Source Apportionment of PM$_{2.5}$ in India

Pallavi Pant

Health Effects Institute
July 18, 2019
What is the Health Effects Institute?

An independent non-profit institute providing trusted science on the health effects of air pollution for nearly 40 years

Over 350 scientific studies, reviews, re-analyses conducted around the world, including increasingly in Asia

Balanced Core Support – a public-private partnership

Partnerships- international agencies, donors, non-profits, academic institutions etc.

Independent Board and Expert Science Committees
HEI’s work in India

Public Health and Air Pollution in Asia

GBD-MAPS India

State of Global Air

https://www.healtheffects.org/publication/ghd-air-pollution-india

www.stateofglobalair.org
Approaches for source apportionment

Bottom-up
- Emissions inventories, chemical transport models

Top-down
- Ambient air quality measurements, source fingerprints
Source Apportionment using top-down approaches

Chemical Mass Balance (CMB)

Positive Matrix Factorization (PMF)

Other multivariate methods

Six City Source Apportionment Study

Real-time source apportionment

Mathematical Framework

\[x_{ij} = \sum_{k=1}^{p} g_{ik} f_{jk} + e_{ij} \]

- \(x_{ij} \): Mass of species \(j \) in sample \(i \)
- \(g_{ik} \): Mass fraction of species \(j \) from source \(k \)
- \(f_{jk} \): Mass from source \(k \) in sample \(i \)
- \(e_{ij} \): Residual

Back of the envelope version of calculation

Want to know

Measure

tracer species \(i \) in air

total PM in air

source contribution

tracer species \(i \) from source

total PM from source

source profile or fingerprint

Credit: Dr. Mike Hannigan

GBD-MAPS India

An international collaboration

Indian leads: Dr. Chandra Venkataraman, IIT-Bombay; Kalpana Balakrishnan, Sri Ramachandran University

HEI in collaboration with IIT-Mumbai, Tsinghua University, University of British Columbia and IHME; others

Goals

Identify what sources contribute the most to poor air quality and health
Evaluate the implications of alternative control policies on future impacts
Provide a baseline against which to measure future progress

https://www.healtheffects.org/publication/gbd-air-pollution-india
GBD-MAPS approach

- Develop current and future emissions inventories
- Simulate the fraction of ambient \(\text{PM}_{2.5} \) due to each major source
- Simulate using atmospheric, chemical transport models (GEOS-CHEM, nested-south Asia version); scaled to satellite data
- Link to gridded population data
- Apply GBD exposure response functions
- Estimate source-specific burden

Emissions inventories, current and projected under alternative scenarios for 2030 and 2050

\[\text{Total Number of Deaths (thousands)} \]
Major source contributors to baseline PM$_{2.5}$ levels and health burden at the national level

Residential biomass burning (24.4%) is the largest individual contributor to the burden of disease in India, followed by coal combustion (15.5%) and open burning of agricultural residue.

2015

https://www.healtheffects.org/publication/gbd-air-pollution-india
But this isn’t the only study—how do the different estimates compare?

National estimates: bottom-up modelling

City-level estimates: bottom-up/top-down

No single sector - silver bullet that will solve our air pollution problem

Need coordinated multi-sectoral regional action, as well as the city-level action as mandated by NCAP

Improved data access as well as data transparency

Ongoing assessment – convergence of results from various approaches
CLEARING THE AIR WITH DATA

Supporting long-term policy making by establishing baselines for air pollution in a city.

1. Complete emissions inventories for each city and sub-regions and national background levels.
2. Create a spatial map of emissions for each pollutant, specifying source category, inventory and GHG potential.
3. Use satellite data and ground measurements for air quality.
4. Use a dispersion model to calculate concentrations of pollutants.

APnA cities

AHMEDABAD

January

2018

PM2.5 - ug/m³

0 to 10
10 to 20
20 to 40
40 to 60
60 to 100
100 to 150
150 to 200

Ahmedabad

boundaries

veh-exh

cook-light

heating

industry

waste-burn

dust

dg-sets

14%
4%
9%
12%
8%
17%
6%

50 cities
Questions for discussion

Per NCAP, cities will be required to conduct source apportionment analysis.

Are there common protocols/methodologies to be used?

How will source apportionment analyses be used?

Who will do this? How?

Standard Operating Procedures
QA/QC Processes

Prioritize sources to control?
Seasonal contributions?
Measurement of progress?
Thank you!

ppant@healtheffects.org

www.healtheffects.org