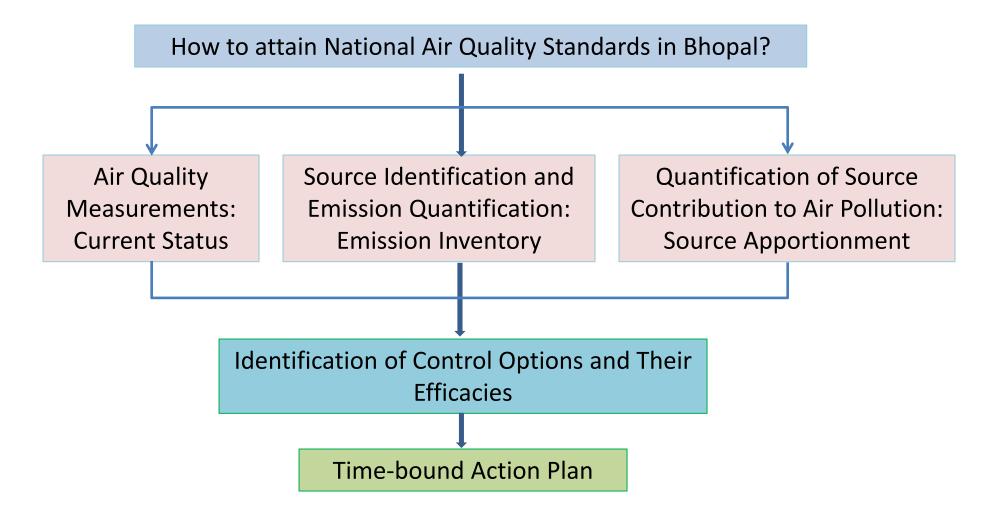
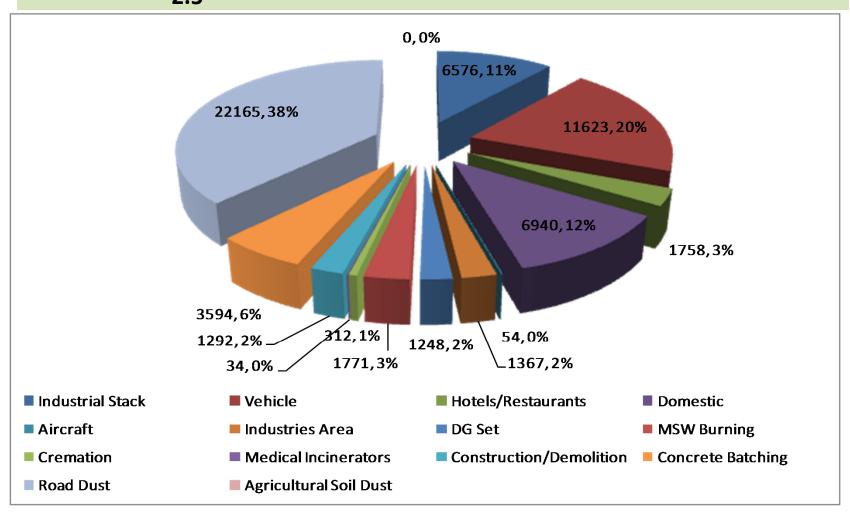

Beyond Source Apportionment

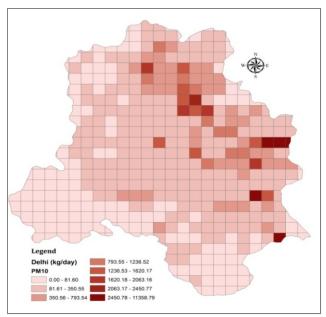
Effects of Air Pollution on Health, Human Capital and Sustainable Development in India

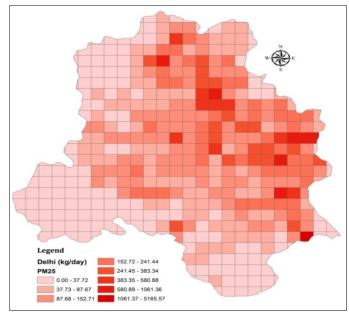

(17th - 18th July, 2019)

