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1 Introduction

Much research in empirical ;'nd theoretical econometrics has been centered around the esti-
| mation and testing of various functions such as regression functions (e.g., conditional mean
~ and variance) and density functions. A traditional approach to studying these functions has
been to first impose a parametric functional form and then proceed with the estimation and
testing of interest. A major disadvantage of this approach is that the econometric analysis
may not be robust to the slight data inconsistency with the particular parametric specifica-
tion and this may lead to erroneous conclusions. In view of these problems, in the last five
decades a vast amount of literature has appeared on the nonparametric and semiparametric
approaches to econometrics, e.g., see the books by Hérdle (1990). Fan and Gijbels (1996),
and Pagan and Ullah (1999). The basic point in the nonparametric approach to econometrics
is to realize that, in many instances, one is attempting to estimate an expectation of one
variable, y, conditional upon others, z. This identification directs attention to the need to
be able to estimate the conditional mean of y given z from the data y, and z,, t = 1,...,n.
A nonparametric estifnate of this conditional mean simply follows as a weighted average
Y-, w(zy, )y, where w(z,, ) are a set of weights that depend upon the distance of z; from
the poiﬁf z at which the conditional expectation is to be evaluated.

Based on these nonparametric estimation techniques of the conditional expectations, in
recent years a rich literature has evolved on the consistent model specification tests in econo-
metrics. For example, varibus test statistics for testing a parametric functional form have
been proposed by Bierens (1982), Ullah (1985), Robinson (1989), Eubank and Spiegelman
(1990), Yatchew (1992), Wooldridge (1992), Gozalo (1993), Hirdle and Mammen (1993),
Hong and White (1995), Zheng (1996), Bierens and Ploberger (1997), and Li and Wang
(1998). Also, see Ullah and Vinod (1993), Whang and Andrews (1993), Delgado and Sten-
gos (1994), Lewbel (1993, 1995), Ait-Sahalia et al (1994), Fan and Li (1996), Lavergne and
Vuong (1996), and Linton and Gozalo (1997) for testing problems related to insignificance of
regressors, non-nested hypothesis, semiparametric versus nonparametric regression models,
among others. Most of these tests, especially the test for a parametric specification, are
developed under the following gobdness of fit measures: (i) compare the expected values

of the squared error under the null and alternative hypotheses (e.g., Ullah (1985) type F
- statistic), (ii) calculate the expected value of the squared distance between the null and
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alternative model specifications (e.g., Hiirdle and Mammen (1993), Ullah and Vinod (1993),
Ait-Sahalia (1994)), and (iii) calculate the expected value of the product of the error under
the null with the model specflied under the alternative (e.g., conditional moment tests of
Bierens (1982), Zheng (1996), Fan and Li (1996), and Li and Wang (1998). All these three
alternative goodness of fit measures are equal to zero under the null hypothesis of correct
specification. For details, see Pagan and Ullah (1999). |

We note here that the asymptotic as well as the simulation based finite sample proper-
ties of the most of the above mentioned test statistics have been extensively analyzed for
the cross sectional models with independent data. However, not ruch is known about the
asymptotic as well as the small sample performance of these test statistics for the case of
time series models with weak dependent data, although see the recent works of Chen and
Fan (1999), Hjellvik and Tjestheim (1995, 1998), Hjellvik et al (1999), Kreiss et al (1998),
Berg and Li (1998) and a very important contribution by Li (1999) where he develops the
asymptotic theory results of Li-Wang-Zheng (LWZ) test under the goodness of fit measure
(iii). The modest goal of this paper is to conduct an extensive monte carlo study to analyze
the size and power properties of two kernel based tests for time series models. One of them
is the bootstrap version of Ullah-type goodness of fit test (i) due to Cai, Fan, and Yao (2000,
henceforth CFY), and another is the nonparametric conditional moment goodness of fit test
(iii) of LWZ. We examine the bootstrap performances of these two goodness of fit tests be-
cause of the asymptotic validity results of using bootstrap methods for these statistics due to
CFY (2000) and Berg and Li (1998). Berg and Li (1998) also support the better performance
of LWZ over the Hérdle and Mammen (1993) type tests considered for time series data in
Hjellvik and Tjgstheim (1995, 1998), Hjellvik et al (1999), and Kreiss et al (1998). For the
purpose of our simulation study we consider the testing of linearity against a large class of
nonlinear time series models which include threshold autoregressive, bilinear, exponentiai
autoregressive models, smooth'transition autoregressive models, GARCH models, and var-
ious nonlinear autoregressive and moving average models. Both naive bootstrap and wild
bootstrap procedures are used for our analysis. We also compare the bootstrap results with
the results using the asymptotic distribution for LWZ test.

