Air Pollution in India: Implications of Exposure

Kirk R. Smith

Professor of Global Environmental Health School of Public Health, UC Berkeley Collaborative Clean Air Policy Centre India Habitat Centre, New Delhi Air pollution is only of health interest if it is breathed by the population – exposure is what counts

Thus, of more interest to policy is "exposure apportionment" rather than "source apportionment"

What about Exposure?

- Ambient air pollution networks do not measure exposure, but indicate outdoor levels over wide areas
- In the West, people actually breathe mostly what comes from outdoors, although less on average due to being partly blocked by housing
- In most of India and much of Nepal and China, however, most people live in well-ventilated housing, meaning they breath closer to ambient levels
- In addition, unlike rich countries, Asians are affected more by local sources, sometimes heavily, meaning that their real exposures are higher than indicated by outdoor monitors
- Local sources: stoves, garbage burning, small industry, vehicles, etc.

IF = one million ppm – all is breathed in

Worse thing you can do

Ambient Intake Fractions in Hyderabad (Guttikunda, 2015) ppm – grams inhaled per tonne emitted

	Average	SD
Households	175	97
Construction	175	93
Waste.burn	140	74
Veh.exhaust	130	64
Gen.sets	123	53
Industries	65	17
Dust	18	4
Power plants	7.4	7.0
Brick.kilns	6.8	1.9

Source – Exposure Relationships

Goal for Health

- Find a way to frame policy to control air pollution emphasizing exposure rather than just concentration
- More efficient -- more protection per unit time and effort
- Without doing so, important sources can be ignored
- And important populations left behind

India

- Embarked on industrialization while still having large traditional sectors mixed pollution sources today
- Not the case in the West
- India now at GDP/capita of the US in late 1800s
- Need to get rid of dirty household fuels soon, while dealing with modern sources
- Has started to happen, but more emphasis needed

In which year did 80% of households begin cooking with gas?

Household air pollution, health, and climate change: cleaning the air

Jose Goldemberg, Javier Martinez-Gomez, Ambuj Sagar, and Kirk R Smith Environmental Research Letters, 2018 Slide 9

k2 krksmith, 7/17/2019

India

- Concern about "social benefits" for village households using solid fuels has led to a massive program to connect them to clean gas fuel
 - 80+ million poor households connected to LPG in 3 years
 - 90% of country now connected
 - Focus now on enhancing usage
- Households also responsible for ~30% of ambient PM2.5, but not included in national air pollution action plans
- And yet, surprisingly, cleaning up households alone will be enough to allow India to reach its national air pollution standards.

POLICY BRIEF

May 2019 • CCAPC/2019/01

The Contribution of Household Fuels to Ambient Air Pollution in India A Comparison of Recent Estimates

Sourangsu Chowdhury, Zoe A. Chafe, Ajay Pillarisetti, Jos Lelieveld, Sarath Guttikunda, and Sagnik Dey

Indian annual ambient air quality standard is achievable by completely mitigating emissions from household sources

Sourangsu Chowdhury^{a,b}, Sagnik Dey^{a,c,1}, Sarath Guttikunda^d, Ajay Pillarisetti^b, Kirk R. Smith^{b,e,1}, and Larry Di Girolamo^f

^aCentre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India; ^bSchool of Public Health, University of California, Berkeley, CA 94720-7360; ^cSchool of Public Policy, Indian Institute of Technology Delhi, New Delhi 110016, India; ^dUrban Emissions, New Delhi 110019, India; ^eCollaborative Clean Air Policy Centre, Delhi 110003, India; and ^fDepartment of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801

> Proceedings of the National Academy of Sciences April, 2019

Percent of ambient pollution from households

If PM2.5 emissions from all household sources are completely mitigated, 187 million Additional people would meet the Indian annual air-quality standard (40 μ g/m3) compared with baseline (2015) when 239 million people met the standard.