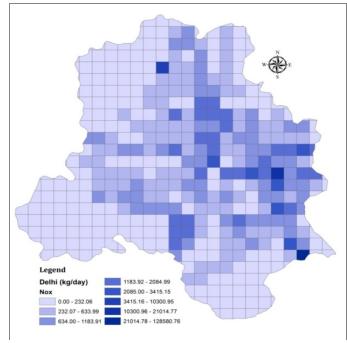
Mukesh Sharma; PhD, FNAE
Department of Civil Engineering
Indian Institute of Technology Kanpur
Kanpur, India



Framework for Air Quality Management in Bhopal

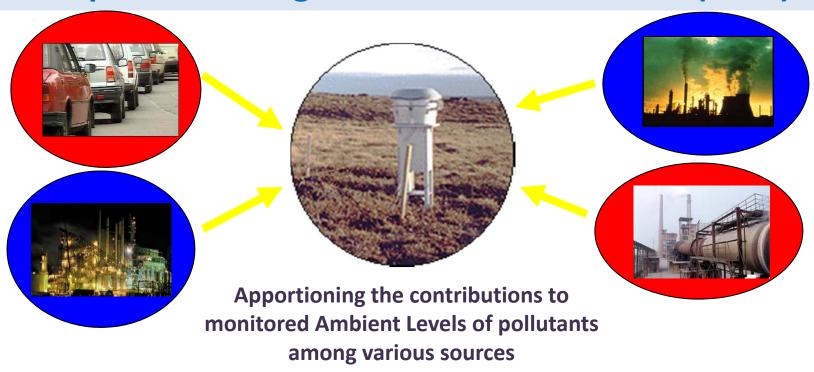

ightharpoonup A Comprehensive Scientific Study: quantified causal source-receptor impact analysis, control options and their effectiveness, action plan - focus: $PM_{2.5}$, PM_{10} and NO_x

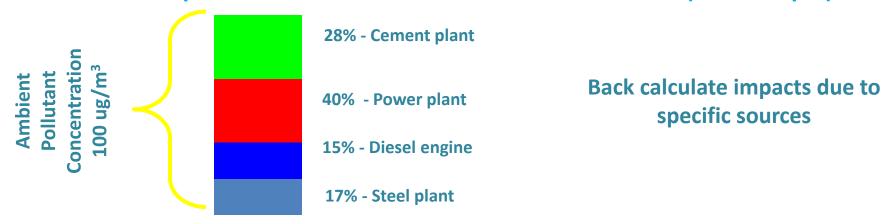

PM_{2.5} Emission Load of Different Sources



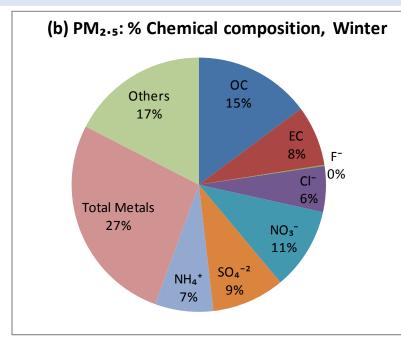
- \triangleright PM_{2.5} emission load: 59 t/d.
- Road dust (38 %), vehicles (20 %), domestic (12 %) and industrial point sources (11%).
- PM₁₀ emission load: 143 t/d.
- Road dust (56%), concrete batching (10%), industrial point sources (10%) and vehicles (9%).