The plan of the paper is as follows. In Section 2, we present the nonparametric kernel

regression estimators and the tests of CFY and LWZ based on them. Then in Section 3, we




esent the monte carlo results. Finally, Section 4 gives conclusions.

b

9 Nonparametric regression and specification testing

2.1 Nonparametric regression

Let {yt, z;}.t = 1,...,n, be stochastic processes, where y; is a scalar and z, = (zn,...,%w«)

s a1 x k vector which may contain the lagged values of 3. Consider the regression model

Yo = m(z) + (1)

where m(x¢) = E (y]z,) is the true but unknown regression function and u, is the error term
uch that E(u|z,) = 0 and Var(w|z,) = o>

If m(z,) = g(x¢, 6) is a correctly specified family of parametric regression functions then
y, = g(x:,6) + w is a correct model and, in this case, one can construct a consistent least
' squares (LS) estimator of m(z,) given by g(z;, 6), where 6 is the LS estimator of the parameter

'§. This 4 is obtained by minimizing
Sul =% (u - 9(z.6)) (2)

with respect to 6. For example, if g(z,,8) = X0 is linear, we can obtain the LS estimator of
§ as

§=(X'X)"' XYy, (3
and the predicted residuals 4, = y, — m(z,), where X is an n x (k + 1) matrix generated by
X, = (1 z:) and

s of M(ze) = Xeb = X(X'X) ' X'y. | (4)
itial »—f In general, if the parametric regression g(z, ) is incorrect or the form of m(z,) is unknown
var- " “then g(z., 5) may not be a consistent estimator of m(z,).

wild For this case, an alternative approach to estimate the unknown m(z;) is to use the
vith | consistent nonparametric kernel regression estimator which is essentially a local constant LS ’

(LCLS) estimator. To obtain this estimator take Tavlor series expansion of m(z,) around r

el so that

Yy = m(x)+u * (5

= m(z) +
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where v, = (z, ~ z)m®(z) + }(z, - 2)*m@(z) + -+ 4 u, and m*(z) represents the s-th
derivative of m(z) at z; = z. TheLLCLS estimator can then be derived by minimizing

&

Z v Kee - i(ys —m(z))*Kiz (6)

tes] =l :
with respect to constant m(z), where Ky, = K (27°%) is a decreasing function of the distances
of the regressor vector &, from the point z = (z,,...,24), and b — 0 as n — oc is the
window width (smoothing parameter) which determines how rapidly the weights decrease as

the distance of z, from 2z increases. The LCLS estimator so estimated is

« — }::;l ytha: s s\ —1les r
ife) = SR = (K@) K )y @

where K (z) is the n x n diagonal matrix with the diagonal elements (Kiz,...,Kn:) and i is

an n x 1 column vector of unit elements. The estimator 7 (z) is due to Nadaraya (1964) and 1

Watson (1964) (NW) who derived this in an alternative way. Generally /() is calculated

at the data points x;, in which case we can write the leave-one out estimator as

ﬁ*?,(:z:) = Z;:l,g:;&g yt‘Kt‘t (8)
Zgzl,z*;éz Kye '

where Ky, = K (%72). The assumption that h — 0 as n — oo gives z, —z = O(h) — 0
~ and hence Ev, — 0 as n — oo. Thus the estimator m(z) will be consistent under certain
‘smoothing conditions on h, K, and m(z). In small samples however Ev, # 0 so m(x) will be
a biased estimator, see Pagan and Ullah (1999) for details on asymptotic and small sample
| properties.

~ An estimator which has a better small sample bias and hence the mean square error

(MSE) behavior is the local linear LS (LLLS) estimator due to Stone (1977) and Cleveland
(1979), also see Fan and Gijbels (1996) and Ruppert and Wand (1994) for their properties.

In the LLLS estimator we take first order Taylor-Series expansion of m(z,) around z so that

Y = mx) +u =m(z) + (z, — z)mP(z) + v -k (9)
= o) +z6(z) + v
= X;é(:r) +
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s-th where 6(z) = [a(z) B(z)] with a(z) = m(z) ~ z0(z) and B(z) = mM"(z). The LLLS

estimator of 6(z) is then ob¥ained by minimizing

" " o
©) S K = S (4~ Xeb(2)) Kee (10)
1223 pexl
fces and it is given by
the { 5(z) = (X'K(2)X)" ' X'K(2)y. (11)
e ' The LLLS estimator of a(z) and 8(z) can be calculated as a(z) = [10]6(z) and ﬁ(;z:) =
[0 1)5(z). This gives
o | m(z) = (1 2)b(x) = &(z) + zB(z). (12)

. | Obviously when X =1, 5(z) reduces to the NW’s LCLS estimator (z).
1S ‘ : An estimator of the LLLS is the local polynomial LS (LPLS) estimators, see Fan and

I | - Gijbels (1996). In fact one can obtain the local estimators of a general nonlinear model
ted g(z¢, 8) by minimizing
> Tk - 9len 8P Kex (13)
; t=1
(®) | with respect to &(z). For g(z:,6(z)) = X.6(z) we get the LLLS in (11). Further when
0 | h =o00,K,; = K(0)is a constant so that the minimization of K(0) Y [y — g(z:, 6(z))}? is
, ‘
i the same as the minimization of 3_ [y — g(z¢, 6(z))]?, that is the LLS becomes the global LS
n
b estimator given by (3). , '
e .
i The LLLS estimator in (11) can also be interpreted as the estimator of the functional
le A
coefficient (varying coefficient) linear regression model
or , w = m(z)+w (14)
d 1 = X.5(z) + u
5. B : ~
" {  where §(x,) is approximated locally by a constant 6(x;) ~ &(z). The minimization of 3 v K.,

with respect to &(z) then gives the LLLS estimator in (11), which can be interpreted as the
LC varying coefficient estimator. An extension of this is to consider the linear approximation
6(z¢) = 6(z) + D(z)(z; — z)’ where D(z) = -8—2-%‘-1 evaluated at z; = z. In this case
v = mz)+u = X,(z,) + (15)
~ X,6(z) + X D(z)(z; — z) + w ‘
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= Xi6(z) + X © (2 — x)vecD(z) + w
= XT6"(z) +w

where X! = [X, X, O (z, — 2)], 6*(z) = [6'(z) (vecD(z))]', and © represents the Hadamaxd
product. The LL varying coefficient or LPLS estimator of 6"(x) can then be obtained by
minimizing

