2 Under Assumptions (A.1)-(A.4), there exists a zero-mean (Fr)-martingale 
proces8 (VI') stich that: 

0, 	 T = 0, wEn 
T 2n + 1, 11, E Tj-l wEn 

Vr(w) = ~ 0,
{ T 211., n. I+\ to} wE n\Si 


> 2j1., T = 2n, n E I+\{O}, u) E S; 


The middle graph in Figure 1 is the pictorial analog of Proposition 2. For even-valued T 

corresponding to the original time-line, (Vr ) upcrosses [0,211'] from period T 1 to T on the 
set S~. On the other hand, on the set n\S~, the process (Vr ) remains below t.he horizontal 
axis and does not register any upcrossing across [O,2j1.] between periods T - 1 to r. 

The martingale and up crossing properties of (Vr ), which are fundamental to t.he resolution of 
the late turnpike property, are invariant to an affine transformation of value-loss. Consider 
any transformed process, (Vril<,fJ) , a,!3 E R-H' where Vril<,fJ (w) = !3Vr(w) + a for all wEn 
and T E I+. Any (Vr(>,tJ) can assume t.he role of a value-loss process since it is a martingale 
(and hence uniformly bounded in expectation) and registers an u pcrossing across the interval 
[a, 2p!3 + a] when there is more than (-divergence in capital st.ocks. A change in a adjusts 
t.he upper and lower limits of the upcrossing-band by the same amount. The positivity 
of !3 ensures that we upcross a band given some critical divergence in capital stocks; if !3 
was negative, a symmetric argument can be constructed where (Vril<,fJ) downcrosses the band 
[2j1.!3 +a, a] following a critical divergence. Note that the endpoints of the up crossing interval 
do not depend upon E. 

For any a,!3 E R.++, and wEn, define the process (K,;,fJ), K,;,fJ: n ---+ {O, 1}, T E L+, as: 

eiti 
in 
in 1 

of . 
in I 

Cf,tp 

cou 

To ( 
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f1'Om 

With 
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eapi\;, 
line), 
indep 
Borel· 
on wb 
HenCE 
strong 

Propc 
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0, T 0 
0, T E I+ \0, Vr~(W)? 2pf3 + Q: 

I, T E I+ \0, Vr~ (w) < 2J1.f3 + a 
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4 

This is predictable (i.e, f(;,~JJ is F r " l·nl(:\a."iurabl(~) and il indicates one UpCr08!;li.l1t~
least ,u::r088 [ct, '2/1/3+ 0:] of (\/;\.0) wlwn a chain of 1'8 is followod by a O. T'his is shown i:n thn 
19 the third graph in Figure 1. Not;c that in wha.\.(wer manner the process may oscillate, only 
1 that 

one Upcl'ossing is regisl;ored across the upcrossing interval over any chain of l's flank€!d on
) odd, 

either side by 	O's (foJ' instanef!, consider the chain of l's stretching from T = 2 to r
lich is 

in Figure 1). It may be noted that our definition of Kr(w) does not. correspond to those 
in standard probability texts (for instance. Billingsley [5, Theorem 35.3]) where a sequence 

le-loss of l's also indicat(~s the duration of an upcrossing. WA, on the contrary, are not interested 
in the duration (sinc'e it is fixed at one period by construction) but rather in the number 
of npcl'ossings over thH given interval (since each is indicative of more than E-divergence in 

tingaie 	 capit,al stocks); for the same l'(~ason, as opposed to martingale theory, we do not wish to 
count downcrossings over any intervaL 

'1'0 coum the number of upcrossings given wEn. for each T E I+ let: 

11ued T Given an arbitrary planning horizon N E I+ and state w, lei; U,N(W) = L~l Z~'''(w) repre­
on the sent the total 	number of up crossings over [a, 2f1,(J + a] of (V;~'''(w) on the time-line T. Our 

rizontal version of the Martingale Upcfossing result states: 