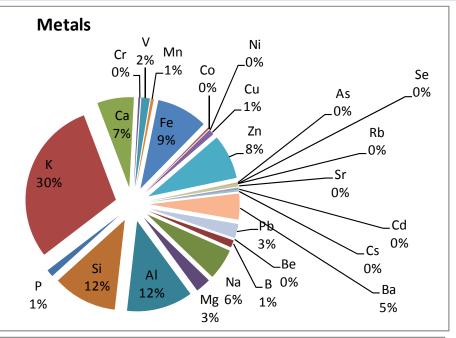
Spatial Distribution of PM_{10} , $PM_{2.5}$ and NO_X

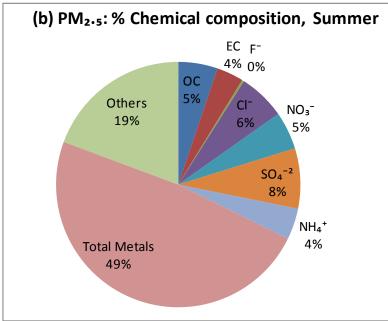


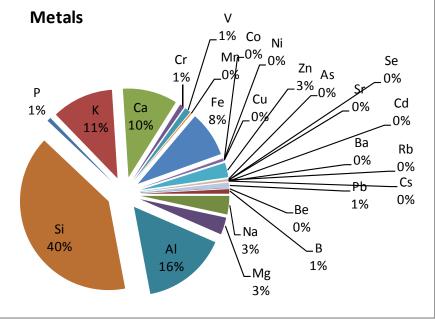

Source Apportionment: PM Composition and Receptor Modeling

Receptor Modeling: Chemical mass balance (CMB)

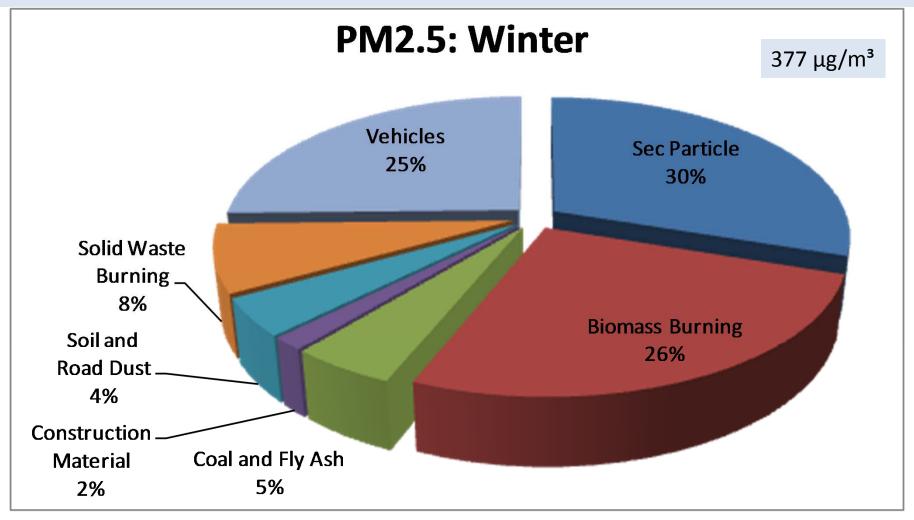



Capabilities


Identification of pollutant contribution due to several sources (for example)



Overall Distribution of Species in PM_{2.5}



CMB: Overall Summary of Source contribution in Delhi

- Winter sources % contribution: Secondary particles (30%), vehicles (25%), biomass burning (26%), MSW burning (8%)
- Secondary nitrate particles of vehicles origin contribute to 3% of total PM_{2.5}
- Total Average vehicle contribution to PM_{2.5} at about 28%

Beyond Source Apportionment

Synergy of Receptor- Source and Source-Receptor Models

CTM input parameters

Meteorology

- Wind speed & direction
- Temperature, pressure etc.
- Precipitation

Emission

- Location
- Emission quantities
- Stack height, diameter etc.

Air Quality

- Initial Conditions
- Boundary Conditions

Chemical Transport Model

The Chemical Transport Model used is WRF - Chem

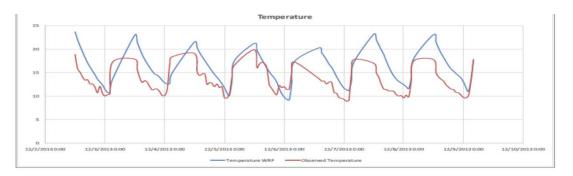


Figure 5.1: Temperature Validation of WRF generated values with IMD values

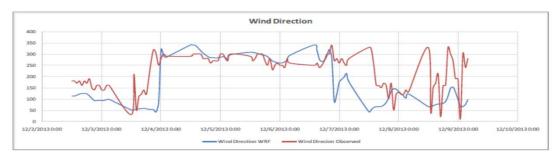


Figure 5.2: Wind Direction Validation of WRF generated values with IMD values.