> lw — X;6"(2)) Kes (16)

t=}
with respect to §*(x) as

5 (@) = (X"K(@)X") " X" K(@)y. (17)
From this :5;(:5) = [I 0]:5:‘ (z), and hence
F(2) =120 (2) = [1 2)b(z). | (18)
The above idea can be extended to the situations where £, = (x; z,;) such that

E(&M&) =m(§) = m(z, z) = Xi6(z), (19)

where the coefficients are varying with respect to only a subset of &; 2z, is 1 x l and & is
1 x p, p = k + |. Examples of these include random coefficient model (Raj and Ullah 1981,
Granger and Terasvirta 1993), exponential autoregressive model (Haggan and Ozaki 1981),
and threshold autoregressive model (Tong 1990), also see Section 3. To estimate 6(z;) we can
again do a local constant approximation 6(z;) ~ §(z) and then minimize ¥ [y, — X;6(2)* K

with respect to 6(z), where K, = K(#:%). This gives the LC varying coefficient estimator
5(z) = (X'K(2)X) ' X'K(2)y (20)

where K(z) is a diagonal matrix of K,,,t=1,...,n.
CFY (2000) consider a local linear approximation 8(z,) ~ 6(z) + D(z)(z — z)'. The LL
varying coefficient estimator of CFY is then obtained by minimizing

n - n

D e = Xeb(2)*Kee = )l — Xib(2) ~ (X © (2 — 2))vecD(2)]’Ke:  (21)

t=1 t=1
n

= Yl - X8 (K

t=1

Cc
alt

Z
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ith respect to 6*(z) = [6(z)' (veeD(z))'] where X;* = [X; X (2 ~ z)]. This gives

& o !
5 (2) = (XK(2)X™) X" K(2), (22)
d = -
; and §(z) = [I 0]6 (z). Hence
‘ m () = [1 z]8(2). (23)
) When z = z, (20) and (22) reduce to the LLLS estimator &(z) in (11) and the LL vary-
ing coefficient estimator § (z) in (17), respectively. For the asymptotic properties of these
varying coefficient estimators, see CFY (2000).
)
2.2  Nonparametric tests for functional forms
Consider the problem of testing a specified parametric model against a nonparametric (NP)
} alternative ; "
H, : E(yl&) = 9(&,6)
) 1 Hy : E(yl&) = m(&).
5 In particular, if we are to test for neglected nonlinearity in the regression models, set 9(&,6) =

£:6. Then under Hy, the process {y} is linear in mean conditional on &
Ho : PIE(wilé) = &67] = 1 for some 6" € RP. ’ (24)
The alternative of interest is the negation of the null, that is,
H, : PI[E(y:|&) = {ft&] < 1 for all § € RP. | | (25)

When the alternative is true, a‘].inear model is said to suffer from ‘neglected nonlinearity’.
Note that &, = (z, z;) = z, when z, = x,.’

Using the nonparametric estimation technique to construct consistent model specification
tests was first suggested by Ullah (1985). The idea is to compare the parametric residual
sum of squares (RSSF), 3”42, 4, = y, — g(£, §) with the nonparametric RSS (RSS¥F), 3~ @2,
where iy = y, — M (&:). The test statistic is '

T = (RSS;;SISQSS”P) _X u;—% uf\, (26)
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or simply 7" = (RS8P~ RSSNP), We reject the null hypothesis when 7 is large. 4/nT hasa
degenerate distribution under Hy. Yatchew (1992) avoids this degeneracy by splitting sarnple

of n into ny and ny and caleulating 342 based on ny observations and Y 47 based om n,

observations. Lee (1992) uses density weighted residuals and compares _ w, i with ¥ @7,

Fan and Li (1995) uses different normalizing factor and show the asymptotic normality of

nh?/*T, .

Another way is to use the bootstrap method as suggested by CFY (2000). The bootstrap
allows the implementation of (26) and it involves the following steps to evaluate p-values of
the test:

1. Generate the bootstrap residuals {u} from the centered NP residuals (i, i) where
d=n"1'Y 1, and define ¥} = &5 + u;.

2. Construct the bootstrap sample {y; &}7, and calculate the bootstrap test statistic
T* using, for the sake of simplicity, the same h used in estimation with the original

sample.

3. Repeat the above two steps B‘ times and use the empirical distribution of T* as the
null distribution of T. Reject the null hypothesis Hy when T is greater than the upper
o point of the conditional distribution of T* given {y; &}i.;. The p-value of the test
is simply the relative frequency of the event {T"* > T’} in the bootstrap resamples.

Kreiss et al (1998) provide more detailed reasons why the bootstrap works in general
nonparametric regression setting. They proved that asymptotically the conditional distri-
bution of the bootstrap test statistic is indeed the distribution of the test statistic under
the null hypothesis. As mentioned by CFY (2000) it may be proved that the similar result
holds for T as long as é converges to § at the rate n=/2. We use both naive bootstrap (Efron
1979) and wild bootstrap (Wu 1986, Liu 1988). The wild bootstrap method preserves the

- conditional heteroskedasticity in the original residuals. For wild bootstrap, see also Shao
“and Tu (1995, p. 292), Hardle (1990, p. 247), or Li and Wang (1998, p. 150).