At 38 µg/m3, after complete mitigation of household sources, the mean annual national population-based concentration would meet the national standard, although highly polluted areas, such as Delhi, would remain out of attainment

Households largest single contributor to outdoor air pollution exposure in Indian

Apte and Pant, PNAS, 2019

Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005-2015

Bin Zhao^{1,2}, Haotian Zheng¹,Shuxiao Wang^{1,3,*}, Kirk R. Smith^{4,*}, Xi Lu^{1,3}, Kristin Aunan⁵, Yu Gu², Yuan Wang⁶, Dian Ding¹, Jia Xing^{1,3}, Xiao Fu⁷, Xudong Yang⁸, Kuo-Nan Liou², and Jiming Hao^{1,3}

¹School of Environment, and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China ²Joint Institute for Regional Earth System Science and Engineering and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA ³State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China ⁴Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA ⁵CICERO Center for International Climate Research, P.O. Box 1129 Blindern, N-0318 Oslo, Norway. ⁶Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA ⁷Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China ⁸Department of Building Science, Tsinghua University, Beijing 100084, China

Proceedings National Academy Sciences (2018, Oct)

$IPWE = PWE_{AAP} + PWE_{HAP}$

where PWE_{AAP} is the population-weighted exposure to AAP and PWE_{HAP} is the additional population-weighted exposure to HAP. (excluding any contribution from AAP)

$$PWE_{AAP} = \frac{1}{P} \sum_{i} (P_i \cdot C_i)$$

$$PWE_{HAP} = \frac{1}{P} \sum_{i,j} (P_{i,j,k} \cdot HAP_{j,k})$$

$$i = \text{county}$$

$$j = \text{urban/rural}$$

$$k - \text{fuel type}$$

1

Energy-environment-health benefits of rural residential coal-substitution in northern China

Meng Wenjun^a, Zhong Qirui^a, Chen Yilin^b, Shen Huizhong^b, Yun Xiao^a, Kirk R. Smith^{c*}, Li Bengang^a, Liu Junfeng^a, Wang Xilong^a, Ma Jianmin^a, Cheng Hefa^a, Zeng Y. Eddy^d, Guan Dabo^e, Armistead G. Russell^b, Tao Shu^{a*}

^a College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China^b School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA ^c School of Public Health, University of California, Berkeley, CA 94720, USA, ^d School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China ^e School of International Development, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK

> Proceedings of the National Academy of Sciences In press, 2019

Scenario 3 – current plan Scenario 4 – full substitution of solid household fuel Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

GBD 2015 Risk Factors Collaborators*

Recent CRA published 2017 in *The Lancet*

Single	Explore	Compare 🔻	Poth serves As	India	0ALYs per 100,000	
Settings Use basic settings			1990 rank	je-standardized, L	2017 rank	
Display	Cause	Risk	1 Respiratory infections & TB		1 Cardiovascular diseases	Communicable, mate neonatal, and nutritio
	Etiology	Impairment	2 Enteric infections		2 Maternal & neonatal	diseases
	Injuries b	y nature	3 Maternal & neonatal		3 Respiratory infections & TB	Non-communicable di
Rank	Cause	Location	4 Cardiovascular diseases	I in	4 Chronic respiratory	Injuries
Kdlik	Cause	Location	5 Chronic respiratory	Ì,	5 Enteric infections	
Category	All causes	V	6 Other infectious		6 Neoplasms	
Level	2		7 Unintentional inj		7 Unintentional inj	
Measure	DALYs (Disability-Adjusted Li 👻		8 Nutritional deficiencies		8 Other non-communicable	
Location	India		9 Neoplasms	- ii	9 Musculoskeletal disorders	
Danga 19	90	2017	10 Other non-communicable		10 Mental disorders	
Range 🖣			11 Musculoskeletal disorders		11 Diabetes & CKD	
Age	Age-standardized		12 Mental disorders		12 Neurological disorders	
Sex	Male Ferr	nale Both	13 Digestive diseases		13 Nutritional deficiencies	
Units	# Ra	te %	14 Neurological disorders	1	14 Digestive diseases	
Value	Observed	Expected	15 NTDs & malaria		15 Sense organ diseases	
		anjestes	16 Diabetes & CKD		16 Other infectious	