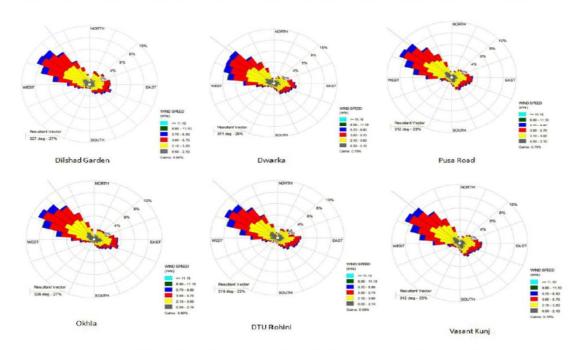


Figure 5.3: Wind Rose Diagram at Six Air Quality Sampling Locations.

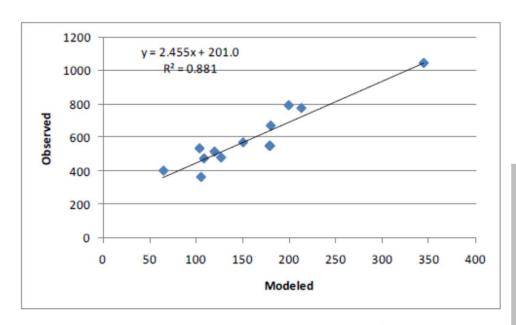


Figure 5.4: Observed vs computed PM₁₀ (μg/m³), Winter, RHN

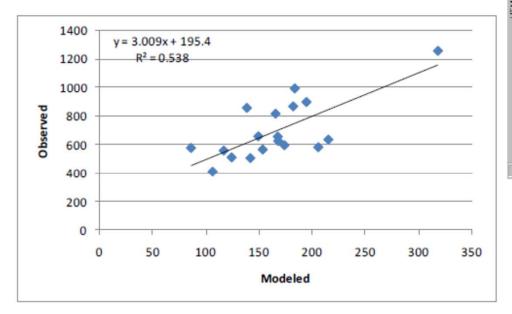
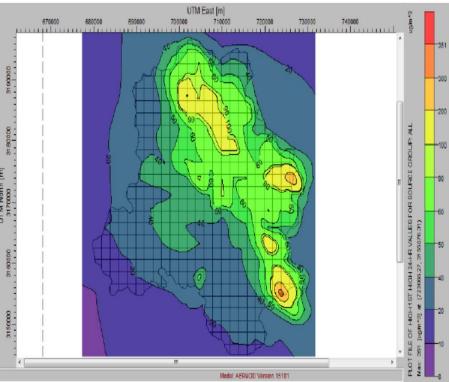
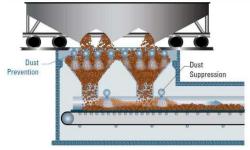



Figure 5.5: Observed vs Predicted of PM10 for Winter, OKH

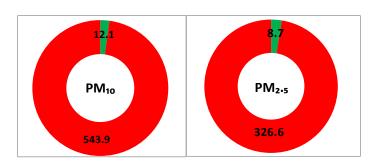
Model Performance


Source-specific Hotspots

Control Options and Action Plan

An Example: Construction and Demolition

- Wet suppression
- wind speed reduction
- Actual construction area is covered by fine screen
- Proper handling and storage of raw material
- No storage (no matter how small) of construction material near road side (up to 10 m from the edge of road)
- Regulations must be brought in for construction/demolition