An intuitive and simple test of the parametric specification follows from the combined

regression

Ye = 9(&:, 6) + my (&) +

(27)
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where m,(£,) = E(wlé,) and &, = v, ~ E(w€) such that E(eé) = 0. The test for the
parametric specification is shen the conditional moment test for my(€) = E(wlé) = 0,
which is identical to testing

Elu E(udér) f(6e)] = (28)
where f(£) is the density of €. A sample estimator of the left hand side of (28) is
] 1o ~ - >
L = - Euaﬁ(mlfe)f(ﬁz) (29)
_ n n . ,K,
n(n - £§1 g'g:,i';a tathy Ree

where E(|&) = 3,4t Kee/ 3 p4 Kee from (8) and f(&) = (nh?)~ DI Km is the
kernel density estimator; Ky, = K (51%‘53). The asymptotic test statistic is then given by

1
L= nhpﬂ% ~ N(0,1) - (30)

where w = 2(n(n — 1)hP)' 37, 3", 424% K7, is a consistent estimator of the asymptotic

variance of nhP/2L', see Zheng (1996), Fan and Li (1996), Li and Wang (1998), Fan and

Ullah (1999), and Rahman and Ullah (1999), for details. Also, see Pagan and. Ullah (1999,
Ch. 3) and Ullah (1999) for the relationship of this test statistic with other nonparametric
specification tests. Based on the asymptotic results of Fan and Li (1996, 1997, 1999) and Li
(1999) for dependent data, Berg and Li (1998) establish the asymptotic validity of using the

wild bootstrap method for L for time-series.

3 Monte carlo

In this section we examine the finite sample properties of T and L especially with the
empirical null distributions being generated by the bootstrap method. Asymptotic critical
values are also used for L. To generate data we use the following models, all of which
have been used in the related literature. Most of them are univariate while there are some
multivariate situations. There are six blocks. The error term ¢, below is ¢.7.d. N(0, 1) unless
otherwise is indicated. The models will be referred by the name shown in parentheses in
bold.




BLOCK 1 (Lee, White, and Granger, 1993)

Linear (AR) -
Yo = 0.6y + & ‘
Linear AR with GARCH (AR/) AR
h = O-Gytml + £
n
hy = E(e}lye—1) = (1 - a = B) + ael_; + fhey B
Bilinear (BL) Bil
Ye = 0.7y 1602 + &
Threshold Autoregressive (TAR) i
v = O0%y-1+e  |pal <1
BL
= =03y +e |yl >1
Squ
Sign Nonlinear Autoregressive (SGIN)
. Exp
Yo = sign(ye-1) + & T
where sign{z) =1ifz > 0,0if z = 0, and —-1 if z < 0. The
Rational Nonlinear Autoregressive (NAR)
0.7 |y BL
=y
yt lyt.._ll + 2 t l
fron
BLOCK 2 (Lee, White, and Granger, 1993) Lin
MA(2) (M1)
Y = ¢ — 0.45;-1 + 0.35@-2 Lin
Heteroskedastic MA(2) (M2) |

y=¢ — 045,14 + 0.3¢,_0+ 0.56,6,_

Note that M2 is linear in conditional mean as the forecastable part of M2 is linear, and the

final term introduces heteroskedasticity.
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the

Nonlinear MA (M3)
> ,
I R 0.3ep.1 + 0.26¢0 + 0,46‘;‘;‘,@,18;%2 s 0,2553,,2

AR(2) (M4)
Yo = 0.4y, — 0.3y-2 + €

- Bilinear AR (M5)

yr = 0.4y-1 — 0.3y,-2 + 0.5y-160-1 + &0

| Bilincar ARMA (M)

Yo = 0.4yey — 0.3yu- + 0.5yp-160-1 + 0.8€01 + &1

BLOCK 3 (Lee, White, and Granger, 1993)
Square (SQ)
yo=1i +a
Ezxponential (EXP)
ye = exp(z¢) + a

These are bivariate models where z, = 0.6z,_, +£:, a. ~ N(0,5%),and a;, £, are independent.

BLOCK 4 (Zheng, 1996)

Five models with z; = (z;; Te2) are considered in this block. Let uy and u;; be drawn
from IN(0, 1). Two regressors z, and ., are defined as T, = uy; and 2,2 = (ua + ue)/V2.
Linear (Z1)

yu=1+zy +To+e

Linear with conditionally heteroskedastic error (Z1')

¥y = 1l4+zhy+z0046
h. = E(&|z,) = (1 + 22 +25)/3

Quadratic (Z2)

Y=1+zy+ Ly + T2t e

11




Concave (Z3)

= 14zy +$c2)1/3+€¢

Convez (Z2.4)

Y= (1+zy + 33:2)5;3 + €

BLOCK 5 (Cai, Fan, and Yao, 1999)

Ezponential AR (EXPAR)

o=
a) (Y1) =
02(?}:~1) =

Ey r~
Threshold AR (TAR)

W
ay(ye-2)
as(Yi—2)

&

@y (Ye-1)ye-1 + a2(ye-1)ye-2 + &

0.138 + (0.316 + 0.982y,,) exp(—3.89y7_,)
—~0.437 ~ (0.659 + 1.260y,_;) exp(—3.89y7_,)
IN(0, 0.2%)

= a1 (Ye-2)¥e + a2(y-2)Ye2 + €
= 0.4](ye—2 < 1) — 0.8 (y—2 > 6)
= —0.61(yp-2 < 1) + 0.2/ (y—2 > 1)
~ IN(0, 1)