(1	1 1			
Single	Explore	Compare 🔻		India standardized D	ALYs per 100,000	
Settings		Use basic settings	1990 rank	Standardized, D	2017 rank	
Display	Cause	Risk	1 Child and maternal malnutrition		1 Child and maternal malnutrition	Metabolic risks
Display	Etiology	Impairment	2 Unsafe water, sanitation, and handwashing		2 Dietary risks	Environmental/occupationa
		by nature	3 Air pollution	· /	3 Air pollution	risks Behavioral risks
			4 Tobacco		4 High systolic blood pressure	Penavioral lisks
Rank	Risk	Location	5 Dietary risks		5 Tobacco	
Cause	Total All causes		6 High systolic blood pressure	i	6 High fasting plasma glucose	
Category	All risk factors	-	7 High fasting plasma glucose	,	7 Unsafe water, sanitation, and handwashing	
Level		2	8 Alcohol use		8 Alcohol use	
Measure	DALYs (Disability-Adjusted Li		9 High LDL cholesterol		9 High LDL cholesterol	
			10 Occupational risks		10 High body-mass index	
Location			11 Impaired kidney function		11 Impaired kidney function	
Range	Range 1990 2017		12 Other environmental risks		12 Occupational risks	
Age	Age-standardize	d 🚽	13 High body-mass index		13 Other environmental risks	
Sex	Male Fen	nale Both	14 Low physical activity		14 Low physical activity	
Units	# R	ate %	15 Drug use		15 Drug use	
			16 Low bone mineral density		16 Unsafe sex	
Value	Observed	Expected	17 Unsafe sex		17 Low bone mineral density	

Needed a <u>C</u>omparative Economic Assessment

- Common databases and time periods
- Common models and parameters
- Common agreement on what is included and why
- Common representation of uncertainty
- Peer-reviewed systematically
- Agreed update procedures and time lines

Thanks to many colleagues in

China, India, and the USA

Best to google "Kirk R. Smith" to find my website with publications

SPECIAL REPORT 21

January 2018

Burden of Disease Attributable to Major Air Pollution Sources in India

GBD MAPS Working Group

Source Sector	All India (%)	Rural India (%)	Urban India (%)
Residential biomass	23.9	24.2	22.1
Total coal	15.7	15.5	17.1
Industrial coal	7.7	7.6	8.5
Power plant coal	7.6	7.5	8.0
Open burning	5.5	5.5	5.6
Transportation	2.1	2.1	2.1
Brick production	2.2	2.1	2.2
Distributed diesel	1.8	1.8	1.4
Anthropogenic dust ^b	8.9	8.8	9.6
Total dust ^c	38.8	38.7	39.5

GBD MAPs Study, Jan 2018

Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

Jun Liu^a, Denise L. Mauzerall^{b,c,1}, Qi Chen^a, Qiang Zhang^d, Yu Song^a, Wei Peng^b, Zbigniew Klimont^e, Xinghua Qiu^a, Shiqiu Zhang^a, Min Hu^a, Weili Lin^f, Kirk R. Smith^{g,1}, and Tong Zhu^{a,h,1}

^aState Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; ^bWoodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544; ^cDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544; ^dMinistry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084, China; ^eInternational Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria; ^fChinese Academy of Meteorological Sciences, Beijing 100081, China; ^gSchool of Public Health, University of California, Berkeley, CA 94720-7360; and ^hBeijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China

Proceedings National Academy of Sciences (2016), 114: 4887–4892.

Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005-2015

Bin Zhao^{1,2}, Haotian Zheng¹,Shuxiao Wang^{1,3,*}, Kirk R. Smith^{4,*}, Xi Lu^{1,3}, Kristin Aunan⁵, Yu Gu², Yuan Wang⁶, Dian Ding¹, Jia Xing^{1,3}, Xiao Fu⁷, Xudong Yang⁸, Kuo-Nan Liou², and Jiming Hao^{1,3}

¹School of Environment, and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China ²Joint Institute for Regional Earth System Science and Engineering and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA ³State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China ⁴Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA ⁵CICERO Center for International Climate Research, P.O. Box 1129 Blindern, N-0318 Oslo, Norway. ⁶Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA ⁷Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China ⁸Department of Building Science, Tsinghua University, Beijing 100084, China

Proceedings National Academy Sciences (2018, Nov)

Satellite-based ambient PM_{2.5}

China recently

- Reduced household solid-fuel consumption was the leading contributor to the decrease in national exposure to PM_{2.5} pollution (2005-2015) -- 90% of reduction
- Even though there was no explicit household control policy.
- In contrast, the emission reductions from power plants, industry, and transportation contributed less to the decrease of exposure during this period – 10%.