	Parameter	Existing	Controlled	Mean Modeled Concentration (μg/m³)							
		(kg/day)	(kg/day)	Existing	Controlled	% Reduction in AP Level					
	PM ₁₀	5167	2584	3.4	1.6	52.0					
	PM _{2.5}	1292	646	0.8	0.4	50.0					

Suppression System

Windscreen for dust control

An Example: Action Plan for NCT of Delhi

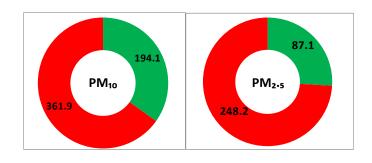
A. Immediate Actions

Source	Option No.	Description Option	2016	2017	2018	2019	2020- 2023	Percent improve ment in AQ
Hotels/ Restaurants	1	Stop use of Coal						80.56
Domestic Cooking	2	LPG to all						50.00
MSW Burning	3	Stop MSW burning: Improve collection and disposal (landfill and waste to energy plants)						100.00
Construction and Demolition	4	Vertically cover the construction area with fine screens Handling and Storage of Raw Material: completely cover the material Water spray and wind breaker Store the waste inside premises with proper cover						50.00
Concrete Batching	Water Spray Wind Breaker Bag Filter at Silos		-					40.00
Road Dust and Soil dust	6.1	-					70.00	
	6.2 ntation year 2016 may beg							

An Example: Action Plan for NCT of Delhi

B. Time-bound Actions


Source	Option No.	Description Option	2016	2017	2018	2019	2020- 2023	Percent improve ment in AQ
	7.1	Electric/Hybrid Vehicles: 2% of 2-Ws, 10% of 3-Ws and 2% 4Ws wef July 2017: New residential and commercial buildings to have charging facilities						
	7.2	Retrofitment of Diesel Particulate Filter: wef July 2018						
Vehicles	7.3	Implementation of BS – VI for all diesel vehicles including heavy duty vehicles (non-CNG buses and trucks) and LCVs (non-CNG): wef January 2019						50.0
	7.4	Inspection/ Maintenance of Vehicles						
	7.5	Ultra Low Sulphur Fuel (<10 PPM); BS-VI compliant: wef January 2018						
	7.6	2-Ws with Multi Point Fuel Injection (MPFI) system or equivalent: wef January 2019						
Industry and DG	8.1	Reduce sulphur content in Industrial Fuel (LDO, HSD) to less than 500 PPM						30.00
Sets	8.2	Minimize uses, uninterrupted power supply, Banning 2-KVA or smaller DG sets						
Secondary	9.1	De-SOx-ing at Power Plants within 300 km of Delhi						90.0
Particles	9.2	De-NOx-ing at Power Plants within 300 km of Delhi						90.1
Secondary Organic Aerosols	10	Controlling Evaporative emissions: Vapour Recovery System at petrol pumps (Fuel unloading and dispensing)						80.0
Biomass Burning	11	Managing crop residue burning in Haryana, Punjab and other local biomass burning, Potential alternatives: energy production, biogas generation, commercial feedstock for cattle, composting, conversion in biochar, Raw material for industry: wef July 2016						90.0
Fly Ash	12	Wind Breaker, Water Spraying, plantation, reclamation						
Note: for implem	entation year	2016 may begin from July 2016						


9. Secondary Particles: Control of SO₂ and NO_x from Large sources

- ➤ De-SOx-ing at Power Plants Within 300 Km of Delhi
- ➤ De-NOx-ing at Power Plants Within 300 Km of Delhi

PM2.5: Wi	nter
Vehicles 25%	Sec Particle 30%
Solid Worke Burning 98 Soil and Road Ober 48 Construction Meterial Coal and Ry Ash 28 5 5 8	Biomans Burning 25%
, 2,	

	Controlled	Mea	n Modeled Concentra	tion (µg/m ³)
Parameter	(kg/day)	Existing	Controlled	% Reduction in AP Level
PM ₁₀	132437 (SO2	69.0	6.9	90
PM _{2.5}	emissions)	38.5	3.9	90
PM ₁₀	153349 (NOx	41.0	4.1	90
PM _{2.5}	emissions)	25.2	2.5	90