BLOCK 6 (Terisvirta, Lin, and Granger, 1993)

Logistic smooth transition AR

(LSTAR)

‘yt = 1.8yt_1 - 1.061}:_2 + (002 - O.Qyt—wl + 0.79531:_2)F(yt_1) + &¢

Fyi—1) = [L+exp

{—100(y,—; — 0-02)}]-1

e, ~ IN(0,0.02%)

Ezponential smooth transition

AR (ESTAR)

Yo = 1.8y¢_1 — 1.063]‘“2 -+ (-D.gyg..l + 0.795y;~2)F(y¢,1) + €&
Plys) = [l - exp{-400052.,}]""
g, ~ IN(0,0.01%
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o estimate (3) and @, for the linear model, and (23) and 4, for the NP model, the
_information set used are £ =y, for Block i, € = (Y1 Ye-2)' for Blocks 2, 5, and 6, §; = 2,
sr Block 3, and £ == (4 z4) for Block 4.

For T, as suggested by CFY (2000), we select h using out-of-sample cross-validation,
et m and @ be two positive integers such that n > mQ. The basic idea is first to use Q)
ub-series of lengths n —~ gm (¢ = 1,...,Q) to estimate the coefficient functions &,(z) and
hen to compute the one-step forecast errors of the next segment of the time series of length
based on the estimated models. That is to choose h minimizing the average of the mean

-square forecast errors

Q
AMS(h) =" AMS,(h) (31):
=1 : ‘
‘where ‘
) 1 n~gm-+m -
AMSg(h) = — 3 [w = Xibg(2)]" (32)
t=n-—gm+l -

and Eq(n) are computed from the sample {y, &}/27". We use m = [0.1n], Q = 4, and the
Epanechinikov kernel K(z) = 2(1 — 29)1(Jz| < 1). We use a scalar ‘threshold variable’ z
(with ! = 1) for all models: z, = y,_, for Blocks 1, 2, and 6, z = z, for Block 3, and z = zy,
for Block 4. For Block 5, 2; = y,..; for EXPAR and z = y;-¢ for TAR.

For L, as in Li and Wang (1998, p. 154), we use a standard normal kernel. Note that § is
an 1 x p vector, and p = 1 for Blocks 1, 3 and p = 2 for Blocks 2, 4, 5, 6. Thus the smoothing

parameter h is chosen as h; = cg;n~"%/5 (4 = 1) for Blocks 1 and 3, and h; = c6:n~'/6 (i = 1,2)

“for Blocks 2, 4. 5, 6, where &; is the sample standard deviation of i-th element of . The three
values of ¢ = 0.5, 1, and 2 are used, and the corresponding estimated rejection probability
will be denoted as L.. In computing L, h* shown in (29) and (30) is replaced with []7_, he.
Test statistics are denoted as T* and L{, with the superscripts ¢ = A, B, W referring to the
“methods of obtaining the null distributions of the test statistics; asymptotics (i = A), naive
bootstrap (i = B), and wild bootstrap (i = W). Monte carlo experiments are conducted
“with 300 bootstrap resamples and 300 monte carlo replications.

Table 1 gives the estimated size of the tests for the data generating processes (DGP) which

- are linear in conditional mean. Table 1 reports the cases with the conditional homoskedastic
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errors. The 95% confidence interval of the estimated size is (0.025, 0.075) at 5% nominal
level of significance, and (0.066,40.134) at 10% nominal level of significance, since if the true

~ size is s (e.g., s = 0.05,0.10) the estimated size follows the asymptotic normal distribntion

with mean s and variance (1 — 5)/300 with 300 monte carlo replications. Due to the long
computing time for each simulation, only 300 replications are conducted and thus it must be
noted that the confidence intervals are rdther wide. The naive bootstrap CFY test T2 tends
to under-reject the null, while T% with wild bootstrap method tends to over-reject the null,
The size is often worse with n = 50, which may be due to an estimation of the bootstrap
DGP (23) to generate the bootstrap residuals {u} in the very small samples. While the two
bootstrap procedures work differently for the CFY test (7% and TW), they are very similar
for the LWZ test (L2 and L¥). Both bootstrap tests L5 and LY are generally better than
the asymptotic test L. Both bootstrap procedures work very well especially with ¢ = 0.5.
Lo is better than L, o which is better than Lg‘g. The size of L is quite sensitive to the choice
of ¢ and the bandwidth h. ,
Davidson and MacKinnon (1999) show that the size distortion of a bootstrap test is at

~1/2 smaller than that of the corresponding asymptotic test. A further

least of the order n
refinement, beyond n~'/2, of the order n~1/2 can be obtained when an asymptotically pivotal
statistic (whose limiting distribution is independent of unknown nuisance parameters) is used
for testing. Since L is asymptotically normal under the null, the bootstrap tests LB and LW
are more accurate than the asymptotic test L# by a full order of n~!. See Hall (1992) for
further discussion based on Edgeworth expansions on the extent of the refinements in other
contexts.