Lemma 6 For any E > 0 and N E I+! the expected ntl,mber of upcrossings across the interval ution of 
ia,2/1.,8+a] of the value-loss process (VrC\:,/J) over a planning horizon of length N +1 'is bounded~onsider 
fmm above independently of N.1wEn 

~rtingale 
With the help of Lemma 6, we can prove the late turnpike property as follows. Since an interval 
upcrossing over the given interval occurs if and only if there is more than E-divergence in : adjusts 
capital stocks. and this in turn transpires only for even-valued T (Le. our original time­ositivity 
line), Lemma 6 implies 2/j,,8L~11J(Sn :::; EVf;'" , Since value-loss is bounded in expectation cks; if (J 
independently of N, a passage to the limit as N - 00 yields L~llJ(Sn < 00, The first~he band 
Borel-Cantelli lemma (Billingsley [5, Theorem 4.3]) then ensures that the set of realizations r, interval 
on which capital stocks diverge by more than E infinitely often has zero probability measure. 
Hence, we have a resolution of the late turnpike property without the invocation of any 
strong uniformity restriction. 

Proposition 3 Consider initial stocks s, y E £, s :::; y almost surely such that y is reachable 
from s. Under Assumptions (A.l)-(AA), Ilk; k;ll- 0 almost surely as t -+ 00. 
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fj Conclusion 

In this paper, w(~ have (~xploit;ed the underlying stocha.'ltic primitive to obtain the late turn­ Pre 
pikf= propert,y in convex aggregate growth models without imposing any strong uniformity 
rest,riction. In this regard, our paper echoes the argument put forward in AmiI' [lJ that. 
growth models under uIlcertainty should not be simply extensions of the deterministic case 
with the stochastic el(~ment a.":I a mere addendum. Rather, uncertainty should add in an 
essential way to the results derivable from the certainty ca.":IO. A similar consideration had 
also motivated Chang [12] to put forth a expected value-loss as:mmption conditioned to th(~ 
particular dictates of a stochastic paradigm. .. II:, t 

L0111There remains the issue of whether our technique can be extended to rnultisector optimal 
growth models. As noted earlier, such models can display complicated dynamics for low 
vaJues of the discount factor. However, even for discount factors sufficiently close to unity, 
some form of uniformity is generally invoked to obtain the late turnpike property (Guerrero~ 
Luchtenberg [16J, McKenzie [22], MOlltrucchio [28]). It is an interesting question, therefore, 
whether critical manipulation of the stochastic enviromnent, along wit,h a suitable restriction 
of rcachability on initial stocks, permits a derivation of the late turnpike property for suffi­ It nc
ciently high values of the discount factor without recourse to strong uniformity restrictions. 

For ~ 
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,App(~ndix 

Peoof of Lemrna 1 Note first of all that;: lrn­
:lity 

,hat I3t (j(Ho) x (j('Hi) x ... x u(HI) x nt+l x Ot+2 x ... 


.- Eo X £1 X ... X £t X OtH X nt+2 x , .. 

an 


(J (£0 x £1 X ... X £/. x nt .1l x rtt+2 x ... ) = :Ft
had 
the 

therefore, follows that u(Bd ~ :Ft.. To prove the converse, we use a result from Yeh [33, 
Lemma 1.3] that u(7io) x u(Hd x ... x u(Ht) ~ u (Ho X Hi x ... x Ht ). Using this result: imal 

low 

CJ(Ho) X (J(7iJ) X ... x u(Ht) x Ot+l X nt+2 x ...
. nity, 


rero­ C u (Ho X 'Hi x ... x Ht,) x Ot+l x 0 1.+2 X .. . 


lfore, ~ u (Ho X Hi x ... X HI. x nl.+ i x Ot+2 X ... ) u{l3t ) 

ction 

suffi­
 It now follows that:Ft. = u (u(Ho) x u(Ht) x .,. x ueHt ) x nt+l x nt+2 x ... ) ~ u(Bt}. 
~ions. 