Traffic congestion (may not be captured by model)

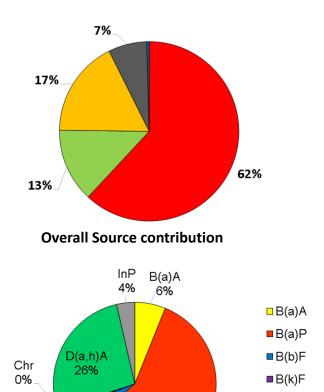
Total Location examined: 29

Highly congested locations

- Badi Chopad and Manak Chowk
- BSNL Circle
- Chomu Pulia
- D Circle/sindhi camp/ stn road
- Jawahar Nagar Circle

congested locations

- Collectorate Circle
- Sant Dabu circle
- Sanganer stadium circle
- RICCO Kanta chauraha, Mansarover
- Gandhi Circle

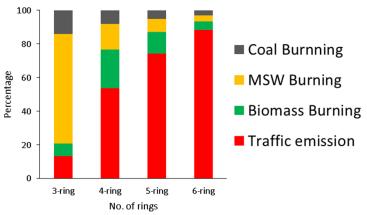

Spatio-temporal variations of PM_{2.5}-bound PAHs in Delhi, India: Source apportionment and assessment of associated human health risks

(Yadav, Sharma, et al., Science of the Total Environment, under review, 2018)

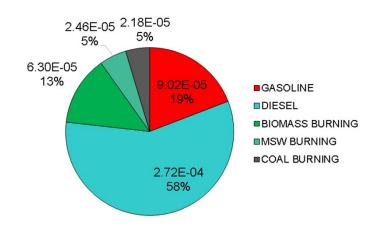
Chr

■InP

D(a,h)A


PAHs contribution to lifetime risk

B(a)P


B(k)F

1%

B(b)F

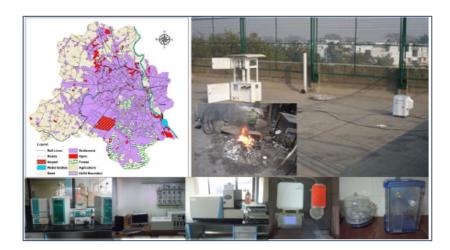
Source contribution to 3, 4, 5 & 6-ring PAHs

Source contribution to lifetime risk

4 to 6-ring PAHs have large carcinogenic risk: disproportionately high from traffic emissions (mostly from diesel)

Comprehensive Study on Air Pollution and Green House Gases (GHGs) in Delhi

(Final Report: Air Pollution component)

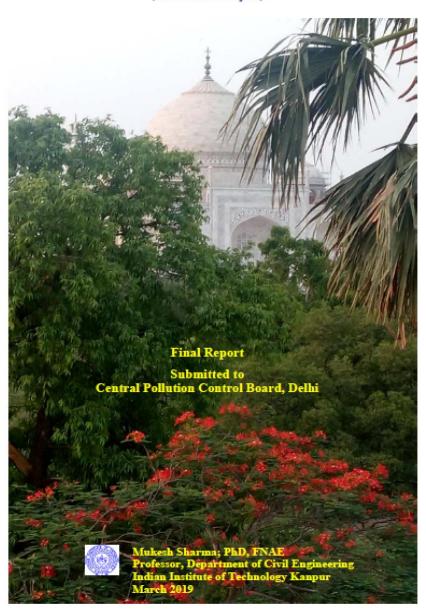

Submitted to

Department of Environment

Government of National Capital Territory of Delhi

and

Delhi Pollution Control Committee, Delhi



Mukesh Sharma; PhD and Onkar Dikshit; PhD
Professors, Department of Civil Engineering
Indian Institute of Technology Kanpur, Kanpur- 208016

January 2016

Apportionment of Air Pollution Sources at Taj Mahal, Agra (Summer Analysis)

The Future of SA and Planning

Not all PM_{2.5} particles are equally toxic.