Table 2 gives the estimated size of the tests for the data generating processes (DGP)
which are linear in conditional mean with conditional heteroskedastic errors. For AR’, we
consider GARCH errors with five different parameter values: (a, B) = (0.5,0.0), (0.7,0.0),
(0.1,0.89), (0.3,0.69), and (0.5,0.49). The condition for the existence of the unconditional
fourth moment is 3a? + 228 + 8% < 1 (Bollerslev, 1986). Accordingly, the condition is
a<0.577if B =0; 8 <0890 if o = 0.1; 8 < 0.606 if & = 0.3; and § < 0.207 if 2 = 0.5.
Thus, for a given values of § or a + 3, the series becomes more leptokurtic as a increases.
Table 2 shows that with § = 0 fixed, the size distortion is larger with the larger o. With

a+ 3 = 0.99 fixed, the size distortion is larger also as a increases. The size distortion
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enerally gets worse as n increases. This is most apparent with LZ as the naive bootstrap

true oes not preserve the conditiontil heteroskedasticity in resampling.

tion ~Generally, as discussed in Lee et al (1993, p. 288), the conditional heteroskedasticity
long ill have one of two effects: either it will cause the size of a test to be incorrect while still
t be Wresulting in a test statistic bounded in probability under the null, or it will directly lead
mds [ {asymptotically) to rejection despite linearity in mean. The test statistic L is a conditional
mll. oment test based on the fact that E‘(ut]&) = 0 under the null hypothesis (24) which
brap ill then imply equation (28) for L. As this moment condition will hold even under the
two fpresence of the conditional heteroskedasticity (which can be shown by the law of iterated
ilar pectations), L should not have power to reject the null for the DGPs AR’ and Z1' which are
han  {linear in conditional mean with conditionally heteroskedastic errors. However, the results in
0.5. able 2 show that the size of LE is adversely affected by the conditional heteroskedasticity,
oice hich is more serious with a larger sample size.

! Two remedies may be considered: one may either (1) remove the effect of the conditional ’

s at ‘{heteroskedasticity or (2) remove the oonditional heteroskedasticity itself. The first is relevant

“her fto L whose size is adversely affected. The effect of the conditional heteroskedasticity can be
stal

sed

removed using a heteroskedasticity-consistent covariance matrix estimator or using the wild

LY {here. The results in Table 2 show that the LWZ test with the wild bootstrap LY generally

for {has the adequate size for the both DGPs AR’ and Z1".

her On the other hand, T is not a conditional moment test as it is not based on any moment
condition. T is constructed to compare the two residual sums of squares RSSF and RSS™.

iP) 1 As the alternative model to compute RSSNP is estimated by the functional coefficient (FC)

W€ 1 model (23), if the FC model absorbs some of the conditional heteroskedasticity the size of

0), | the CFY test T will be incorrect, which we may observe in Table 2. Note that the size
nal

{18

~distortion generally tends to get more severe as n increases especially for AR’. The use of
the wild boots‘trap reduces the size distortion but only by small margin. In this case one may
1.5 | attempt the second remedy by removing the conditional heteroskedasticity itself whenever
€s. | one is confidently able to specify the form of the conditional heteroskedasticity. However, use
ith | of misspecified conditional variance model in the procedure will again adversely affect the size

of the test. Furthermore, if the alternative is true, the fitted conditional heteroskedasticity

on
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‘bootstrap that preserves the heteroskedasticity in resampling. We use the wild bootstrap
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model can absorb some or even much of the neglected nonlinearity in conditional mean
model. Conceivably, this could pave adverse impact on the power of T Consideration of the
second remedy together with the wild bootstrap could raise issues that take us well beyond
the scope of the present study and their investigation is left for other work.

Table 3 presents the power of the tests T and L at 5% level. The results at 1% and
10% levels are available but not presented to save space. As the results obtained can be
considerably influenced by the choice of nonlinear models, we try to include as many diffexent
types of nonlinear models as possible, Neither T nor L is uniformly superior to the other.
T has good power for BL and ESTAR and has power comparable to L in other cases.

4 Conclusions

We have presented a unified framework for various nonparametric kernel regression estima-
tors, based on which we have considered two nonparametric tests for neglected nonlinearity
in regression models. Both naive bootstrap and wild bootstrap are used to generate the crit-
ical values together with the asymptotic distributions. T2 with the naive bootstrap tends
to under-reject the null, while T with wild bootstrap method tends to over-reject the null.
The bootstrap LWZ tests L? and LW are better than the asymptotic test LA. When the
errors are conditionally heteroskedastic the wild bootstrap for the LWZ test corrects the size
distortion: However, the use of the wild bootstrap for T% does not correct the size problem.
This difference of the two statistics is due to the different construction of the test statistics:
L is constructed based on a moment condition implying linearity in conditional mean, while
T is constructed to detect any possible forecast improvement via a nonparametric model over
a linear model. Hence, L can be robustified to the presence of conditional heteroskedasticy
in testing for the linearity in conditional mean, while 7' will have power to detect neglected

nonlinearity in conditional mean as well as the conditional heteroskedasticity.
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TABLE 1. Size

Panel A 5% nominal level of fgnificance

Block DGP n

Tl;?