For i 0, 1, ... ,t, since ni is open and can be expressed as the countable union of the 
elements of Hi, it follows that Bt covers n. To show that Bt can be assumed to be a countable 
collection of mutually disjoint sets, define one possible countable partition, B: = (B~,t), as 

Bb,l: Bo,t, B~,t = Bn,t \ U.i1:-J Bi,t for n E I+ \ {OJ. Let:F{ denote the u-field generated 
by B~. For each wEn, and a set Bn,t E Bt containing w, by construction there is a set
B:d E B~ such that w E B~,t ~ Bn,t. Hence, it follows that :Ft ~ :F:. Conversely, because 
a, u-field is closed under set-theoretic difference (given closure under complementation and 
finite intersections) and countable unions, we have B~ ~:Ft. Hence,:F{ u{BD ~ :Ft. 6. 

Proof of Lemma 3 Suppose there exists F E :Fo, v(F) > 0, where F C 6.(s, y) but 
F n (Sl\So) 0. Then s(w) = y{w) but kg(w) =J kO(w) for all w E F. From Lemma 2, this 
implies k8(w) > kii(w) on F. From the Euler equations for i;= s,y: 

(15) 


Since cg(w) = s{w) - kg(w) > y(w) - kg(w) = c~(w) on F, it follows from (A.3) that: 

(16) 
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On the other ham!. from (A.2), fo(kii,WI) Jb(l~ILc;)l) almost surely. Further, ((k;, em is also 
opt.im.al HtarUng from initial stock fo(kl), WI ) [{)r otherwise its optimality will b(~ eontradict~ed, 
From tenulla 2 t.his implies ct ::: c1 alrnost surely. Using (A,a), it follows that: 

( 17) 

However. (Hi) and (17) are mutually contradiet;ory. Now, for any t E Ti.\O, suppose there 
Bexists Pt EFt., l)(Ft) > 0, where Ft C D\St-l but Ft n (D\Sd = 0, Repeating the above 
orargument once again generates a contradiction. f:::. 

Proof of Lemma 4 Consider the partition, Bt , of n, (J(Bt ), Recalling (6), Bt ,~ 

B; U B:'. Since Bt covers fl, the Sllb-collection B; is non-empty, Without loss of generality, 
it can be assumed that B~ and B;' are countably infinite. 10 We now define a partition. 
C1 = (en,I), of n by letting Cn,t B~,tUB~~,t, n E . By construction, v((n\S~+l)nCn,t) > 0 Sll 
for all Cn,l (~ Ct. Since Ct is a coarser partition of n than Bt , (J(Ct ) ~ Ft , f:::. 

(r~ 

Proof of Lemma 5 Since each Dn,t. E V t is a finite union of sets in Bt , it follows that 
V t C F t and, therefore, (J(V t ) ~ Ft. Conversely, it can be verified that each Bn,l E Bt can be 
derived from V t. through the operations of finite intersection, finite union, and set-theoretic 
diffcrence,1l Therefore, Bt C (J(Vt ), and hence, Ft ~ (J(Vt ). 6. 

SuIProof of Proposition 1 The proof is provided for (XT ) and is identical for (YT ) , (:FT )· 

deladaptability follows by construction. From Billingsley [5, Section 35], to establish the mar­
th,tingale property we need to demonstrate that for any F EFT: 

j' XT+l dv = rX T dv JW( F) (18) 
, F' JF 

The last equality follows from the fact that (XT ) at the «original" time-periods (Le, even 
values of T) is flanked by the constant value of p. at the "intermediate" time-periods (Le, 
odd values of T), We establish this result by means of Dynkin's 1[' ). theorem. Note that 