Sala et. al (2014) Environ. Sci. Technol.

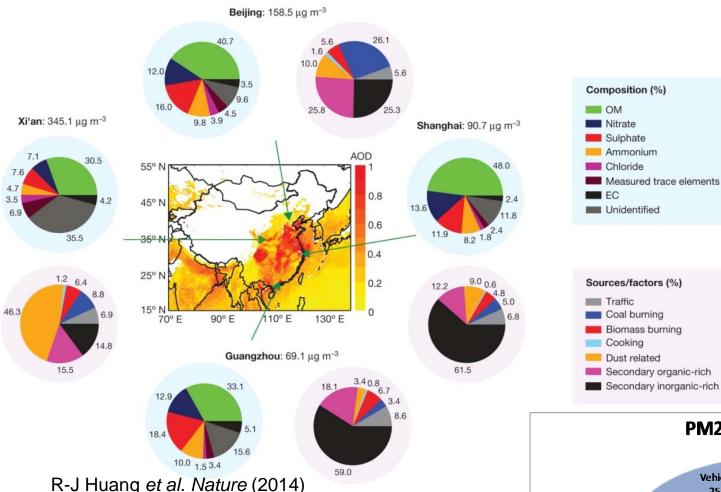
C.Y. Wu (2001). Air Waste Manag. Assoc.

Park et al. (2018) Science

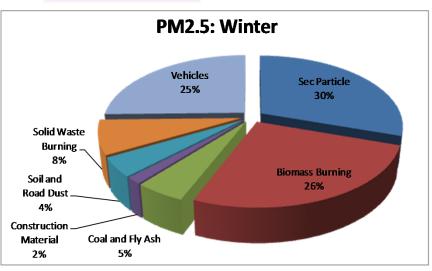
Krzyzanowski et al. (2005). WHO

HEI, (2016). www.healtheffects.org.

Pozzer, et al. (2015) Nature

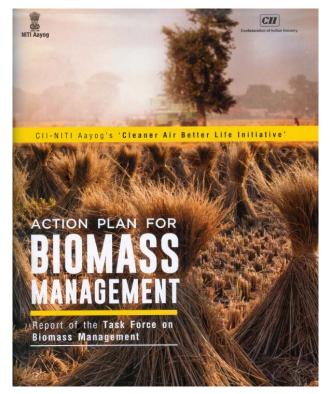

The HEI non-specific $PM_{2.5}$ mass alone may underestimate the total mortality risk of $PM_{2.5}$ exposure.

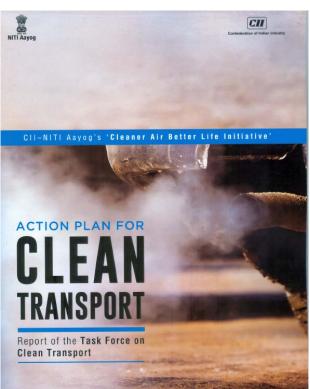
SA and Planning: Sum (Source_{Ii} × Toxicity_i)