™

Lo

e
Lgs Ly Lfg

I+
Lis

LW L3, L LY,

"1 AR 50
: 100
200

300

037
023
040
037

127
087
097
073

023

017

023

033
017
033
033

043
017

040

007
.003

007

.010

030
020
020
027

033
023
023
020

000
.000
.000
000

.003
007
003
010

007
.003
000
010

2 M1l 50
100
200
300

027
007
023
027

170
113
100
093

.030

.030

053

033

033
033
053
037

037
040
053
037

013

.010
.013
020

020
023
033
020

027
020
030
.023

.000
.000
000
000

1000
000
000
007

000
003
000
010

2 M4 50
100
200
300

003
010
020
017

J13
100

097

110

023
020
023
033

027
023
030
040

023
023
027
033

010
010
017

007

013
017
027
013

017
013
017
013

000
000
.000
000

.000
.007
017
003

003
007
017

003

4 21 50
100
200
300

023
.007
023
017

117
077
.097
.080

033
.020
.027
017

073
050
.040
037

073
.050
050

030

003
017
.010
.003

.040
057

047

037

.047
.070
.037
030

.000
.000
.003-
.000

030
063
063
040

033
060
.050
.047

Panel B 10% nominal level

of significance

Block DGP n

TB

TW

A
LO.S

g
LO.S

r W
Lys

A
Lio

H
L’l.O

144
L1y

A
LZ.O

B
L2.O

-
L3y

1 AR 50
100
200
300

080
053
.060
067

193
147
143
143

.040
023
.053

.033 °

083
.063
090
070

073
.060
.083
077

.020
.020
.017
013

057
.057
.060
.047

.053
.047
050
.050

000
.000
.000

.000

027
027
.020
.040

.023.
027
.023
.040

2 M1l 50
100
200
300

.050
037
.037
047

.220
77
153
1567

.067

.053

077

.050

.087

073
090
.080

093
073
.090
073

.020
023
.033
.027

043
057
.063
057

.043
.060
053
.050

000
.000
.000
.000

.013
017

.003
023

007

.020
017
.023

2 M4 50
100
200
300

013
037
047
.033

163
150
157
187

.040
.030
033
057

.060

043
057
073

.053
057
.050
067

013
.013
.023
.013

.043
.033
.040
.043

.040
.037
043
033

.000
.003
020

000

010
.013
.020
013

.010
.010
020
.020

4 Z1 50
100
200
300

.053

.030
043
.040

190
.160
170
.147

.080
047
.050
037

137

130

100

083

130
130
103
073

.010
027
.017
010

.130

110
.080
.090

123
103
.087
.090

.000
.000
.003
.000

077

113

120
.093

107
110
107
.110

Notes: Test statistics are denoted as T* and L}, with the superscripts i = A, B,W refer to the
methods of obtaining the null distributions of the test statistics; using the asymptotics (A). naive
bootstrap {B), and wild bootstrap (W). The number of bootstrap resamples = 300 and number of

monte carlo replications = 300.




TABLE 2. Size under conditional heteroskedasticity
Panel A 5% nominal kvel of signfficance — e
Block DGP___ n| TP TW Lf, Lgs Lys Lo LYo Lio Ljy Lip. L3
1 AR’ 501.183 .230 .040 .067 .043 .013 063 .040 003 .043 .017
a=.5 100].260 .290 .030 .063 .040 .013 .067 .043 .000 .067 .027 Bloc
B=0 20.|.417 .373 .040 .067 .043 .020 .070 .033 .003 .057 .020 1
1 AR/ 57 1.240 .337 .020 .047 .023 .020 .053 .023 .000 .040 .013
a=.7 107|.403 .430 .047 .067 .047 .040 .087 .047 .027 .090 .037 o
g=.0 201].610 .520 .063 .127 .060 .060 .163 .063 .037 .177 .043 1
1 AR/ 5)1.043 .150 .023 .037 .030 .010 .033 .027 .000 .003 .010
a=1 100].063 .123 .010 .027 020 .003 .020 .017 .000 .013 .013 o
=.890 .20)|.073 .110 .020 .030 .027 .007 .020 .017 .000 .023 .010 1
1 AR’ oy .137 217 007 .027 .023 .003 .027 .013 .000 .007 .003
a=.3 100].233 .273 .043 .073 .043 .037 .083 .043 .003 .083 .030 e
=.69 20)|.427 .303 .080 .123 .077 .063 .127 .060 .023 .140 .053 1
1 AR’ 5)].167 .273 .043 .060 .040 .023 .060 .030 .000 .040 .017
a=.5 10)].380 .323 .053 .103 .043 .030 .090 .033 .007 .087 .017 I
f=.49 20)|.683 .527 .103 .170 .073 .093 .223 .083 .040 .253 .063 2
4 Z1 9y |.267 387 .030 .063 .043 .020 .103 .043 .010 .117 .050
100 | .410 .360 .047 080 .060 .027 .137 .060 .013 .170 .070 —
200} .607 .350 .047 .083 .047 .020 .090 .040 .013 .163 .050 2
Panel B 10% nominal level of significance - e
Block DGP n| T° TW L§s Lgs Los Lig LYo Ly Ly Ly L3 )
1 AR/ 201.233 310 .063 .127 .087 .037 .093 .073 .003 .070 .037
a=.5 110|377 .370 .050 .097 .070 .037 .117 .067 .010 .110 .050 e
g=.0 20|.473 .453 .067 .123 .110 .037 .127 .097 .020 .110 .060
1 AR’ 8 |.330 .407 .043 .127 .087 .027 .090 .053 .003 .073 .033
a=.7 10|.547 .493 .063 .120 .093 .060 .153 .083 .030 .153 .063 3T
g=.0 210).713 .590 .120 .190 .120 .097 .203 .113 .053 .237 .097
1 AR’ a|.073 .220 .037 .070 .060 .017 .050 .043 .000 .027 .020
a=.1 10].100 .180 .023 .047 .053 .007 .053 .053 .003 .040 .033 3T
f=.89 20/|.120 .160 .030 .073 .063 .010 .053 .050 .000 .030 .020
1 AR/ 504).213 .273 .030 .097 .063 .003 .083 .043 .000 .037 .007
a=.3 1(0].340 .340 .077 .147 .083 .050 .157 .087 .013 .133 .067 .
g=.69 20/|.513 .397 .110 .200 .140 .087 .210 .113 .047 .200 .087 'V
1 AR’ 20{.273 .317 .057 .107 .070 .023 .103 .057 .003 .057 .027
a=.5 10| .447 .403 .083 .163 .100 .050 .170 .067 .010 .150 .053
B=.49 20]|.757 .617 .150 .280 .140 .147 .303 .153 .070 .337 .130
4 YAl $0].373 450 .053 .170 .097 .030 .220 .083 .010 .243 .097
100 { .513 .480 .087 .153 .103 .063 .237 .120 .013 .263 .133
200 | 593 .460 .087 .150 .117 .047 .177 .090 .027 .247 .103