The(18) is trivially true if v(F) = 0, Therefore, without loss of generality, we restrict attention 
clos!to FT-measurable sets of strictly positive measure, We will also let T + 1 be even-valued so 
is er 

subsets of a compact metric space, S1. and (D\Si.) are LindelOf spaces (Munkres [29, Ch.4]) and, emp 
therefore, can be covered by a countable collection of open sets, S; = U~=lO~,t and D\S: = U~=lO~,t' B~ equa
and B~' can be taken to the basis sets generating (O~.t) and (O~~.t) respectively, 

llFor instance, suppose D 1•t = B~,t UBr,t UB~.t. By construction, there are distinct sets, Dm,tl Dn,t E 1Jt , Now 
of the form Dm,t B:n,t U B~,t U B:':',t and Dn,t = B~,t U Br,t U B~,t, Therefore, B~,t D1,t n Drn,t, now
B~/,t = D1,t n Dn,t, and B~,t = D1,t\ {Br.t U B2,t}, 
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(17) 

there 
:tbove' 

6. 

Bt 

rality, 
titian, 
t) > 0 

6. 

s that. 
can be 
eoretic 

6. 

(Fr)­
.e mar­

(18) 

;>,. even 
Ids (i.e. 
)te that 
;tention 
uued so 

1.4]) and, 
P~,t. B~ 

)n,t E Vt, 
,t n Dm,t, 

that it corresponds to the original time-line (t.he SlUM argllm(mt applies wit.h T even-vc.:tluod, 
so (Hl(;O again there it:J no 1.0i:lt:J of generality stemming from this assumption). 

We start with the collection 'Dr. Taking the expBctation of X r +1 over Dn,r = Cn,r U B~,r: 

(19) 

By construction, Cn,T n J3:i,r (j) and v((n\S~+l) n B:i,r) = O. Therefore, the extreme term 
OIl the right in (19) becomes: 

. (20) 

Substituting (20) in (19), and noting that by definition (r+l assumes the constant value of 
(r-H (Dn,r) on Cn,T) we have: 

(21) 

Substituting for (T+l(Dn,r) from (8) in (21), we observe that (18) is satisfied. Now let Or 
denote the collection of sets which are a countable union of disjoint sets in 'Dr. For any 
Ob U~lDj,r E Or1 k E 

(22) 

Therefore, (18) holds for all sets in Or. Also note that Or constitutes a 1r-system, i.e. it is 
closed under finite intersections. Given any Ok,T) Om,r E Or, one possibility is Ok,r n Om,r 
is empty, in which case (18) holds trivially. The other possibility is that Ok,r n Om,r is non­
empty, and is, therefore, a countable collection of disjoint sets in 'Dr; in this case a string of 
equalities as in (22) establishes (18). 

Now consider the collection, A, of all F-measurable subsets of n for which (18) holds. We 
now show that A constitutes a A-system. First of all note that n E A, given that n is open 
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in the product topology which general;etl:F. Second. A il> elosm..lllnder proper differences. 'To 
verify. consider 1"", G A such that G c j:'. Since F """ (F\CJ) u G. the sllbt;ractiw~ property 
of probabilit.v meaSllrf'S yield::;: 

1 
Third. ;\ is closed under monotone limits. To verify, consider a sequence (Fn) of (' 

measurable S(>,ts and F E :F such that Fn T F. Then 0 :::; X(Fn) T X(F).12 Using the I~ 
Monotone Convergence t.heofBm and the sequential continuity from below of probability f( 
measures (Billingsley [5, 'I'heofem 16.2, Theorem 2.1]), it follows that: w 

VI 

(24) 

This indicatBs closure under monotone limits. Note that OT c A since sets in OT satisfy (18) 
and are F-measurable. From Dynkin's 1f -,\ theorem, <J(OT) ~ A. The martingale property 
now follows, since an argument similar to that in Lemma 5 establishes that <J( OT) = a(Dr) """ It 
:FT' To establish the bound on the expectation of (XT), note that since Sl E :FT, we have 
f(1 XT;-l du = IW(Sl) = 1'" 6 

Proof of Proposition 2 Let the value-loss process (VT ) be d(~fined as: 