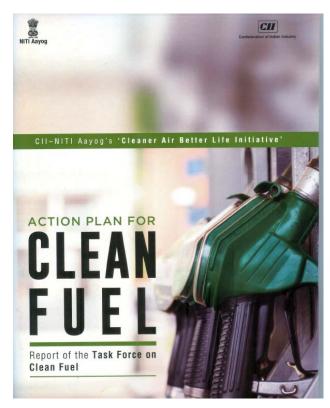

Species Sprace		Ė			AM	E C	E GE	ð	Ħ	BG	4	Ê	NEW	Ð		Z.		Total (1027)
Spring	*	8	LFG	θ											Ŋ	8	S	Total
OC																		154.656
EC																		38.613
NH ₄ ⁺																		3.784
NO ₃																		3.920
SO ₄ ²																		23.821
NO ₂ PO ₄																		0.159 0.178
F																		0.327
Na ⁺																		1.284
K ⁺																		0.948
Ca ²⁺																		3.994
Mg ²⁺																		1.296
Br Cl																		2.278 3.297
NCOM																		43.920
МО																		84.368
PMO Na																		88.852 2.316
Mg																		2.026
Al																		15.759
Si P																		45.773 0.331
S																		8.940
Cl																		3.893
K																		6.626 22.724
Ca Ti																		3.074
v																		0.436
Cr																		0.078
Mn Fe																		0.369 12.004
Co																		0.019
Ni																		0.076
Cu Zn																		0.098 1.529
Ga																		0.004
As																		0.007
Se Br																		0.213 0.072
Rb																		0.054
Sr																		0.183
Zr Mo																		0.040
Pd																		0.017
Ag																		0.094
Cd In																		0.048
Sn																		0.385
Sb																		0.265
Ba La																		3.193 0.078
Ce																		0.004
Hg																		0.002
Pb																		0.231
Y			l	 			 	 				1						0.052 0.017
Ge																		0.012
U Cs			ļ															0.003
Au			l	 			 	 							 			0.076
Tl																		0.001
I			_															0.068
Rh Te																		0.020
PM _{2.5}																		589.272
		* ***							+2		+2 .							
Legateb		< 10 ⁻¹		1	0 ⁻¹ to 1	10	1	0 to 10)^*	10	⁺² to 1	0**						
4																l		

- Its worth it only if....
 - Quality control and quality assurance
 - Data collection, quality instruments, trained manpower, experience, committed team
 - Right TOR and Scoping
 - Right model selection
 - Deal with sources from outside

Comparison: Delhi Vs Beijing, Shanghai, Xi'am, Guangzhou




"In response to the severe haze events of 2013, the Chinese State Council quickly released the 'Atmospheric Pollution Prevention and Control Action Plan' on 10 September 2013 which aims to reduce PM2.5 by up to 25% by 2017 relative to 2012 levels, and is backed by US \$277 billion in investments from the central Government."



Impact of Report?

S.No.	Status before report	Recommendation and Status After report					
1.	BS IV to BS V	BS IV leap frog to BS VI - Agreed					
2.	BS VI in 2023/2024	BS VI 2019 now 2021/2020					
3.	No road sweeping	Yes started, shoulder carpeting?					
4.	Soil dust control - none	Plant small shrubs, perennial forages, grass cover (initiated)					
5.	No attention to MSW burning	Stop fully. Problem recognized					
6.	SO4/NO3 control (65 – 75%)	90% control (change in regulation)					
7.	2-W single point fuel injection	Multi point fuel injection – talked about					
8.	Biomass burning	energy production, biogas generation, commercial feedstock for cattle, composting, conversion in biochar					
9.	10 ppm Sulfur in Diesel (2022)	Now 2019					
10.	Concrete batching – no plan	Recognized – action being initiated					
11	Construction activity	Being enforced					
12	NCR – no plan	Implement everything of Delhi in NCR – no takers					

There are several studies conducted by various institutions regarding the deteriorating air quality of Delhi. A recent and most comprehensive source apportionment study has been done by HT-Kanpur (HT-K) on behalf of the Government of Delhi. For this initiative, the findings of HT-K study are being considered as basis of designing the action plans. One of the major sources of air quality deterioration in Delhi in the months of October and November is burning of agricultural biomass residue, or Crop Residue Burning (CRB) in the neighboring states of NCR.

Mr. Pavan Kumar Nagar, P.hD Scholar and Mr. Dhirendra Singh, Senior Project Engineer, IIT Kanpur worked tirelessly from field sampling to analysis and preparation of report; thanks to Pavan and Dhirendra for their inestimable support. Sincere thanks are also due to the entire IITK team engaged in the project including Preeti Singh, Sandhya Anand, Akshay Singh, Nitish Kumar Verma, Harvendra Singh, Pravin Kumar, Toofan Singh, Gaurav, Gulab Singh, Saurabh, Deepak Panwar, Durga Prasad Yadav and Virendra. Special thanks to Mr. Anu N, Assistant Professor, UKF College of Engineering and Technology for his support.

Thank you.