Notes: AR’ is AR wita GARCH(1,1) h, = (1—a—f)+aer_ +Bh?_,. 21’ is Z1 with b, = E(eflé)
(1+ 23 +23)/3.




ERI Rl I Rl

»

TABLE 3 Power (5% level)

Block DGP _ n| TP TW LA LB LW, L, LD, LW I, B, I¥
i BL 50 | .357 373 060 103 .053 050 .120 033 .010 097 .017
100 | .600 520 073 .127 .037 077 170 .050 047 .187 040
200 | 773 613 130 .187 107 133 230 123 110 243 .080
I TAR 50 | .300 567 .33 503 487 220 417 400 .000 090 097
100 | .670 827 .853 .880 .883 743 .867 .880 073 .87 .497
200 | .987 993 997 997 997 997 997 997 797 977 973
1 SGN 50| 397 607 533 600 .603 290 513 497 007 150 .140
100 | .887 933 970 977 977 87T 960 .960 .150 687 .743
200 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .957 .997 997
I NAR 50 | 023 167 .0i7 033 023 003 .033 .023 .000 013 .003
100 | .057 .147 043 .083 067 .033 .007 .090 .003 043 .053
200 | .080 .213 087 117 123 053 130 .117 010 .087 .090
2 M2 50| .070 230 033 .050 .040 017 027 020 000 017 .020
100 | .073 250 037 040 .043 .033 .060 .050 .003 .037 .017
200 | 077 257 090 110 .103 047 097 .083 .010 .050 .030
3 M3 50 | 227 433 077 097 100 097 177 157 027 190 .143
100 | 497 663 210 220 227 313 390 350 .190 480 .430
200 857 910 433 450 447 677 .T33 713 650 .853 .833
2 M5 50 .627 790 273 323 263 247 427 303 017 220 097
100 | 973 950 607 .643 610 .740 833 780 .353 817 .500
200 | 1.000 997 927 940 930 993 .997 993 970 993 .980
2 M6 50| 560 670 237 283 230 137 290 147 010 .147 027
100 877 .820 D513 580 463 500 673 467 083 480 .167
200 .993 933 857 883 810 913 .973 913 .507 907 .607
3 SQ 50| 350 540 203 307 280 200 407 347 063 333 483
100 727 817 430 563 B30 453 700 650 363 847 810
200 | .980 990 833 887 873 873 .970 943 .840 .997 990
3 EXP 50 .320 463 163 247 200 173 363 273 087 467 .363
| 100 | 687 767 377 497 410 423 617 527 350 713 .607
200 | .927 957 657 .733 677 723 .S60 807 .703 .933 .907

i
|
|
i
|
|
i



(Table 3 continued)

Block DOP___w | 17 TV LA IR LN L D% DN Ly Lh LY,
4 72 50| .963 990 727 813 703 860 .957 .863  .B27 983 94
100 | 1.000 1.000  .990 .997 980 997 1.000 .997 .997 1.000 997

200 | 1.000 1.000 1.000 1,000 1.000 1.000 1.000 1000 1.000 1.000 1.000

4 Z3 50| .097 .257 .0BO0 150 .133 077 223 213 023 263 260
100 | .163 383 160 223 213 207 383 373 .067 . .633 493

200| .423 .633 327 400 433 467 650 673 353 793 793

4 74 50 | 1.000 1.000 1.000 1.000 .990 1.000 1.000 1.000 1.000 1.000 1.000
100 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 EXPAR 50| .613 .780  .407 427 407 270 370 .337 010 110 .097
100 953 .983 763 773 .767 783 837 .830 .280 603  .520

200 |1 1.000 1.000 993 .993 987 1000 1.000 1.000 .950 .990 993

5 TAR 50| .127 373 103 113 127 087 123 137 .000 .057  .0G3
100 | 433 713 247 283 293 263 .353 350 .067 273 280

200, .850 927 543 .550 .53 683 .783 727  .467 777 763

6 LSTAR 50| .403 .513 .170 .257 .227 040 .157 .127 .003 .030  .013
100 .880 933 493 .560 .543 327 .563 .500 .00 .210  .137

200 {1000 1.000 910 940 913 900 .967 953 .360 .833 787

6 ESTAR 50} .143 .237 100 .117 .110 .040 .093 .073 .003 .013 .013
100 .543 .710 .280 .317 313 .203 277 273 003 .047 047

2001 943 940 620 643 647 647 683 700 .103 .297 297
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