(25) 
Al 

0. 13with the initial value, Vo = If T is odd, then by construction, V.,. = O. Now suppose thai; 
T is even. If w E 8~, then V.,.(w) M:(w) + A1:;!(w) > 2",. On the other hand, if wE (Sl\8;), 
then V.,.(w) OT(W)[(T(W) + ~.,.(w)J < O. Further, as the sum of (:F.,.}-martingales (X.,.) and 
(YT ) with means 11, and -It respectively, (V.,.) is a zero-mean (Fr)-martingale. 6 

Proof of Lemma 6 Consider any (V.,.Q,,6), a.,fJ E R++. For arbitrary N E Lj- and any 
w E Sl. on the time-line y: 

Co 

12Fix E > O. If w <f. F, then w <f. F)1 for all n and hence X(F) X(Fn.) 0 < E for all n. If w E F, t.hen 
there exists rn E I+ such that w E Fn for all 71, ? m and hence X(F) X(Fn} = 0 < E for all 71, ? rn. 

13Since our time line starts at zero, fixing the initial value Va = 0 implies that we ignore a potential 
deviation in capital stocks by more than E in the initial period. But ignoring one possibl(~ deviation in period 
o is inconsequential given our concern with the long run behaviour of optimal programs. 
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N 

To 	 L (V~(t,O 
!rty 1'=1 

N N 

~,- L ]{~,IJ (V:,tJ - V:~) + (26) 
1'",,1 

The refer(1flc(>' to the argument, w, is suppressed for notational ea.sc. Now consider an up· 
F· crossing represented by a chain of 1 's flanked by O's: K;:;{3 = 0, K;::~l :;:::; ... ;:::;: K;:,{3 1, 
the J(~.fl = O. Note by construction that \~~t,tJ ;::: 2/1,{3 + Q' and V~,fl = a: (where the latter 

ility 	 follows from the fact that, with the exception of r = 0, K:;,{3 = 0 only for odd~valued r 
which succeed an up crossing and never at any even· valued r; further, at any odd-valued If, 
value-loss takes the constant value of 0:). Therefore: 

(24) 
n

L K~,{3 (V,G',,6 - Vr~) = v",,{3 - v.o:,{3 > 2//3 	 (27)n 1"t], " 

(18) r=m+1 

lerty 
r) = It now follows that if the number of up crossings are equal to UN for the given w, then: 
have 

L
N 

K~,{3 (Vr",,{3 - Vr~) > 2,1,/3UN 	 (28) 
r""l 

(25) 
Also note from the martingale property of (V"',.6) and the predictability of K:;'.6 that:r

that 
N 

\S;), L J(1 - K':'.6) (\lrG',{3 - vrali) dv = 
. and 1'=1 

6. 	 N

L J(1- K:;,{3) E [VrG',{3 - v:li II Ft-l] dv - 0 (29) 
l any 1'=1 

Combining (26), (28) and (29) yields: 

" then 

tentiaJ 
period 

The result follows by noting that the expectation of Vf1',6 is bounded from above by 0:. 6. 
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Proof of' Proposition 3 Revert to Mw original time-line (i.e. even-valued r) since tlH~ 
. bi Z'(t f1 1 I" " d t 1 2 "d t' " 1'" t 1 11 I'~ 1varia ,'e ,jt' on Ym tnne peno s , " ... ,an no' 111 peno(::;; 2' 2'·· .. '1lrt ).(';1', 

note that an upcrossing t.akes place over [0:,2/),fJ + a] if and only if there is more t.han e­
divergenc() in capital stocks, i.e. Z:~J3 = 1 if and only if X{Sn 1. From (30), and the fad 
t.hat EUiv E E~l Zf,/J = E~I v( Sf) I we can conclude that.: 

N N 


2p.!3 L /1(St) = 2p./3.1 L X(S;)dv 

t"~l t=l 

N 
(31)2p,/3 .I t; Z~,/3dv = 2/1,/3.1 Uivdv :; f V:;,/3 dv 

Since the expectation of V:;J:J is bounded from above independently of N, Jetting N - 00 

in (31) yields v{S:) < 00. An application of the first Borel-Cant~lli lemma then yields 

//( {w: lim sup/;->oo S:} ) = O. 6. 
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