China today

- Clean household fuels has become part of recent air pollution control policies in northern China – wide area around Beijing – BTH region
- With a requirement for 70-80% reduction in use of household solid fuels in three years to gas and electricity
- 4 million households by 2017
- Should be part of national policies
- Ironically, being done not because it helps the villagers, but because it helps reduce outdoor air pollution in cities
- "Type I error"

Air quality, health, and climate implications of China's synthetic natural gas development

Yue Qin^a, Fabian Wagner^{a,b,c}, Noah Scovronick^a, Wei Peng^{a,1}, Junnan Yang^a, Tong Zhu^{d,e}, Kirk R. Smith^{f,2}, and Denise L. Mauzerall^{a,g,2}

^aWoodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544; ^bAndlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544; ^cInternational Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria; ^dState Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; ^eBeijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China; ^fSchool of Public Health, University of California, Berkeley, CA 94720-7360; and ^gDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544

Proceedings National Academy of Sciences (2017), 113:7756-61.

$IPWE = PWE_{AAP} + PWE_{HAP}$

where PWE_{AAP} is the population-weighted exposure to AAP and PWE_{HAP} is the additional population-weighted exposure to HAP. (excluding any contribution from AAP)

$$PWE_{AAP} = \frac{1}{P} \sum_{i} (P_i \cdot C_i)$$

$$PWE_{HAP} = \frac{1}{P} \sum_{i,j} (P_{i,j,k} \cdot HAP_{j,k})$$

$$i = \text{county}$$

$$j = \text{urban/rural}$$

$$k - \text{fuel type}$$

Satellite-based ambient PM_{2.5}

Formaldehyde in California in early 2000s

- Wallboard and similar indoor products were producing large human exposures to this carcinogen
- California Air Resources Board requested, but was denied authority to control indoor air pollution
 - Due to consumer-product and tobacco industry opposition
- The CARB staff, therefore, wrote control regulations based on ambient emissions
- Was not the right framing, but did the job

Formaldehyde in California: 2007*

- "Current annual average concentrations of formaldehyde in ambient air range from 3 to 4 μ g/m3 across California, with indoor and in-vehicle concentrations typically many times higher."
- "The risk from exposure to annual average concentrations of formaldehyde in ambient air is about 20 to 24 potential excess cancer cases per year."

* PROPOSED AIRBORNE TOXIC CONTROL MEASURE TO REDUCE FORMALDEHYDE EMISSIONS FROM COMPOSITE WOOD PRODUCTS, CARB, Sacramento, March 9, 2007

Formaldehyde, Cont.

- "Within the category of area-wide sources, formaldehyde emissions from (various indoor products) in California are estimated to be about 900 tons per year."
- "The (proposed standard) would reduce emissions of formaldehyde by about 57%."
- <u>Health benefit from reduction in outdoor air, however, is</u> <u>less than 10% of the total benefit in lower cancer risk with a</u> <u>total exposure approach, which is dominated by indoor</u> <u>exposures.</u>

Formaldehyde in California – Concentration versus Exposure

A. Mean Ex			
Place	Time (hr/d)	Concentration (ug/m3)	Weighted Exposure
Indoor	20.82	17.2	358.1
In-vehicle	1.71	9.6	16.4
Outdoor	1.47	3.7	5.4
Total	24		379.9
			15.8 µg/m ³

Strategies

- Type I: Ignore impact on ambient air, but get rid of indoor exposures from solid fuel India
- Type II: Ignore impact on indoor exposures, but eliminate solid fuels to help control ambient air China
- Type III: Use jurisdiction over ambient air to control indoor exposures California